Dense Gas in the LMC and the Circumstellar Shell of R Scl

Tony Wong, ATNF Millimetre Workshop 21 Nov 2002

With: John Whiteoak, Maria Hunt, Michael Lindqvist, Hans Olofsson

1. Dense Gas in the LMC

- At a distance of ~50 kpc (1" = 0.25 pc), the LMC is the nearest actively star-forming galaxy.
- Low metallicity (~0.25 Z_☉) ⇒ less dust ⇒ very different interstellar environment!
- Due to strong FUV field, most molecular gas will be in photon-dominated regions (PDRs).
- Initial target: N113 cloud, observed with SEST by Chin et al. (1997).
- The Future: Take advantage of CO survey at 160" resolution conducted with 4m NANTEN telescope (N. Mizuno et al.)
- Follow up with SEST, Mopra, and ATCA.

Massive Star Formation in N113

NANTEN CO contours over Hα image from Kennicutt

First ATCA Observations

• 9 Jul 2001, single baseline

- Additional observations on 10 Jul and with 3-element system on 4 and 8 Oct.
- No T_{sys} or flux calibration – assumed fluxes for calibrators.

Emission is Heavily Resolved

XX.YY. v-86.1 min, Bl-2-3, T-16:20:23

Ka, VHL0 - 5:13:18.500, -59:22:33.00, 2.200001+02 km/s at pixel (65.00, 65.00, 1.00)
Spatial region : 35.35 to 95.95 Spectral inc/bin : 1/1 =2/2 (km/s)
Contour image: n113mc.59118.cm (n113mc) Min/max-0.1892/0.174 Contours x 0.15 JY/BEAM
Contours : -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

11

2002 Observations

Integrated Spectrum

Conclusions for N113 core

- Deconvolved FWHM \approx 1.5 pc \Rightarrow R \sim 1 pc.
- Line width $\Delta v \sim 5 \text{ km s}^{-1}$.
- For a virialized cloud, ignoring optical depth effects, $M \approx 200(R_{pc})(\Delta v_{km/s})^2 \approx 5000 M_{\odot}$.
- For constant density, n_H ~ 5 x 10⁴ cm⁻³.
- Peak flux ~ 2 Jy, only ~13% of SEST flux.
- Most of the HCO⁺ is probably in relatively diffuse gas associated with the PDR.
- HCO⁺ enhanced due to high C⁺ abundance (Graedel et al. 1982).

2. Circumstellar Envelopes

- In late AGB evolution, a slow wind produces a circumstellar envelope (CSE) of gas & dust.
- Strong variations in mass-loss rate (He shell flashes?) can lead to a detached shell of molecular gas (Olofsson et al. 1990). U Cam (CO) Lindqvist et al. (1999)

Circumstellar Shell Around R Scl

- R Sculptoris has been inferred from SEST CO (3-2) observations to have a detached shell (Olofsson et al. 1996).
- However, the data had insufficient resolution (16") to determine the mass loss rate or shell thickness.

ATCA Observations XX,YY, 7=208.3 min, Bl=2-3, T=21:43:07 XX,YY, 7=208.3 min, Bl=2-4, T=21:43:07 XX, YY, 7=208.3 min, Bl=3-4, T=21:43:07 02 202 92m 31m 61m 1.5 2 1.5 Amplitude Amplitude EW214 Amplitude 02JUN21 0.6 0.6 0.5 0 -20-20 -40 -20-40Velocity(radio,LSR) (km/s) Velocity(radio,LSR) (km/s) Velocity(radio.LSR) (km/s) XX,YY, 7=212.7 min, Bl=2-3, T=14:56:11 XX,YY, 7=212.7 min, Bl=2-4, T=14:56:11 XX, YY, 7=212.7 min, Bl=3-4, T=14:56:11 20 171m 111m 61m 1.5 нĄ 1.5 Amplitude Amplitude Amplitude H168 020CT13 0.6 0.5 0.5

-20

Velocity(radio,LSR) (km/s)

0

-20

Velocity(radio,LSR) (km/s)

-40

0

-20

Velocity(radio,LSR) (km/s)

0

-40

17

ATCA Observations

XX,YY, T=159.0 min, Bl=2-3, T=15:20:05 XX,YY, 7=158.7 min, B1=2-4, T=15:19:44 XX,YY, 7=158.7 min, B1=3-4, T=15:19:44 65 413m 275m 138m 10 1.5 Amplitude Amplitude Amplitude 750A 02OCT15 0.5 0.5 0.6 0 0 0 -40 -20 -20 40 -20 -40 n Velocity(radio,LSR) (km/s) Velocity(radio,LSR) (km/s) Velocity(radio,LSR) (km/s) XX,YY, 7=167.3 min, Bl=2-3, T=13:19:47 XX,YY, 7=167.3 min, Bl=2-4, T=13:19:47 XX,YY, 7=167.3 min, Bl=3-4, T=13:19:47 65 138m 413m 275m 1.5 10 Amplitude Amplitude Amplitude 750A 020CT18 0.6 0.5 0.5 0 -20 -40 0 -20 -40 -20Velocity(radio,LSR) (km/s) Velocity(radio,LSR) (km/s) Velocity(radio,LSR) (km/s)

No shell emission $(3\sigma = 75 \text{ mJy})$

19

Central source is resolved

source FWHM $\approx 1''$ (400 AU)

Not decorrelation!

22

Not decorrelation!

XX 0104-408.uv 89.0635 GHz

23

Conclusions for R Scl

- HCN (1-0) emission has been resolved with a deconvolved FWHM ≈ 1" (400 AU).
- Peak flux ~ 1.3 Jy, virtually all of SEST flux (0.05 K x 25 Jy/K). S/N ratio of ~40.
- No evidence for emission from the R ≈ 10" shell inferred from CO data, or R ≈ 20" shell seen in scattered light (Gonzalez Delgado et al. 2001).
- HCN is probably emitted from present mass-loss envelope. Dissociation of HCN ⇒ CN probably leads to low HCN abundance in the CO shell.
- Would be interesting to image the CN line at 113.3 GHz, as well as CO and/or ¹³CO.

An Overview of the 3mm System in 2003

Tony Wong, ATNF Millimetre Workshop 21 Nov 2002

Current System (2001 Sep)

- 3 antennas (CA02, CA03, CA04) with dual polarisation receivers.
- 2 observing bands: 84.9-87.3 and 88.5-91.3 GHz. Module swap at antenna required to change bands.
- Up to 128 MHz bandwidth in each of 2 frequencies.
- Minimum baseline 30m.
- Both N-S and E-W configurations possible (since 2002 Aug).

3mm Receiver System

At present, the tuning range is limited since we are using a fixed frequency LO at 80.5055 GHz.

The sky frequency range is 84.9-87.3 GHz using the Cband filter module or 88.5-91.3 GHz using the X-band module.

3mm Receiver System

At present, the tuning range is limited since we are using a fixed frequency LO at 80.5055 GHz.

The sky frequency range is 84.9-87.3 GHz using the Cband filter module or 88.5-91.3 GHz using the X-band module.

Improvements in 2003

- Currently, C and X modules must be swapped manually to switch from one band to the other.
- May: 3 antennas with prototype systems (CA02, CA03, CA04) get new down-conversion systems, eliminating need to swap modules.
- Allows one to quickly switch to 86 GHz SiO masers for pointing, even when observing at 89-91 GHz.
- Will NOT permit simultaneous observations at 86 and 90 GHz.
- September: 4th antenna (CA01) may be equipped with "production" 3mm receiver, but frequency range not compatible with CA02/3/4.

Priorities for Testing

- Pointing errors: there appears to be a systematic offset in antenna pointing between 9, 20, and 86 GHz (M. Kesteven).
- Working on freq-dependent pointing model.
- Phase errors: phase jumps when changing sources, seems to be mostly (or to mimic) a baseline error.
- May need a freq-dependent baseline model

 but errors appear to also vary in time!
- Still more to be done...

Baseline errors 2002

in mm, CA03 as reference

	ΔX_2	ΔY_2	ΔZ_2	ΔX_4	ΔY_4	ΔZ_4
EW214	1.14	0.03	-1.68	-0.75	2.01	-2.37
750B	0.81	0.18	0.93	-1.8	2.67	0.78
H75	-1.83	-3.96	2.73	-8.58	-10.38	6.33
EW367	-0.39	1.11	0.63	12.06	2.46	-11.13
H168	2.01	0.60	-1.11	-2.82	1.83	0.06
750A	0.96	0.36	0.03	-0.99	-0.60	1.14

Planned configurations

2002 May term: EW214, EW367, 750C, 1.5C
Proposal deadline: 15 February!

EW214₁₂₃ + EW367₁₂₃ 7.1" x 3.6" at δ = -45°

Suggested Projects

- Quasar absorption lines: can calibrate out most phase errors, u-v coverage unimportant.
- Compact emission sources unresolved with SEST: can expect good S/N.
- Ratios of 2 lines that can be observed simultaneously: less reliant on matched uv coverage.
- Low dec (<–45°) sources: less shadowing in compact arrays
- Anything that looked good today!

Questions to Consider

- 1. Does the Australian user community accept the new timeline for the 3mm upgrade?
- 2. Does it have a choice?
- 3. Are there mechanisms in place to ensure that goals and deadlines are meaningful?
- 4. Does ATNF have its priorities straight?
- 5. Are we sufficiently involving the engineers in the scientific program?
- 6. Should the ATNF Steering Committee be asked to take action?