ATNF Synthesis School 2003

Spectral Line Imaging

Juergen Ott (ATNF)

Juergen.Ott@csiro.au

Introduction to Spectral Lines

- Velocity Reference Frames
- Bandpass Calibration
- Continuum Subtraction
- Gibbs Phenomenon & Hanning Smoothing

Topics

Data Cubes & Moment Maps

Literature: Synthesis Imaging in Radio Astronomy II, Chapters 11 & 12 Synthesis Imaging in Radio Astronomy, Chapter 17

What is a spectral line ?

Origin: Light dispersion (prisma, slit) sharp intensity maxima on screen

Y

"extent in frequency much less than central frequency of feature" S (v, v₀, A, Δv , t)

atomic/molecular origin

Jürgen Ott

Basic photon-matter interactions to produce spectral lines:

Spontaneous emission (e.g., HI, molecular lines, cascading recombination lines)

Induced emission (Maser/Laser)

Continuum: free-free, free-bound recombination (e.g., synchrotron emission, thermal bremsstrahlung)

Energy levels can be:

 Atoms: electron orbits, hyperfine states (UV, optical, IR, radio)

HI 21cm

Nuclei: excitations (shell model), γ radiation

(carbon monoxide)

- Solid states: bands (IR, opt), lattice modes (phonons)
- Molecules: (electronic+) rotation, vibration, bending

(mm, submm, IR)

NH₃ (ammonia)

Jürgen Ot

What can we learn from spectral lines?

Observables: frequency, shape (width), amplitude, (time)

- Parameters of the Gas (density, temperature, pressure, column density, ...)
- Parameters of the Environment (radiation field, maser conditions, chemistry, magnetic field)
- Kinematics

(expansion/contraction, infall/outflow, rotation curves, galaxy clusters, turbulence, virialization theorem)

• Distance (Hubble Law v=H r)

Jürgen Ott

Relativistic Doppler Effect:

$$v_{radial} = \frac{v_0^2 - v^2}{v_0^2 + v^2}$$

approximations for v_{radial} << c

$$v^{\text{opt}} = c \, \frac{\lambda_0 - \lambda}{\lambda_0} = c \, z \qquad v^{\text{radio}} = c \, \frac{v_0 - v}{v_0}$$
$$v_0 = c \, \frac{\lambda_0 - \lambda}{\lambda}$$
$$v^{\text{opt}} \neq v^{\text{radio}} = c \, \frac{\lambda_0 - \lambda}{\lambda}$$

Velocity	Reference	Frames
VEIDUIL		1 ames

<u>Rest Frame</u>	Correct for	Max Amplitude [km s ⁻¹]
Topocentric	Nothing	0
Geocentric	Earth rotation	0.5
Earth-Moon Barycentric	Earth-Moon center of mass	0.013
Heliocentric	Earth's orbital motion	30
Barycentric	Sun-Earth center of mass	0.012
Local Standard of Rest (LSR)	Solar motion relative to nearby stars	20
Galactocentric	Milky Way rotation	230
Local Group Barycentric	Milky Way motion	100
Virgocentric	Local Group motion	300
Microwave Background	Local Supercluster motion	600

Correlator Configurations

Correlator Configurations:

- Bandwidth
- Channel Separation (# Channels)
- # Blocks (simultaneous observations of different frequencies)
- # polarization products

Cold molecular gas: linewidth ~ few km s⁻¹ Rotation curves: Amplitude ~ 200 km s⁻¹

	Full_16_512-128		ANT234AC_64_128_2P-2F	
1.4 GHz	BW :	3200 km s ⁻¹	BW	12800 km s ⁻¹
(HI)	Channel sep	6 km s ⁻¹	Channel sep	100 km s ⁻¹
90 GHz	BW	50 km s ⁻¹	BW	200 km s ⁻¹
(mol. lines, e.g., HCO+, HCN,)	Channel sep	0.1 km s ⁻¹	Channel sep	1.7 km s ⁻¹
	2 nd frequency: BW: 128 MHz, 32 ch		2 nd frequency:	
			As 1 st frequency	
	continuum		Other line of interest	

BUT...

Ideal: Lag (cross-correlation) spectrum $R(\tau)$ measured from - ∞ to ∞

But: Digital cross-correlation spectrometer

 \rightarrow Truncation of time lag spectrum R(τ)

Gibbs Phenomenon, Hanning Smoothing

Solution

- Observe with more channels than necessary
- Tapering sharp end of lag spectrum $R(\tau)$
- Hanning smoothing: $f(\tau) = 0.5 + 0.5 \cos(\pi \tau/T)$
- In frequency space: multiply channels with 0.25, 0.5, 0.25
 half velocity resolution

w/o Hanning

Calibration: Bandpass

$$V_{ij}(v,t) = G_{ij}(v,t) V_{ij}(v,t)$$

complex measured visibility Gain calibrated visibility

$$\begin{array}{ll} G_{ij}\left(v,t\right) = G'_{ij}\left(t\right) & B_{ij}\left(v,t\right) & \text{baseline} \\ B_{ij}\left(v,t\right) \approx b_{i}\left(v,t\right) & b_{j}^{*}\left(v,t\right) & \text{Bandpass} \\ & \text{antenna} \end{array}$$

Measurement: Strong point source with flat (known) spectrum: Bandpass Calibrator, noise source @ source frequency & correlator setup, maybe several times

Strong enough for high S/N per individual channel!

Solve from N(N-1)/2 baselines for N antennas

Bandpass Calibration

Continuum Subtraction

Data: continuum + spectral line emission (several sources with different sizes)

Continuum subtraction

uv plane

image plane

uvlin

(MIRIAD tasks)

Visibilities (real & imaginary) Spectra

Pixel

contsub

- Additional flagging can be applied
- Better continuum map
- Allows shifting of reference center on string source, then back
- no deconvolution which is non-linear

Continuum Subtraction

- select line free channels
- low order polynomial fit for each visibility (real & imaginary)
- subtract fit from spectrum

result of bandpass correction: flag it!

Data Cubes

Jürgen Ott ATNF Synthesis School, I

Channel

Maps

ATNF Synthesis School, Narrabri 14 May 2003

Spectral Line Imaging

Spectral Line Imaging

Jürgen Ott

Data Cubes

Expanding Shell

Jürgen Ott

Spectral Line Imaging

position – velocity cuts

Major axis cut

position

velocity

position

Right ascension

Jürgen Ott

Moment maps

Mathematical definition of central i-th moment (statistics):

$$u_i := \int_{-\infty}^{\infty} (x - \alpha)^i f(x) dx$$

f(x): probability distribution α : center of mass of f(x)

$$\alpha := \int_{-\infty}^{\infty} v f(v) dv$$

Important Moments (as actually calculated, Σ over all spectral channels for each pixel):

Oth moment: integrated intensity map [Jy km s⁻¹] MO = $\Sigma I(v) \Delta v$

1st moment: intensity weighted velocity map [km s⁻¹] M1 = $\Sigma I(v) v / \Sigma I(v)$

i=2, 2nd moment: 1 σ velocity dispersion [km s⁻¹] M2 = $\sqrt{\Sigma [I(v) (v-M1)^2] / \Sigma I(v)}$

Conclusion:

Spectral line imaging is...

powerful, versatile, fun!!!