ATNF Synthesis Imaging Workshop

Correlators

(Backend System)

Warwick Wilson, ATNF.

An Aperture Synthesis Array Radiotelescope

- A collection of simple interferometers
- An array of N antennas
- Processed in pairs
 - N(N-1)/2 pairs or baselines

$$A(l,m)I(l,m) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} V(u,v)e^{2\pi i(ul+vm)} du dv$$

$$V(u,v) = \langle E_1(t) \bullet E_2(t) \rangle$$

- u_iv in wavelengths

Complex Correlator

Measures visibility or cross power (complex)

Band limiting filter

Cosine correlator

90 degree phase shift

Sine correlator

Digital Correlator

Sampler/digitiser - with fine delay control

Advantages of measuring the Cross Power Spectrum

- Reduces the effects of frequency smearing and provides more independent measurements on the u,v plane. (MFS)
- Allows measurement of any frequency dependence in the source, e.g. spectral lines.
- Provides an easy method of delay calibration.
- Provides means of removing interference.

Spectro-Correlator

B = Total bandwidth

b = Channel bandwidth

Filter Banks

Correlators

Visibility / Cross Power $V(u,v) = \langle E_1(t) \bullet E_2(t) \rangle$

Cross Power Spectrum -- Cross Correlation Function

 $V(f) \Leftrightarrow C(\tau)$

 $C(\tau) = \left\langle E_1(t) \bullet E_2(t+\tau) \right\rangle$

The ATCA Correlator

- A digital cross-correlator
- Bandwidths 128 MHz to 4MHz
- Maximum sample rate 256 Msamples/sec
- Processing elements 8 Msamples/sec
- Parallel processing
- Large number of simple processing elements
- 2 bit quantisation

Parallel Processing in the ATCA Correlator

Correlation function window in the lag domain - for maximum bandwidth

Samplers with coarse quantisation

Bits	Levels	Efficiency
1	2	0.64
2	4	0.88