

1

Synthesis Imaging Workshop

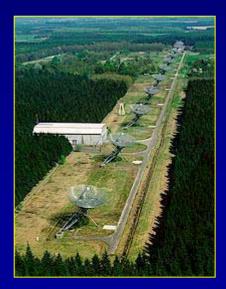
Introduction R. D. Ekers 14 Sep 1998

14 Sep 1998

Synthesis Imaging Workshop

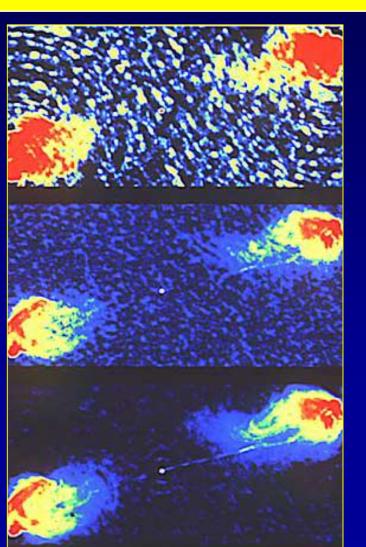
Introduction R. D. Ekers 12 May 2003

12 May 2003



WHY?

- Importance in radio astronomy
 - ATCA, VLA, WSRT, DRAO, MERLIN, BIMA, IRAM...
 - VLBA, JIVE, VSOP, APT
 - ALMA, LOFAR, SKA



Cygnus A

Raw data VLA continuum

Deconvolution

correcting for gaps between telescopes

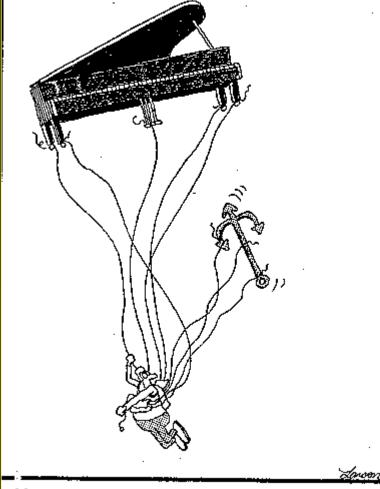
adaptive optics

WHY?

- Importance in radio astronomy
 - ATCA, VLA, WSRT, DRAO, MERLIN, BIMA, IRAM...
 - VLBA, JIVE, VSOP, APT
 - ALMA, LOFAR, SKA
- AT as a National Facility
 - \checkmark easy to use
 - don't know what you are doing
- Cross fertilization
- Doing the best science

Indirect Imaging Applications

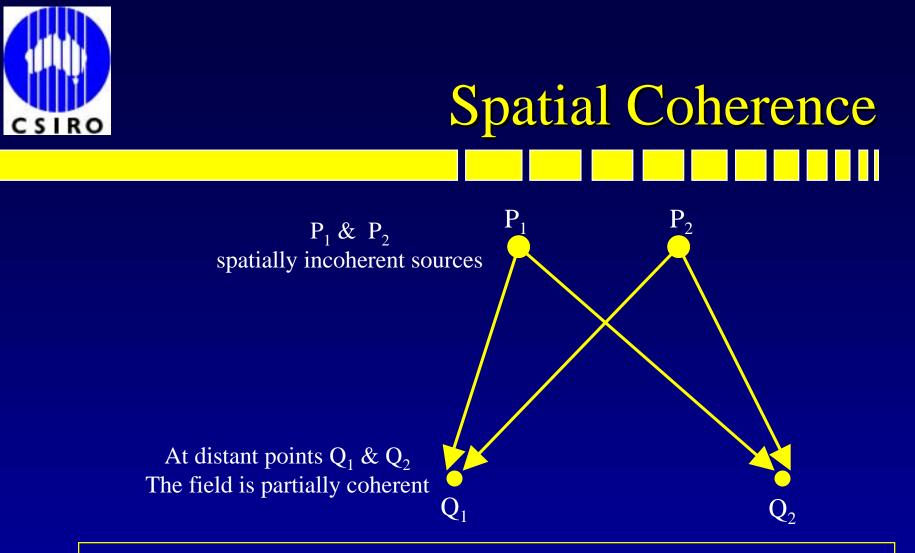
- Interferometry
 - radio, optical, IR, space...
- Aperture synthesis
 - Earth rotation, SAR, X-ray crystallography
- Axial tomography (CAT)
 - NMR, Ultrasound, PET
- Seismology
- Fourier filtering, pattern recognition
- Adaptive optics, speckle


Doing the best science

- The telescope as an analytic tool
 - how to use it
 - integrity of results
- Making discoveries
 - discoveries are driven by instrumental developments
 - recognising the unexpected phenomenon
 - discriminate against errors

HOW ?

Don't Panic!Many entrance levels



Murray didn't feel the first pangs of real panic until he pulled the emergency cord.

Basic concepts

- Importance of analogies for physical insight
- Different ways to look at a synthesis telescope
 - Engineers model
 - » Telescope beam patterns...
 - Physicist model
 - » Sampling the spatial coherence function
 - » Barry Clark Synthesiing Image ch 1
 - » Born & Wolf Physical Optics

van Cittert-Zernike theorem The spatial coherence function is the Fourier Transform of the brightness distribution

14 Sep 1998

Analogy with single dish

- Big mirror decomposition
- Reverse the process to understand imaging with a mirror

Storing visibilities

Schematic of data flow {VLA data path overview}

Hologram analogy

Explanation via interference

Time Life Computers & the Cosmos

Filling the aperture

- Aperture synthesis
 - measure correlations sequentially
 - earth rotation synthesis
 - store correlations for later use
- Redundant spacings
 - some interferometer spacings twice
- Non-redundant aperture
- Unfilled aperture
 - some spacings missing

Redundancy

1 unit 5x 2 units 4x 3 units 3x 4 units 2x $5 \text{ units } \frac{1x}{15}$ n(n-1)/2 = 15

Non Redundant

1 unit 1x
2 units 1x
3 units 1x
4 units 1x
4 units 1x
5 units 0x
6 units 1x
7 units 1x
etc

Optical v Radio imaging

- Radio measures coherence and computes image
- Optical converts a highly redundant coherence function to an image and detects it
- Penalties for "cheating"
 - Dynamic range limited
 - advantage of redundant spacings and filled apertures
 - Harder to control errors, but can control errors
- Easy to reimage
 - too easy?

Terminology

RADIO	OPTICAL
Antenna, dish	\Leftrightarrow Telescope, element
Sidelobes	⇔ Diffraction pattern
Near sidelobes	\Leftrightarrow Airy rings
Feed legs	⇔ Spider
Aperture blockage	⇔ Vignetting
Dirty beam	⇔ Point Spread Function (PSF)
Primary beam	⇔ Field of View

Terminology

RADIO	OPTICAL
Map	⇔ Image
Source	⇔ Object
Image plane	⇔ Image plane
Aperture plane	⇔ Pupil plane
UV plane	⇔ Fourier plan
Aperture	⇔ Entrance pupil
UV coverage	\Leftrightarrow Modulation transfer function

Terminology

RADIO	OPTICAL
Dynamic range	\Leftrightarrow Contrast
Phased array	⇔ Beam combiner
Correlator	\Leftrightarrow ?
Receiver	\Leftrightarrow Detector
Taper	⇔ Apodise
Self calibration	\Leftrightarrow Wavefront sensing (Adaptive optics)

Analogies

RADIO

OPTICAL

grating responses	\Leftrightarrow aliased orders
primary beam direction	\Leftrightarrow grating blaze angle

UV (visibility) plane \Leftrightarrow hologram

bandwidth smearing \Leftrightarrow chromatic aberration

local oscillator \Leftrightarrow reference beam