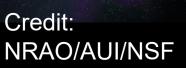


International Centre for Radio Astronomy Research

A southern-hemisphere radio transients facility?


Radio transients

- Probing physics under the most extreme conditions
- Tracer of particle acceleration and coherent processes
- Determine the budget of kinetic energy feedback

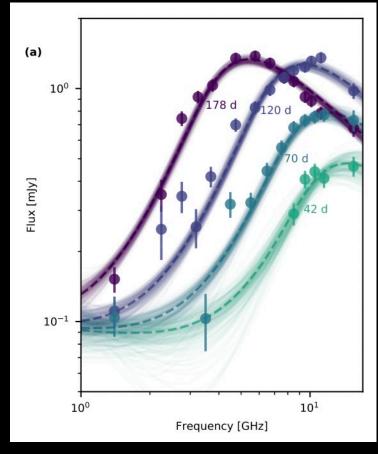
Key questions:

- What populations produce energetic transients?
- What kinds of transients produce jets?
- What can we learn about particle acceleration?
- How do compact stellar remnants form and evolve?

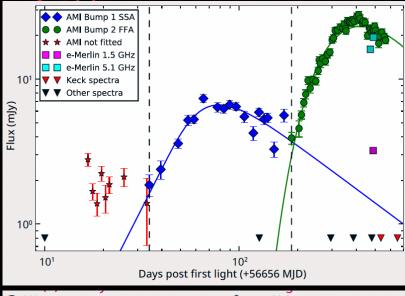
An explosion of transient science

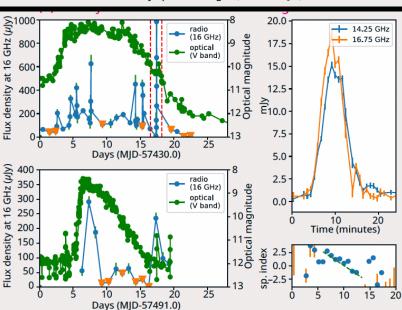
- ASKAP-VAST survey underway
- VRO/LSST coming online this year (Moller)
- CTA operations starting in ~2026 (Rowell)
- SKA operations late this decade (*An/Li*)
- Southern hemisphere transient discovery machines!

Key opportunity:

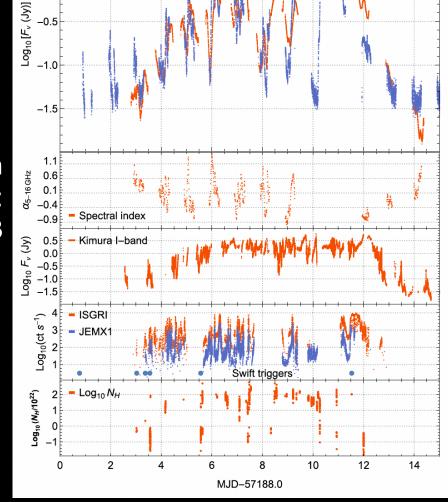

- Southern-hemisphere follow up
 - ATCA is uniquely positioned
 - High sensitivity interferometer
 - Broad frequency coverage
 - Full polarization

The value of a dedicated transients facility


- Time domain science requires
 - Rapid response
 - High cadence
 - Long observations
 - Long-duration late-time monitoring
- And yet:
 - Time on major facilities is extremely valuable
 - Full SKA sensitivity not required for most transients
 - Loss of antennas to subarrays not often acceptable
- Compare to optical astronomy
 - Small (robotic?) facilities co-exist with large-scale telescopes
 - Unique niche



Stein et al. (2021)


Radio transients pathfinder: AMI-LA

SN progenitor mass-loss history: Anderson+17

Super-Eddington X-ray binary: Fender+23

Nebular phase

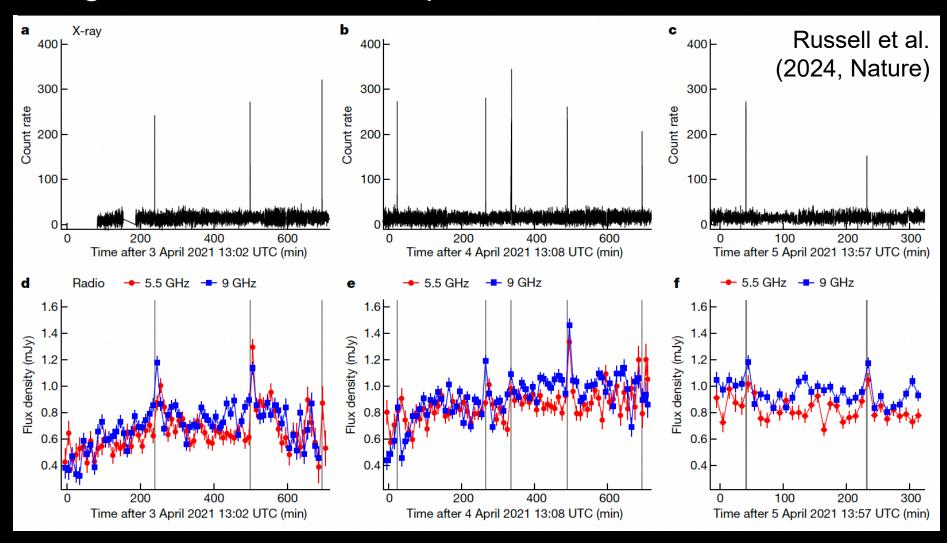
eMERLIN 5.1 GHzAMI 17.6 GHz

0.0

Dwarf nova radio flares: Fender+19

ATCA's advantages

	ATCA	AMI-LA	ATA	KAT-7
Array	6 x 22m	8 x 13m	42 x 6.1m	7 x 12m
Configuration	E-W	2-D	2-D	2-D
Collecting area (m2)	9123	4247	4909	3166
Frequency range (GHz)	1-90	12-18	1-11	1.2-1.95
Bandwidth (GHz)	8	6	2 x 0.67	0.256
Polarization	Full	Single	Full	Full
Maximum baseline (m)	6000	110	323	185
Latitude	-30	+52	+41	-30



What role can ATCA play?

High time resolution is possible, even with an E-W array

A potential path forward?

- ARC LIEF scheme permits:
 - Leasing of facilities
 - Subscription/co-ordinated access to major national facilities
- Australian+international transient consortium
- Dedicated southern-hemisphere transient response
- Triggering, high-cadence monitoring of most exciting events
- Lessons from AMI-LA, ATA, ThunderKAT
- Funding for a fraction of dedicated ATCA time?
 - c.f. Mopra LIEF
- Automated scheduling/observing/processing?
- BIGCAT allows more streamlined VLBI follow up? (Gourdji)

Summary

- Huge upcoming opportunities in time-domain radio astronomy
- Most powerful facilities will not be able to take advantage
- Niche for agile smaller facilities in the south!
- ATCA is the most capable facility in the world for this
- Can we build from the active Australian and international transients communities to realise this opportunity?

