

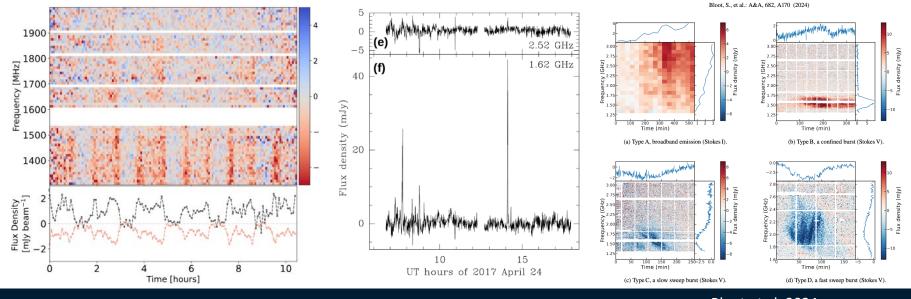
The ATCA, from milliseconds minutes *High time resolution and (future) pulsar capabilities*

Andrew Zic Bolton Research Scientist, ATNF With Shi Dai, Chris Phillips, Stefan Osłowski

ATCA Science Day Andrew.Zic@csiro.au

Australia's National Science Agency

2025-04-08


The ATCA as a "fast" timescale monitoring facility

This talk will:

- Touch on CABB-era pulsar and shorttimescale transient science
- Present science opportunities at millisecond-minute timescales
- And possible future capabilities that could be afforded by the BIGCAT system

A sample of fasimescale bursts on active stars

Rose et al. 2023

Perez-Torres et al. 2021

Bloot et al. 2024 (see upcoming talk!

The ATCA's role in following up variable/unusual pulsar candidates

effer ROYAL ASTRONOMICAL SOCIETY MNRAS 528, 5730–5741 (2024) Advance Access publication 2024 January 8

https://doi.org/10.1093/mnras/stae033

Discovery of radio eclipses from 4FGL J1646.5-4406: a new candidate redback pulsar binary

Andrew Zic[•],¹* Ziteng Wang[•],^{2,3*} Emil Lenc[•],¹ David L. Kaplan[•],⁴ Tara Murphy[•],^{2,5} A. Ridolfi[•],^{6,7} Rahul Sengar[•],⁴ Natasha Hurley-Walker,³ Dougal Dobie[•],^{5,8} James K. Leung[•],^{1,2,5} Joshua Pritchard[•],^{1,2,5} and Yuanming Wang[•],^{5,8}

THE ASTROPHYSICAL JOURNAL, 930:38 (13pp), 2022 May 1 © 2022. The Author(s). Published by the American Astronomical Society. https://doi.org/10.3847/1538-4357/ac61dc

Discovery of PSR J0523-7125 as a Circularly Polarized Variable Radio Source in the Large Magellanic Cloud

Yuanming Wang^{1,2,3}, Tara Murphy^{1,3}, David L. Kaplan⁴, Tersa Klinner-Teo¹, Alessandro Ridolfi^{5,6}, Matthew Bailes^{3,7}, Fronefield Crawford⁸, Shi Dai⁹, Dougal Dobie^{3,7}, B. M. Gaensler^{10,11}, Vanessa Graber¹², Ian Heywood^{13,14,15}, Emil Lenc², Duncan R. Lorimer^{16,17}, Maura A. McLaughlin^{16,17}, Andrew O'Brien⁴, Sergio Pintaldi¹⁸, Joshua Pritchard^{1,2,3}, Nanda Rea^{12,19}, Joshua P. Ridley²⁰, Michele Ronchi¹², Ryan M. Shannon^{3,7}, Gregory R. Sivakoff²¹, Adam Stewart¹⁰, Ziteng Wang^{1,2,3}, and Andrew Zic^{2,22}

THE ASTROPHYSICAL JOURNAL, 884:96 (6pp), 2019 October 10 © 2019. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/ab3970

Serendipitous Discovery of PSR J1431-6328 as a Highly Polarized Point Source with the Australian SKA Pathfinder

THE ASTROPHYSICAL JOURNAL, 961:175 (11pp), 2024 February 1 © 2024. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS** https://doi.org/10.3847/1538-4357/ad0fe8

Discovery of a Young, Highly Scattered Pulsar PSR J1032-5804 with the Australian Square Kilometre Array Pathfinder

Ziteng Wang¹[®], David L. Kaplan²[®], Rahul Sengar²[®], Emil Lenc³[®], Andrew Zic³[®], Akash Anumarlapudi²[®], B. M. Gaensler^{4,5,6}[®], Natasha Hurley-Walker¹[®], Tara Murphy^{7,8}[®], and Yuanming Wang^{8,9}[®]

Monthly Notices

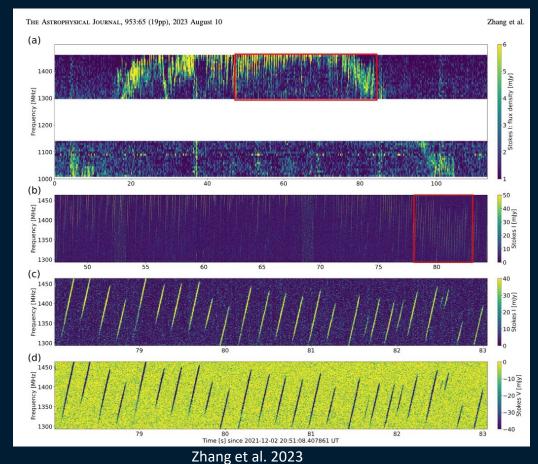
efter ROYAL ASTROMOMICAL SOCIETY MNRAS 507, 3888–3898 (2021) Advance Access publication 2021 July 13

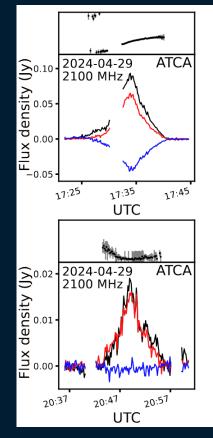
https://doi.org/10.1093/mnras/stab1979

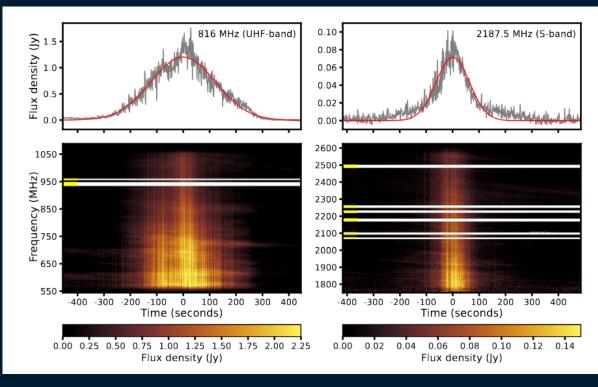
Two extreme steep-spectrum, polarized radio sources towards the Galactic bulge

S. D. Hyman,¹* D. A. Frail,²* J. S. Deneva,³ N. E. Kassim[®],⁴* S. Giacintucci[®],⁴ J. E. Kooi,⁴ T. J. W. Lazio,⁵ I. Joyner,¹ W. M. Peters,⁴ V. Gajjar⁶ and A. P. V. Siemion⁷

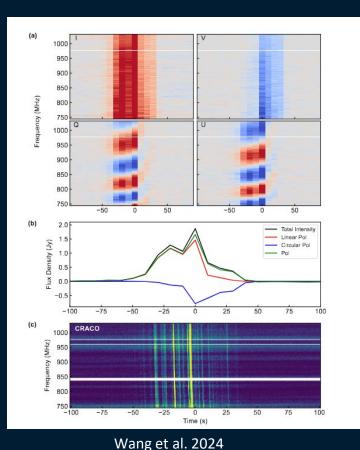
¹Department of Engineering and Physics, Sweet Briar College, Sweet Briar, VA 24595, USA ⁵National Radio Astronomy Observatory, P.O. Bax O, Socorro, NM 87801, USA ⁵Ceorge Mason University, resident at Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA ⁴Remote Sensing Division, Naval Research Laboratory, Washington, DC 20375, USA ⁵Let Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA ⁶Department of Astronomy, University of California Bekeley, Berkeley, CA 94720, USA ⁵EIT Institute, Mountain View, CA 94043, USA

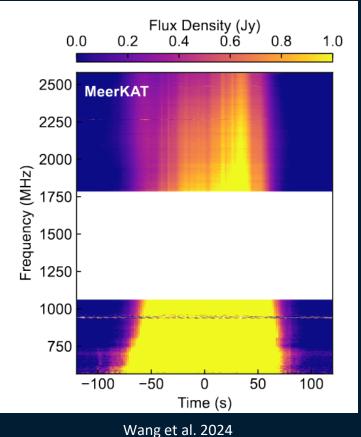

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY


doi:10.1093/mnras/stx3281


MNRAS 475, 942–954 (2018) Advance Access publication 2017 December 21

An image-based search for pulsars among *Fermi* unassociated LAT sources


D. A. Frail,^{1*} P. S. Ray,² K. P. Mooley,³[†] P. Hancock,^{4,5} T. H. Burnett,⁶ P. Jagannathan,^{1,7} E. C. Ferrara,⁸ H. T. Intema,⁹ F. de Gasperin,⁹ P. B. Demorest,¹ K. Stovall¹ and M. M. McKinnon¹



Lee et al. 2024

The (potential of) highime resolution capability on ATCA

We have seen examples of science outcomes with existent ATCA capability

Many of the science outcomes would have been enhanced by high-time resolution ATCA capability

E.g. MeerKAT often used for follow-up of relatively bright sources primarily because of its dual imaging + beamforming ability

In other cases, simultaneous Murriyang + ATCA observations needed to be arranged – difficult to schedule

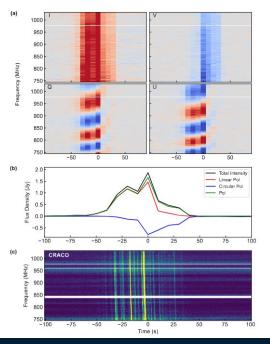
Ultra-high time resolution & high-precision pulsar "foldmode" not historically in ATCA's wheel-house

Murriyang will continue to provide the highest-sensitivity pulsar observations below ~5 GHz among ATNF fleet

The (potential of) highime resolution capability on ATCA

Proposal: use [spare] BIGCAT GPU capacity to form pulsar data products (search and fold) using tied array beams

Options:


- Commensal imaging + beamformed pulsar products similar to e.g. PTUSE on MeerKAT: would depend on having < 8GHz continuum bandwidth (e.g. 16cm receiver will only use 2 GHz bandwidth)
- Pulsar data products on their own, e.g. multiple tied array beams

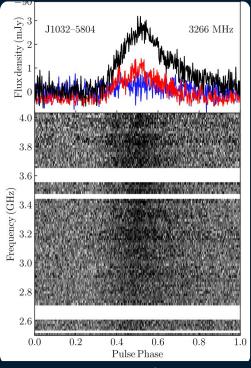
Science Cases

- 1. Flexible timescale follow-up of Galactic variables and transients
- 2. Sensitive, multi-timescale monitoring (e.g., active stars, interplanetary scintillation, repeating FRBs)
- 3. An ATCA tied-beam pulsar survey at ~6 GHz?

Science case #1/#2: Transient/pulsar for monitoring

Wang et al. 2024

Many transients exhibit variability across multiple timescales


ATCA does not currently provide high time-resolution capability; searching for "long-duration" (> 10s duration) transients is difficult with Murriyang (single-dish gain variations)

ATCA dual imaging + beamformed mode would provide a solution

Science use-cases:

- Follow-up of variable pulsar candidates e.g. eclipsing "spider" systems, other exotic systems
- Measure pulse microstructure and interstellar dispersion from "long period transients"
- Resolving fundamental emission components from active stars
- High-frequency followup of repeating FRBs and possible corresponding persistent radio sources

Science case #3: pulsar searches and surveys

Wang et al. 2023

The challenge:

Pulsars with high dispersion measures are difficult to detect due to scattering/pulse smearing, especially at low frequencies – many have been missed in previous search efforts (e.g. Lower et al. 2024, Wang et al. 2023)

• The significance:

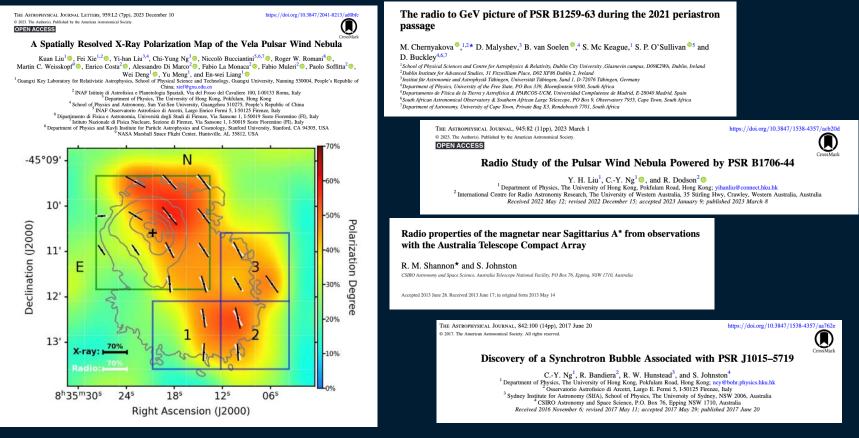
High DM pulsars, particularly those in the Galactic Center and Bulge, scientifically important for studying phenomena like the GC Fermi excess and testing relativity.

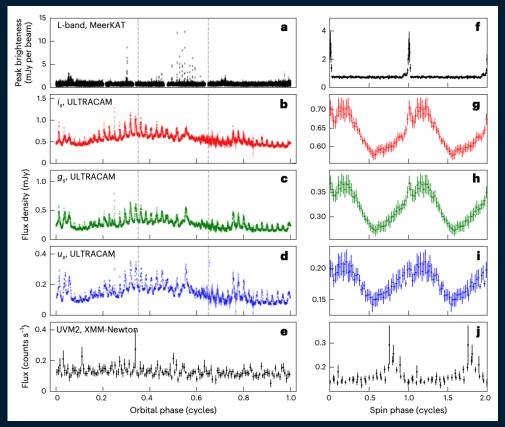
 A high-frequency survey may yield low-hanging fruit: A major pulsar survey of the Galactic Bulge at high frequencies using multiple tied-array beams could be enabled by GPUs (however, total capacity may be limited)

Conclusions and the future

ATCA has played an important role in following up and monitoring a wide range of Galactic variables and pulsars

High time resolution capability afforded by BIGCAT GPUs will broaden the scienctific excellence possible with the ATCA


Have a science case? Contact us.



Why notMurriyang or MeerKAT?

- ATCA primary beam is ~11 arcmin at 5 GHz; Parkes PB is ~4 arcmin
 - ~8x FoV of Parkes
- Similar SEFD to Parkes at 8 GHz: ~48 Jy (vs. 43 Jy for Parkes): ATCA survey speed > Parkes survey speed
- Parkes cannot make high-angular resolution maps
- MeerKAT cannot observe above 3.5 GHz; ATCA's sweet spot is 5-9 GHz
- Ability of ATCA to rapidly follow up sources of interest is a strength

Pelisoli et al. 2022