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Deconvolution and
Multi frequency synthesis
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Deconvolution

� Basics (again!)
� Multi-frequency synthesis
� Characteristics of the dirty beam
� Linear deconvolution
� Constraints
� CLEAN
� Maximum entropy
� Restoration
� Multi-frequency deconvolution
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An example of
deconvolution
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Filling the Fourier plane

� Use many antennas (6 antennas or more)
� Use Earth rotation (12 h observations)
� Physically move antennas

But the aperture is NEVER completely filled

� Limited observing time
� Limited number of antennas
� Various interruptions to the observation
� Min and max baselines
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Multi-frequency synthesis

� As (u,v) coordinate is measured in wavelengths, another 
way of filling the Fourier plane is to observed at multiple 
wavelengths simultaneously. 
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Basic imaging relationship

Using a “direct Fourier transform” we produce the dirty image
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Convolution relationship

Fourier theory tells us that

so

where

Jargon: The point-spread function is usually called 
the “beam”.
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Deviations from
convolution relationship

� Wide-field effects are usually neglected. These include
– Time and bandwidth smearing

– Primary beam effects

– So-called non-coplanar baseline effects
� Convolution relationship strictly applies only for 

continuous functions (not a sampled grid of pixels).
� “Aliasing” in the imaging process is also not accounted 

for.
� Finite extent assumption.
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Dirty beams
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Dirty beam
characteristics

Differing “holes” in the 
Fourier plane lead to a 
wide variety of sidelobe 
structure
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Linear deconvolution

� Inverse filter

� Wiener filters

then
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Linear deconvolution …

� Noise properties are well understood
� Generally non-iterative and computationally cheap

But

� It does a very poor job
� Rarely used in practical radio interferometry
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Non-linear deconvolution

� Linear deconvolution is fundamentally unable to 
extrapolated unmeasured spatial frequencies.

� A function which is non-zero only in the unsampled part of 
the Fourier plane is called an invisible distribution.

� A good non-linear deconvolution algorithm is one that 
picks plausible invisible distributions to fill in the Fourier 
plane.
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Prior Information 
or Assumptions

� Bounded support (“CLEAN boxes”).
� Positivity
� The sky is mostly empty
� Use a goodness measure to pick “reasonable” solutions.
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CLEAN Algorithm
(Högbom, 1974)

� Assumes that the sky can be modelled as a collection of 
point sources.

� Iteratively decomposes the sky into a collection of point 
sources.

� In principle, CLEAN is guaranteed to converge, although 
in practice it can become unstable if pushed too far.

� Generally it is quite a robust algorithm.
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CLEAN algorithm

1. Search for the largest peak in the residual image

2. Assume this is a result of a point source – a component!

3. Subtract off some fraction (“damping factor” or “loop 
gain”) of the point source.

4. Add that fraction of the point source to a component list.

5. Iterate

Iteration stops when the residual is below some cut-off, when 
a negative component is encountered, or when a fixed number 
of components are found.
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CLEAN implementations

� There are different implementations of the algorithms 
(with their individual strengths and weaknesses):
– Högbom algorithm – the classical one

– Clark algorithm – faster for large images with many point sources.

– Cotton-Schwab (“MX”) algorithm – works partially in the 
visibility domain. Able to cope with extra artefacts. Can be slow.

– Steer Dewdney Ito algorithm – works best for very extended 
objects.
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Strengths/weaknesses

� CLEAN is good for fields of sources which are unresolved 
or just resolved.

� Generally quite robust in the face of many defects.
� CLEAN is very poor for very extended objects:

– Slow!

– Corrugation instability.

– CLEAN poorly estimates broad structure (short spacings). The 
result is the so-called “negative bowl” effect.

� CLEAN’s procedural definition makes it difficult to 
analyse.
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Examples of CLEANed images
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Bayesian Statistics
and Maximum Entropy

� Two basic views of probability theory:
– Views probability distribution function as a measure of 

the relative frequency of an outcome.
– Views probability distribution function as a reflection of 

our uncertainty.
� Principle of maximum entropy:

Of all the possible probability distributions which are 
consistent with the available information, the one that has 
the maximum entropy is most likely the correct one.

� Maximum entropy image deconvolution:
Of all the possible images consistent with the observed 
data, the one that has the maximum entropy is most likely to 
be the correct one.
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Maximum entropy

� Of all the possible images, pick that one which maximises 
some goodness measure called “entropy”.

� The most popular choice is the entropy function
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Maximum entropy

� The solution is generally constrained so that a χ2 measure 
is consistent: i.e. the χ2 measure is consistent with the 
expected noise level.

� Integrated flux constraint can be included.
� “CLEAN box” constraint is readily added.
� The default image, M, can be chosen to be a uniform value, 

or can be set to some prior expectation of the source.
� Solution image must be positive-valued.
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Strengths/weaknesses

� Fourier extrapolation tends to be more conservative than 
CLEAN.

� Tends to work better for images with a large amount of 
extended emission.

� Tends to be faster for large images ( > 1024x1024 pixels).
� Susceptible to analysis.
� Depends more critically on its control parameters (e.g. 

noise variance and integrated flux).
� More likely to blow up on poorly calibrated data, or data 

that violates the convolution relationship in some way.
� Poorly deconvolves point sources.
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CLEAN vs MEM

The answer is image dependent:

� “High quality” data, extended emission, large images

⇒ Maximum entropy

� “Poor quality” data, confused fields, point sources
⇒ CLEAN
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“Restoration” Step

� CLEAN and MEM “super-resolve”, and the high spatial 
frequencies can be of poor quality (particularly CLEAN).

Solution: Downweight the high spatial frequencies by 
convolving with a gaussian “CLEAN beam”.

� The CLEAN beam usually has the same FWHM as the 
main lobe of the dirty beam.
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Why include the residuals?

� The residuals give an easy way of seeing how believable 
the features in an image are.

� The residuals still contain emission from sources that have 
not been CLEANed out.
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Multi-frequency
deconvolution

� Multi-frequency synthesis uses observations at many 
frequencies to prove the Fourier plane coverage.
Problem: Source structure is a function of frequency.

� For modest spread in fractional bandwidth (< 15%), and 
modest dynamic range (< 500), the errors caused by source 
structure varying with frequency can be ignored.

� When this is not the case, a multi-frequency deconvolution 
algorithm can be used to eliminate the resultant errors.
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Multi-frequency
deconvolution algorithm

� The algorithm models the spectral variation at each pixel as a 
constant and a linearly varying component with frequency.

� The response to the constant part of this variation is just the 
normal dirty beam.

� The response to the linearly-varying component can be 
represented by a second response function. The dirty image 
is the sum of the responses to the constant and varying 
components.

� A joint deconvolution, simultaneously solving for the two 
components can be performed.

� In Miriad, this is the so-called mfclean algorithm.


