

- There are different implementations of the algorithms (with their individual strengths and weaknesses):
 – Högbom algorithm – the classical one
 - Clark algorithm faster for large images with many point sources.
 - Cotton-Schwab ("MX") algorithm works partially in the visibility domain. Able to cope with extra artefacts. Can be slow.
 - Steer Dewdney Ito algorithm works best for very extended objects.

17

18

Examples of C	LEANed images
24	B ₀
30	c d
100	
42	
48	e
-60'54' 22 ^h 35 ^m 30" 35 ^m 0" 30" 34 ^m 0" 30" 33 ^m 0" 30" 32	
RA (J2000)	Ré effect (averen 19000)

Strengths/weaknesses	
 Fourier extrapolation tends to be more conservative than CLEAN. 	
 Tends to work better for images with a large amount of extended emission. 	
Tends to be faster for large images (> 1024x1024 pixels).	
Susceptible to analysis.	
 Depends more critically on its control parameters (e.g. noise variance and integrated flux). 	
More likely to blow up on poorly calibrated data, or data that violates the convolution relationship in some way.	
 Poorly deconvolves point sources. 23 	

