Mosaicing

Naomi McClure-Griffiths ATNF-CSIRO

Naomi.McClure-Griffiths@csiro.au

2003 ATNF Synthesis Imaging Workshop

What is Mosaicing?

- In the real world -
 - Mosaic /mO-'zA-ik/ noun 1. a picture or decoration made of small pieces of stone, glass, etc., of different colours, inlaid to form a design. 2. the process of producing it. 3. something resembling a mosaic in composition. 4. Aerial Surveying an assembly of aerial photographs taken vertically and matched in such a way as to show a continuous photographic representation of an area (mosaic map). 8. composed of diverse elements combined. (ref. Macquarie Dictionary)
- In our world (astronomy) -
 - A large image created from many subimages (note: it's actually better than that!)

Why Mosaic?

- Wide-field imaging:
 - Interested in source that is larger than primary beam, $\theta > \lambda / D$
- Large scale structure
 - Interested in structure on scales larger than that sampled by the shortest baseline: $\theta > \lambda/b_{min}$

Velocity: 36.28 km/s

Mosaicing: Individual Approach

The Individual Approach

15 May 2003

ATNF Synthesis Workshop

6

You can do better!

Mosaicing Fundamentals

- Background theory:
 - Ekers & Rots (1979) pointed out that one can think of a single dish as a collection of subinterferometers.

Mosaicing Fundamentals

• Extended this formalism to interferometers to show that an interferometer doesn't just measure angular scales $\theta = \lambda / b$ it actually measures $\lambda / (b - D) < \theta < \lambda / (b + D)$

Mosaicing Fundamentals

- But you can't get all that extra info from a single visibility
 - Same as with a single dish, you have to scan to get the extra "spacings"
- Ekers & Rots showed that you can recover this extra information by scanning the interferometer
- The sampling theorem states that we can gather as much information by sampling the sky with a regular, Nyquist spaced grid

Comparison of *u-v* coverage

Individual

both radial (extra *u-v* coverage) and azimuthal (adjacent pointings)improvement

Joint

15 May 2003

ATNF Synthesis Workshop

The Joint Approach

• Form a linear combination of the individual pointings, p:

$$I(\mathbf{x}) = W(\mathbf{x}) \frac{\sum_{p} A(\mathbf{x} - \mathbf{x}_{p}) I_{p}(\mathbf{x}) / \sigma_{p}^{2}}{\sum_{p} A^{2}(\mathbf{x} - \mathbf{x}_{p}) / \sigma_{p}^{2}}$$

- Here σ_p is the noise variance of an individual pointing and A(x) is the primary response function of an antenna
- W(**x**) is a weighting function that suppresses noise amplification at the edge of mosaic

Sault, Brouw, & Staveley-Smith (1996)

Mosaicing: Joint Approach

 Joint dirty beam depends on antenna primary beam:

$$B(\mathbf{x};\mathbf{x}_0) = W(\mathbf{x}) \frac{\sum_p A(\mathbf{x}_0 - \mathbf{x}_p) B_p(\mathbf{x} - \mathbf{x}_0) / \sigma_p^2}{\sum_p A^2(\mathbf{x} - \mathbf{x}_p) / \sigma_p^2}$$

- Use all *u-v* data from all points simultaneously
 - Extra info gives a better deconvolution

Mosaicing Example

Linear Mosaic of individual pointings

Joint Imaging and Deconvolution

Mosaicing: Comparison

- Individual approach:
 - Disadvantages:
 - Deconvolution non-linear (cleaning bowl)
 - Overlap regions noisy (primary beam shape)
 - Advantage:
 - Not susceptible to deconvolution errors due to poor primary model, so good for high-resolution, high-dynamic range images
- Joint Approach:
 - Advantages:
 - Uses all u-v info -> better beam
 - More large-scale structure
 - Disadvantage:
 - Requires a good model for the primary beam

Mosaicing in Practice

Complete *u-v* sampling

- One baseline measures region in *u-v* plane with size 2D
- Want adjacent samples to be completely independent
- At transit, the time between independent points is $\tau = (86400 / 2\pi)(2D / L)$ sec, where D =antenna diameter, L = longest baseline
- Nyquist sampling for N pointings: dwell time is $\tau/2N$ sec
- E.g. for 7 pointings, 352m: 2 min, 750m: ~ 60 s

Mosaicing Practicalities

- Sensitivity concerns
 - Time per pointing reduced, but adjacent pointings contribute so for a fixed time observation the total noise is $\sigma_t \sim \sigma_p \sqrt{n/1.4}$, where n is the number of pointings
- Mosaicing requires a good model of the primary beam
 - Generally okay for the ATCA
- Pointing errors can significantly impact your mosaic
 - Pointing errors are first order in mosaics (only second order in single pointing obs of sources smaller than primary beam)
 - Solution: do reference pointing at higher frequencies

Mosaicing at the ATCA

Mosaicing at the ATCA

Mosaic File: GCa.mos:

. . . .

Making and Cleaning an Image in MIRIAD

- Treat the field as one source (i.e. don't split it into components) and calibrate
- Make the image with *invert*, use "options=mosaic,double"
 - Your beam will be multi-plane, each plane is the beam for an individual pointing
- Deconvolve:
 - Usually use maximum entropy task mosmem (or pmosmem, for polarization), which is good at recovering large scale flux
 - Alternatively: use clean algorithm mossdi
- Restoring with restor

Other mosaicing software

- Classic AIPS:
 - LTESS (linear)
 - VTESS, UTESS (non-linear)
- AIPS++
 - part of IMAGER tool
 - has MEM and clean variations
 - also has "Mosaicwizard"

Summary

- Mosaicing is essential for wide-field imaging
 - Allows you to image an area larger than the primary beam
 - When imaging at 3mm, where the primary beam is ~ 30", chances are good you'll need to mosaic
 - Allows you to recover information on angular scales larger than $\theta > \lambda/b_{min}$
 - Improves *u-v* coverage
- Mosaicing is easy!

Maybe you'll want to add single dish, too...

ATNF Synthesis Workshop

Literature

- Ekers & Rots (1979), IAU Coll 49, 61
- Cornwell (1988), A&A, 202, 316
- Cornwell, Holdaway & Uson (1993), A&A, 271, 697
- Sault, Staveley-Smith, Brouw (1996), A&A Sup, 120, 375
- Holdaway (1998), ASP Conf 180, Ch. 20
- Sault & Killeen, Miriad manual, Ch. 21