<section-header><section-header><section-header><text><text><text><text><text>

Spectral Line Correlation

- Modern digital correlators intrinsically spectral line
- Spectral resolution function bandwidth & number of lags (or size of FFT)
- Maser components are very narrow
 → High spectral resolution is needed

- Galactic masers typically 1-20"
 → Short integration time (Time Smearing)
- Hanning smooth
- Scalar and vector averaging:
 - \rightarrow Scalar Noise bias
 - \rightarrow Vector Small synthesised beam

Calibration

- Basically the same as for continuum

 → Estimate time dependent antenna Tsys
 - \rightarrow Estimate residual delay and rate
- Also correct for bandpass

Assume time and frequency corrections are independent

Jive

Bandpass Calibration

- Need relatively strong continuum source
- Must observe at same frequency
- Can use auto-correlations, but cannot correct phase
- Cross-corr allow phase correction
 - \rightarrow Need enough S/N on calibrator
 - \rightarrow Need to fringe fit first

Jive

Amplitude Calibration

- Can do normal Tsys calibration
- Optionally, use auto correlations:
 - \rightarrow Gives very good results (in principle)
 - \rightarrow Corrects for pointing errors at telescope
 - \rightarrow Only gives relative calibration
 - Depends on amplitude calibration of template spectrum

Fringe Fitting

- · Need to estimate residual delay and rate
- Residual rate seen as slope of phase in time (in both frequency and lag domain)
- Residual delay seen as shift in lag domain, so a slope of phase across the bandpass in the frequency domain

- Measure residual delay by measuring phase slope
- Only a couple of channels per feature for spectral line
- ightarrow Cannot measure residual delay
- Continuum delay calibrator must be observed every hour or so
- Residual rates obtains from a bright spectral feature

Jive

Doppler Correction

- Each station at different velocity
- Need to correct to standard rest frame
- Observe at fixed frequency

correlator

- Fringe rotation at correlator does some
- Further velocity correction in software
 → Application depends critically on design of

Self-calibration

- Many separate components at different velocities and position
- Cannot selfcal data set as a whole
- Cannot run self cal on each frequency channel separately
- Selfcal strong (compact) feature and apply calibration to rest of channels

Continuum Subtraction

- No need for Galactic masers
- Do after all calibration for HI absorption
 - \rightarrow Image negative hole in image
 - \rightarrow POSSM plots show as emission

Imaging

Nothing special but...
 → Large maps with many frequency points yields large data cubes

Fringe Rate Mapping

- Galactic masers sometimes large (>10")
 → Often many sources in beam
- Use fringe rate mapping to find where emission is
- Also gives absolute position
- FRMAP in AIPS tricky to use

Scheduling

- Choose enough bandwidth for velocity coverage
- Calculate required spectral resolution (Allow for Hanning smoothing)
- Find correct velocity (and ref frame!)
- Find close (enough) delay calibrator
- Choose a strong bandpass calibrator
- Turn off phasecal!
- Consider over sampling

Jive