Source Detection with Duchamp
A User’s Guide

Matthew Whiting
Australia Telescope National Facility
CSIRO

Duchamp version 1.06
November 1, 2006

RA
06"24™ 18™ 12™ Q¢ 00" 05"54™ 48™ 42™
‘ ‘ T T - ‘\777' T T ! ‘ 7\ 7\7 T ‘7\777‘7 ‘ T .
el - i 1 A
] . &
’f%r/ 12018 g 5 I —3 *‘L — —22°
L = _
J w20 S SN S)
P =]
N A N EE N S e Y N R
sl 1 7 L7 1
O | _|
= | I R I 4% \
_] ? . T —25°
o ;7,4“(*7— T*ff‘ —] A 7**#* —J‘rffffj, _92g° g
> S o3 J © m L \ | .
oS L A 10 —]
- 4\ \ L ‘ \ ‘\i 1 -27°
o | i 1 |
B ‘T* ‘ 1 N —
|
. | | | o
| A _
1 — % Jﬁﬂ T 1 -29°
A L 2% |
7”’*\‘ T A T*”*"; < 30°
I] T
T] I |
0 50 100 150
X pixel
E 0.1 F ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
é 0.05 " i j
E 0 ‘In“‘i“ il i"”'(‘\ e \‘V"\"\"“l'll“'w Py ”\w‘\"' R i ””"‘ it |~' i i """"‘[“rl' i
x —0.05 F b/ 1 ‘ ‘
E 0 5000 10000
1961.45

CONTENTS

Contents

1

2 O aQ W

Introduction and getting going quickly
1.1 A summary of the execution steps L.
1.2 Guide to terminology and conventions

User Inputs

What Duchamp is doing
3.1 Imageinput L
3.2 Image modification Lo Lo
3.2.1 BLANK pixel removal
3.2.2 Baselineremoval
3.2.3 Ignoring bright Milky Way emission
3.3 Image reconstruction oL
3.3.1 Algorithm
3.3.2 Note on Statistics
3.3.3 User control of reconstruction parameters.
3.4 Input/Output of reconstructed arrays
3.5 Smoothing thecube L
3.6 Searching theimage. L
3.7 Merging detected objects Lo

Outputs

4.1 During execution

4.2 Results e
421 Tableofresults
4.2.2 Otherresults lists
4.2.3 Graphical output —spectra
4.2.4 Graphical output —mapso

Notes and hints on the use of Duchamp

Future developments
Why Duchamp?

Obtaining and installing Duchamp

Al Imstalling
A.2 Running Duchamp
A3 Feedback o

Available parameters
Example parameter files
Example results file

Example VOTable output

Ot &~

=]

© 00 00 00~ 3 I

14
14
14
14
16
16
17

19

20

20

22
22
23
23

24

28

30

31

CONTENTS 3

F Example Karma Annotation file output 32
G Robust statistics for a Normal distribution 33

H How Gaussian noise changes with wavelet scale 34

1 INTRODUCTION AND GETTING GOING QUICKLY 4

1 Introduction and getting going quickly

This document provides a user’s guide to Duchamp, an object-finder for use on spectral-line
data cubes. The basic execution of Duchamp is to read in a FITS data cube, find sources in
the cube, and produce a text file of positions, velocities and fluxes of the detections, as well
as a postscript file of the spectra of each detection.

So, you have a FITS cube, and you want to find the sources in it. What do you do? First,
you need to get Duchamp: there are instructions in Appendix A for obtaining and installing
it. Once you have it running, the first step is to make an input file that contains the list
of parameters. Brief and detailed examples are shown in Appendix C. This file provides
the input file name, the various output files, and defines various parameters that control the
execution.

The standard way to run Duchamp is by the command

Duchamp -p [parameter file]

replacing [parameter file] with the name of the file listing the parameters.

An even easier way is to use the default values for all parameters (these are given in
Appendix B and in the file InputComplete included in the distribution directory) and use
the syntax

Duchamp -f [FITS file]

where [FITS file] is the file you wish to search.

In either case, the program will then work away and give you the list of detections and
their spectra. The program execution is summarised below, and detailed in §3. Information
on inputs is in §2 and Appendix B, and descriptions of the output is in §4.

1.1 A summary of the execution steps

The basic flow of the program is summarised here — all steps are discussed in more detail in
the following sections.

1. If the -p option is used, the parameter file given on the command line is read in, and
the parameters absorbed.

2. The FITS image is located and read in to memory.
3. If requested, a FITS image with a previously reconstructed array is read in.

4. If requested, BLANK pixels are trimmed from the edges, and the baseline of each
spectrum is removed.

5. If the reconstruction method is requested, and the reconstructed array has not been
read in at Step 3 above, the cube is reconstructed using the a trous wavelet method.

6. Alternatively (and if requested), the each spectral channel is Hanning-smoothed by a
desired amount.

7. A threshold for the cube is then calculated, based on the pixel statistics (unless a
threshold is manually specified by the user).

1 INTRODUCTION AND GETTING GOING QUICKLY 5

8. Searching for objects then takes place, using the requested thresholding method.

9. The list of objects is condensed by merging neighbouring objects and removing those
deemed unacceptable.

10. The baselines and trimmed pixels are replaced prior to output.

11. The details of the detections are written to screen and to the requested output file.
12. Maps showing the spatial location of the detections are written.

13. The integrated spectra of each detection are written to a postscript file.

14. If requested, the reconstructed array can be written to a new FITS file.

1.2 Guide to terminology and conventions

First, a brief note on the use of terminology in this guide. Duchamp is designed to work
on FITS “cubes”. These are FITS' image arrays with three dimensions — they are assumed
to have the following form: the first two dimensions (referred to as = and y) are spatial
directions (that is, relating to the position on the sky), while the third dimension, z, is the
spectral direction, which can correspond to frequency, wavelength, or velocity. The three
dimensional analogue of pixels are “voxels”, or volume cells — a voxel is defined by a unique
(x,y, z) location and has a unique flux or intensity value associated with it.

Note that it is possible for the FITS file to have more than three dimensions (for instance,
a fourth dimension representing Stokes parameters). Only the two spatial dimensions and
the spectral dimension are read into the array of pixel values that is searched for objects.
All other dimensions are ignored”. Herein, we discuss the data in terms of the three basic
dimensions, but you should be aware it is possible for the FITS file to have more than three.
Note that the order of the dimensions in the FITS file does not matter.

Each spatial pixel (a given (x,y) coordinate) can be said to be a single spectrum, while
a slice through the cube perpendicular to the spectral direction at a given z-value is a single
channel (the 2-D image is a channel map).

Detection involves locating a contiguous group of voxels with fluxes above a certain
threshold. Duchamp makes no assumptions as to the size or shape of the detected features,
other than having user-selected minimum size criteria. Features that are detected are as-
sumed to be positive. The user can choose to search for negative features by setting an input
parameter — this inverts the cube prior to the search (see §3.6 for details).

Finally, note that it is possible to run Duchamp on a two-dimensional image (i.e. one
with no frequency or velocity information), or indeed a one-dimensional array, and many of
the features of the program will work fine. The focus, however, is on object detection in
three dimensions.

IFITS is the Flexible Image Transport System — see Hanisch et al. (2001) or websites such as
http://fits.cv.nrao.edu/FITS. html for details.

2This actually means that the first pixel only of that axis is used, and the array is read by the
fits_read_subsetnull command from the CFITSIO library.

http://fits.cv.nrao.edu/FITS.html

2 USER INPUTS 6

2 User Inputs

Input to the program is provided by means of a parameter file. Parameters are listed in the
file, followed by the value that should be assigned to them. The syntax used is paramName
value. Parameter names are not case-sensitive, and lines in the input file that start with #
are ignored. If a parameter is listed more than once, the latter value is used, but otherwise
the order in which the parameters are listed in the input file is arbitrary. Example input
files can be seen in Appendix C.

If a parameter is not listed, the default value is assumed. The defaults are chosen to
provide a good result (using the reconstruction method), so the user doesn’t need to specify
many new parameters in the input file. Note that the image file must be specified! The
parameters that can be set are listed in Appendix B, with their default values in parentheses.

The parameters with names starting with flag are stored as bool variables, and so are
either true = 1 or false = 0. They can be entered in the file either in text or integer
format — Duchamp will read them correctly in either case.

An example input file is included in the distribution tar file. It is as follows:

imageFile your-file-here
logFile logfile.txt
outFile results.txt
spectraFile spectra.ps
minPix 2

flagATrous 1

snrRecon 5.

snrCut 3.

minChannels 3

flagBaseline 1

You would, of course, replace the “your-file-here” with the FITS file you wanted to
search. Further examples are given in Appendix C.

3 WHAT DUCHAMP IS DOING 7

3 What Duchamp is doing

The execution flow of Duchamp is detailed here, indicating the main algorithmic steps that
are used. The program is written in C/C++ and makes use of the CFITSIO, WCSLIB and
PGPLOT libraries.

3.1 Image input

The cube is read in using basic CFITSIO commands, and stored as an array in a special C+-+
class. This class keeps track of the list of detected objects, as well as any reconstructed
arrays that are made (see §3.3). The World Coordinate System (WCS)? information for the
cube is also obtained from the FITS header by wcsLIB functions (Calabretta and Greisen
2002; Greisen and Calabretta 2002), and this information, in the form of a wesprm structure,
is also stored in the same class.

A sub-section of an image can be requested via the subsection parameter — this can be a
good idea if the cube has very noisy edges, which may produce many spurious detections. The
generalised form of the subsection that is used by CFITSI0 is [x1:x2:dx,yl:y2:dy,z1:22:dz,...],
such that the x-coordinates run from x1 to x2 (inclusive), with steps of dx. The step value
can be omitted (so a subsection of the form [2:50,2:50,10:1000] is still valid). Duchamp
does not make use of any step value present in the subsection string, and any that are present
are removed before the file is opened.

If one wants the full range of a coordinate then replace the range with an asterisk, e.g.
[2:50,2:50,*]. If one wants to use a subsection, one must set flagSubsection = 1. A
complete description of the section syntax can be found at the FITSIO web site?.

3.2 Image modification

Several modifications to the cube can be made that improve the execution and efficiency of
Duchamp (their use is optional, governed by the relevant flags in the parameter file).

3.2.1 BLANK pixel removal

If the imaged area of a cube is non-rectangular (see the example in Fig. 2, a cube from
the HIPASS survey), BLANK pixels are used to pad it out to a rectangular shape. The
value of these pixels is given by the FITS header keywords BLANK, BSCALE and BZERO.
While these pixels make the image a nice shape, they will unnecessarily interfere with the
processing (as well as taking up needless memory). The first step, then, is to trim them from
the edge. This is done when the parameter flagBlankPix=true. If the above keywords are
not present, the user can specify the BLANK value by the parameter blankPixValue.

Removing BLANK pixels is particularly important for the reconstruction step, as lots
of BLANK pixels on the edges will smooth out features in the wavelet calculation stage.
The trimming will also reduce the size of the cube’s array, speeding up the execution. The
amount of trimming is recorded, and these pixels are added back in once the source-detection
is completed (so that quoted pixel positions are applicable to the original cube).

3This is the information necessary for translating the pixel locations to quantities such as position on the
sky, frequency, velocity, and so on.
4http:/ /heasarc.gsfc.nasa.gov/docs /software /fitsio /c/c_user /node90.html

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node90.html

3 WHAT DUCHAMP IS DOING 8

Rows and columns are trimmed one at a time until the first non-BLANK pixel is reached,
so that the image remains rectangular. In practice, this means that there will be some
BLANK pixels left in the trimmed image (if the non-BLANK region is non-rectangular).
However, these are ignored in all further calculations done on the cube.

3.2.2 Baseline removal

Second, the user may request the removal of baselines from the spectra, via the parameter
flagBaseline. This may be necessary if there is a strong baseline ripple present, which can
result in spurious detections at the high points of the ripple. The baseline is calculated from
a wavelet reconstruction procedure (see §3.3) that keeps only the two largest scales. This is
done separately for each spatial pixel (i.e. for each spectrum in the cube), and the baselines
are stored and added back in before any output is done. In this way the quoted fluxes and
displayed spectra are as one would see from the input cube itself — even though the detection
(and reconstruction if applicable) is done on the baseline-removed cube.

The presence of very strong signals (for instance, masers at several hundred Jy) could
affect the determination of the baseline, and would lead to a large dip centred on the signal
in the baseline-subtracted spectrum. To prevent this, the signal is trimmed prior to the
reconstruction process at some standard threshold (at 80 above the mean). The baseline
determined should thus be representative of the true, signal-free baseline. Note that this
trimming is only a temporary measure which does not affect the source-detection.

3.2.3 Ignoring bright Milky Way emission

Finally, a single set of contiguous channels can be ignored — these may exhibit very strong
emission, such as that from the Milky Way as seen in extragalactic H1 cubes (hence the
references to “Milky Way” in relation to this task — apologies to Galactic astronomers!).
Such dominant channels will produce many detections that are unnecessary, uninteresting
(if one is interested in extragalactic H1) and large (in size and hence in memory usage), and
so will slow the program down and detract from the interesting detections.

The use of this feature is controlled by the flagMW parameter, and the exact channels
concerned are able to be set by the user (using maxMW and minMW — these give an inclusive
range of channels). When employed, these channels are ignored for the searching, and the
scaling of the spectral output (see Fig. 1) will not take them into account. They will be
present in the reconstructed array, however, and so will be included in the saved FITS
file (see §3.4). When the final spectra are plotted, the range of channels covered by these
parameters is indicated by a green hashed box.

3.3 Image reconstruction

The user can direct Duchamp to reconstruct the data cube using the a trous wavelet proce-
dure. A good description of the procedure can be found in Starck and Murtagh (2002). The
reconstruction is an effective way of removing a lot of the noise in the image, allowing one
to search reliably to fainter levels, and reducing the number of spurious detections. This is
an optional step, but one that greatly enhances the source-detection process, with the payoff
that it can be relatively time- and memory-intensive.

3 WHAT DUCHAMP IS DOING 9

3.3.1 Algorithm

The steps in the a trous reconstruction are as follows:
1. The reconstructed array is set to 0 everywhere.

2. The input array is discretely convolved with a given filter function. This is determined
from the parameter file via the filterCode parameter — see Appendix B for details on
the filters available.

3. The wavelet coefficients are calculated by taking the difference between the convolved
array and the input array.

4. If the wavelet coefficients at a given point are above the requested threshold (given by
snrRecon as the number of o above the mean and adjusted to the current scale — see
Appendix H), add these to the reconstructed array.

5. The separation of the filter coefficients is doubled. (Note that this step provides the
name of the procedure®; as gaps or holes are created in the filter coverage.)

6. The procedure is repeated from step 2, using the convolved array as the input array.
7. Continue until the required maximum number of scales is reached.

8. Add the final smoothed (i.e. convolved) array to the reconstructed array. This provides
the “DC offset”, as each of the wavelet coefficient arrays will have zero mean.

The reconstruction has at least two iterations. The first iteration makes a first pass at the
wavelet reconstruction (the process outlined in the 8 stages above), but the residual array
will likely have some structure still in it, so the wavelet filtering is done on the residual, and
any significant wavelet terms are added to the final reconstruction. This step is repeated
until the change in the measured standard deviation of the background (see note below on
the evaluation of this quantity) is less than some fiducial amount.

It is important to note that the a trous decomposition is an example of a “redundant”
transformation. If no thresholding is performed, the sum of all the wavelet coefficient arrays
and the final smoothed array is identical to the input array. The thresholding thus removes
only the unwanted structure in the array.

Note that any BLANK pixels that are still in the cube will not be altered by the recon-
struction — they will be left as BLANK so that the shape of the valid part of the cube is
preserved.

3.3.2 Note on Statistics

The correct calculation of the reconstructed array needs good estimators of the underlying
mean and standard deviation of the background noise distribution. These statistics are
estimated using robust methods, to avoid corruption by strong outlying points. The mean
of the distribution is actually estimated by the median, while the median absolute deviation
from the median (MADFM) is calculated and corrected assuming Gaussianity to estimate
the underlying standard deviation 0. The Gaussianity (or Normality) assumption is critical,
as the MADFM does not give the same value as the usual rms or standard deviation value

54 trous means “with holes” in French.

3 WHAT DUCHAMP IS DOING 10

— for a normal distribution N(u,o) we find MADFM= 0.6744888¢. Since this ratio is
corrected for, the user need only think in the usual multiples of ¢ when setting snrRecon.
See Appendix G for a derivation of this value.

When thresholding the different wavelet scales, the value of o as measured from the
wavelet array needs to be scaled to account for the increased amount of correlation between
neighbouring pixels (due to the convolution). See Appendix H for details on this scaling.

3.3.3 User control of reconstruction parameters

The most important parameter for the user to select in relation to the reconstruction is the
threshold for each wavelet array. This is set using the snrRecon parameter, and is given as
a multiple of the rms (estimated by the MADFM) above the mean (which for the wavelet
arrays should be approximately zero). There are several other parameters that can be altered
as well that affect the outcome of the reconstruction.

By default, the cube is reconstructed in three dimensions, using a 3-dimensional filter
and 3-dimensional convolution. This can be altered, however, using the parameter reconDim.
If set to 1, this means the cube is reconstructed by considering each spectrum separately,
whereas reconDim=2 will mean the cube is reconstructed by doing each channel map sep-
arately. The merits of these choices are discussed in §5, but it should be noted that a
2-dimensional reconstruction can be susceptible to edge effects if the spatial shape of the
pixel array is not rectangular.

The user can also select the minimum scale to be used in the reconstruction. The first
scale exhibits the highest frequency variations, and so ignoring this one can sometimes be
beneficial in removing excess noise. The default is to use all scales (minscale = 1).

Finally, the filter that is used for the convolution can be selected by using filterCode
and the relevant code number — the choices are listed in Appendix B. A larger filter will give
a better reconstruction, but take longer and use more memory when executing. When multi-
dimensional reconstruction is selected, this filter is used to construct a 2- or 3-dimensional
equivalent.

3.4 Input/Output of reconstructed arrays

The reconstruction stage can be relatively time-consuming, particularly for large cubes and
reconstructions in 3-D. To get around this, Duchamp provides a shortcut to allow users to
perform multiple searches (e.g. with different thresholds) on the same reconstruction without
calculating the reconstruction each time.

The first step is to choose to save the reconstructed array as a FITS file by setting
flagOutputRecon = true. The file will be saved in the same directory as the input image,
so the user needs to have write permissions for that directory.

The filename will be derived from the input filename, with extra information detailing the
reconstruction that has been done. For example, suppose image.fits has been reconstructed
using a 3-dimensional reconstruction with filter #2, thresholded at 40 using all scales. The
output filename will then be image .RECON-3-2-4-1.fits (i.e. it uses the four parameters
relevant for the a trous reconstruction as listed in Appendix B). The new FITS file will also
have these parameters as header keywords. If a subsection of the input image has been used
(see §3.1), the format of the output filename will be image.sub.RECON-3-2-4-1.fits, and
the subsection that has been used is also stored in the FITS header.

3 WHAT DUCHAMP IS DOING 11

Likewise, the residual image, defined as the difference between the input and recon-
structed arrays, can also be saved in the same manner by setting flagOutputResid = true.
Its filename will be the same as above, with RESID replacing RECON.

If a reconstructed image has been saved, it can be read in and used instead of redoing
the reconstruction. To do so, the user should set flagReconExists = true. The user can
indicate the name of the reconstructed FITS file using the reconFile parameter, or, if this
is not specified, Duchamp searches for the file with the name as defined above. If the file is
not found, the reconstruction is performed as normal. Note that to do this, the user needs
to set flagAtrous = true (obviously, if this is false, the reconstruction is not needed).

3.5 Smoothing the cube

An alternative to doing the wavelet reconstruction is to Hanning smooth the cube. This
technique can be useful in reducing the noise level slightly (at the cost of making neighbouring
pixels correlated and blurring any signal present), and is particularly well suited to the case
where a particular signal width is believed to be present in the data. It is also substantially
faster than the wavelet reconstruction.

The cube is smoothed only in the spectral domain. That is, each spectrum is indepen-
dently smoothed, and then put together to form the smoothed cube. This is then treated in
the same way as the reconstructed cube, and is used for the searching algorithm (see below).
Note that in the case of both the reconstruction and the smoothing options being requested,
the reconstruction will take precedence and the smoothing will not be done.

There is only one parameter necessary to define the degree of smoothing — the Hanning
width a (given by the user parameter hanningWidth). The coefficients of the Hanning filter

are defined by
1 +cos(7r:zc/a)’ —(a+1) gyt 1’
2 2 - T2
and zero elsewhere. Note that the width specified must be an odd integer (if the parameter
provided is even, it is incremented by one).

The user is able to save the smoothed array in exactly the same manner as for the
reconstructed array — set flagOutputSmooth = true, and then the smoothed array will be
saved in image.SMOOTH-a.fits, where a is replaced by the Hanning width used. Similarly,
a saved file can be read in by setting flagSmoothExists = true and either specifying a file
to be read with the smoothFile parameter or relying on Duchamp to find the file with the

name as given above.

3.6 Searching the image

The image is searched for detections in two ways: spectrally (a 1-dimensional search in the
spectrum in each spatial pixel), and spatially (a 2-dimensional search in the spatial image in
each channel). In both cases, the algorithm finds connected pixels that are above the user-
specified threshold. In the case of the spatial image search, the algorithm of Lutz (1980) is
used to raster-scan through the image and connect groups of pixels on neighbouring rows.
Note that this algorithm cannot be applied directly to a 3-dimensional case, as it requires
that objects are completely nested in a row: that is, if you are scanning along a row, and
one object finishes and another starts, you know that you will not get back to the first one
(if at all) until the second is completely finished for that row. Three-dimensional data does

3 WHAT DUCHAMP IS DOING 12

not have this property, which is why we break up the searching into 1- and 2-dimensional
cases.

The basic idea behind detection is to locate sets of contiguous voxels that lie above some
threshold. Duchamp now calculates one threshold for the entire cube (previous versions
calculated thresholds for each spectrum and image). This enables calculation of signal-to-
noise ratios for each source (see Section 4 for details). The user can manually specify a value
(using the parameter threshold) for the threshold, which will override the calculated value.
Note that this only applies for the first of the two cases discussed below — the FDR case
ignores any manually-set threshold value.

The determination of the threshold is done in one of two ways. The first way is a simple
sigma-clipping, where a threshold is set at a fixed number n of standard deviations above
the mean, and pixels above this threshold are flagged as detected. The value of n is set with
the parameter snrCut. As before, the value of the standard deviation is estimated by the
MADFM, and corrected by the ratio derived in Appendix G.

The second method uses the False Discovery Rate (FDR) technique (Hopkins et al. 2002;
Miller et al. 2001), whose basis we briefly detail here. The false discovery rate (given by the
number of false detections divided by the total number of detections) is fixed at a certain
value v (e.g. a = 0.05 implies 5% of detections are false positives). In practice, an « value
is chosen, and the ensemble average FDR (i.e. (FFDR)) when the method is used will be less
than «. One calculates p — the probability, assuming the null hypothesis is true, of obtaining
a test statistic as extreme as the pixel value (the observed test statistic) — for each pixel,
and sorts them in increasing order. One then calculates d where

. J&
d—mjax{j P < cNN}’
and then rejects all hypotheses whose p-values are less than or equal to P;. (So a P, < Py
will be rejected even if P; > ja/eyN.) Note that “reject hypothesis” here means “accept
the pixel as an object pixel” (i.e. we are rejecting the null hypothesis that the pixel belongs
to the background).

The ¢y values here are normalisation constants that depend on the correlated nature of
the pixel values. If all the pixels are uncorrelated, then ¢y = 1. If N pixels are correlated,
then their tests will be dependent on each other, and so cy = S | =1, Hopkins et al. (2002)
consider real radio data, where the pixels are correlated over the beam. In this case the sum
is made over the N pixels that make up the beam. The value of N is calculated from the
FITS header (if the correct keywords — BMAJ, BMIN — are not present, the size of the beam
is taken from the parameter beamSize).

The theory behind the FDR method implies a direct connection between the choice of
a and the fraction of detections that will be false positives. However, due to the merging
process, this direct connection is lost when looking at the final number of detections — see
discussion in §5. The effect is that the number of false detections will be less than indicated
by the o value used.

If the cube has been reconstructed or smoothed, the residuals (defined in the sense of
original — reconstruction) are used to estimate the noise parameters of the cube. Otherwise
they are estimated directly from the cube itself. In both cases, robust estimators are used.

Detections must have a minimum number of pixels to be counted. This minimum number
is given by the input parameters minPix (for 2-dimensional searches) and minChannels (for
1-dimensional searches).

3 WHAT DUCHAMP IS DOING 13

Finally, the search only looks for positive features. If one is interested instead in negative
features (such as absorption lines), set the parameter flagNegative = true. This will
invert the cube (i.e. multiply all pixels by —1) prior to the search, and then re-invert the
cube (and the fluxes of any detections) after searching is complete. All outputs are done in
the same manner as normal, so that fluxes of detections will be negative.

3.7 Merging detected objects

The searching step produces a list of detected objects that will have many repeated detections
of a given object — for instance, spectral detections in adjacent pixels of the same object
and /or spatial detections in neighbouring channels. These are then combined in an algorithm
that matches all objects judged to be “close”, according to one of two criteria.

One criterion is to define two thresholds — one spatial and one in velocity — and say
that two objects should be merged if there is at least one pair of pixels that lie within
these threshold distances of each other. These thresholds are specified by the parameters
threshSpatial and threshVelocity (in units of pixels and channels respectively).

Alternatively, the spatial requirement can be changed to say that there must be a pair
of pixels that are adjacent — a stricter, but perhaps more realistic requirement, particularly
when the spatial pixels have a large angular size (as is the case for HI surveys). This method
can be selected by setting the parameter flagAdjacent to 1 (i.e. true) in the parameter
file. The velocity thresholding is done in the same way as the first option.

Once the detections have been merged, they may be “grown”. This is a process of
increasing the size of the detection by adding adjacent pixels that are above some secondary
threshold. This threshold is lower than the one used for the initial detection, but above the
noise level, so that faint pixels are only detected when they are close to a bright pixel. The
value of this threshold is a possible input parameter (growthCut), with a default value of
1.50. The use of the growth algorithm is controlled by the flagGrowth parameter — the
default value of which is false. If the detections are grown, they are sent through the
merging algorithm a second time, to pick up any detections that now overlap or have grown
over each other.

Finally, to be accepted, the detections must span both a minimum number of channels
(to remove any spurious single-channel spikes that may be present), and a minimum num-
ber of spatial pixels. These numbers, as for the original detection step, are set with the
minChannels and minPix parameters. The channel requirement means there must be at
least one set of minChannels consecutive channels in the source for it to be accepted.

4 OUTPUTS 14

4 Outputs

4.1 During execution

Duchamp provides the user with feedback whilst it is running, to keep the user informed on
the progress of the analysis. Most of this consists of self-explanatory messages about the
particular stage the program is up to. The relevant parameters are printed to the screen at
the start (once the file has been successfully read in), so the user is able to make a quick
check that the setup is correct (see Appendix app-input for an example).

If the cube is being trimmed (§3.2), the resulting dimensions are printed to indicate
how much has been trimmed. If a reconstruction is being done, a continually updating
message shows either the current iteration and scale, compared to the maximum scale (when
reconDim=3), or a progress bar showing the amount of the cube that has been reconstructed
(for smaller values of reconDim).

During the searching algorithms, the progress through the 1D and 2D searches are shown.
When the searches have completed, the number of objects found in both the 1D and 2D
searches are reported (see §3.6 for details).

In the merging process (where multiple detections of the same object are combined —
see §3.7), two stages of output occur. The first is when each object in the list is compared
with all others. The output shows two numbers: the first being how far through the list the
current object is, and the second being the length of the list. As the algorithm proceeds,
the first number should increase and the second should decrease (as objects are combined).
When the numbers meet (i.e. the whole list has been compared), the second phase begins, in
which multiply-appearing pixels in each object are removed, as are objects not meeting the
minimum channels requirement. During this phase, the total number of accepted objects is
shown, which should steadily increase until all have been accepted or rejected. Note that
these steps can be very quick for small numbers of detections.

Since this continual printing to screen has some overhead of time and CPU involved,
the user can elect to not print this information by setting the parameter verbose = 0. In
this case, the user is still informed as to the steps being undertaken, but the details of the
progress are not shown.

There may also be Warning or Error messages printed to screen. The Warning messages
occur when something happens that is unexpected (for instance, a desired keyword is not
present in the FITS header), but not detrimental to the execution. An Error message is
something more serious, and indicates some part of the program was not able to complete
its task. The message will also indicate which function or subroutine generated it — this is
primarily a tool for debugging, but can be useful in determining what went wrong.

4.2 Results
4.2.1 Table of results

Finally, we get to the results — the reason for running Duchamp in the first place. Once the
detection list is finalised, it is sorted by the mean velocity of the detections (or, if there is
no good WCS associated with the cube, by the mean z-pixel position). The results are then
printed to the screen and to the output file, given by the OutFile parameter.

The output consists of three parts. First, a list of the parameters are printed to the output
file, for future reference. Next, the detection level that was used is given, so comparison can
be made with other searches. The noise level and its spread are also reported.

4 OUTPUTS 15

The most interesting part, however, is the list of detected objects. This list, an example
of which can be seen in Appendix D, contains the following columns (note that the title of the
columns depending on WCS information will depend on the details of the WCS projection:
they are shown below for the Equatorial and Galactic projection cases).

Obj#: The ID number of the detection (simply the sequential count for the list,
which is ordered by increasing velocity, or channel number, if the WCS
is not good enough to find the velocity).

Name: The “IAU”-format name of the detection (derived from the WCS position
— see below for a description of the format).

X: The average X-pixel position (averaged over all detected voxels).
Y: The average Y-pixel position.
Z: The average Z-pixel position.

RA/GLON: The Right Ascension or Galactic Longitude of the centre of the object.
DEC/GLAT: The Declination or Galactic Latitude of the centre of the object.

VEL: The mean velocity of the object [units given by the spectralUnits pa-
rameter].

w_RA /w_GLON: The width of the object in Right Ascension or Galactic Longitude
[arcmin].

w_DEC/w_GLAT: The width of the object in Declination Galactic Latitude [arcmin].

w_VEL: The full velocity width of the detection (max channel — min channel, in
velocity units [see note below]).

F_int: The integrated flux over the object, in the units of flux times velocity,
corrected for the beam if necessary.

F_peak: The peak flux over the object, in the units of flux.

S/Nmax: The signal-to-noise ratio at the peak pixel.

X1, X2: The minimum and maximum X-pixel coordinates.

Y1, Y2: The minimum and maximum Y-pixel coordinates.

71, 72: The minimum and maximum Z-pixel coordinates.

Npix: The number of voxels (i.e. distinct (z,y, z) coordinates) in the detection.

Flag: Whether the detection has any warning flags (see below).

The Name is derived from the WCS position. For instance, a source centred on the
RA Dec position 12"53™45%, -36°24'12"” will be called J125345—362412 (if the epoch is J2000)
or B125345—362412 (if B1950). An alternative form is used for Galactic coordinates: a source
centred on the position (I,b) = (323.1245, 5.4567) will be called G323.124+05.457. If the
WCS is not valid (i.e. is not present or does not have all the necessary information), the
Name, RA, DEC, VEL and related columns are not printed, but the pixel coordinates are
still provided.

The velocity units can be specified by the user, using the parameter spectralUnits
(enter it as a single string). The default value is km/s, which should be suitable for most
users. These units are also used to give the units of integrated flux. Note that if there is
no rest frequency specified in the FITS header, the Duchamp output will instead default to
using Frequency, with units of MHz.

4 OUTPUTS 16

If the WCS is absent or not sufficiently specified, then all columns from RA/GLON to
w_VEL will be left blank. Also, F_int will be replaced with the more simple F_tot — the total
flux in the detection, being the sum of all detected voxels.

The last column contains any warning flags about the detection, such as:

e E — The detection is next to the spatial edge of the image, meaning either the limit of
the pixels, or the limit of the non-BLANK pixel region.

e S — The detection lies at the edge of the spectral region.

e N — The total flux, summed over all the (non-BLANK) pixels in the smallest box that
completely encloses the detection, is negative. Note that this sum is likely to include
non-detected pixels. It is of use in pointing out detections that lie next to strongly
negative pixels, such as might arise due to interference — the detected pixels might then
also be due to the interference, so caution is advised.

4.2.2 Other results lists

Two additional results files can also be requested. One option is a VOTable-format XML
file, containing just the RA, Dec, Velocity and the corresponding widths of the detections,
as well as the fluxes. The user should set £1agVOT = 1, and put the desired filename in the
parameter votFile — note that the default is for it not to be produced. This file should
be compatible with all Virtual Observatory tools (such as Aladin®). The second option is
an annotation file for use with the Karma toolkit of visualisation tools (in particular, with
kvis). This will draw a circle at the position of each detection, scaled by the spatial size
of the detection, and number it according to the Obj# given above. To make use of this
option, the user should set flagKarma = 1, and put the desired filename in the parameter
karmaFile — again, the default is for it not to be produced.

As the program is running, it also (optionally) records the detections made in each
individual spectrum or channel (see §3.6 for details on this process). This is recorded in
the file given by the parameter LogFile. This file does not include the columns Name, RA,
DEC, wRA, wDEC, VEL, w_VEL. This file is designed primarily for diagnostic purposes: e.g.
to see if a given set of pixels is detected in, say, one channel image, but does not survive
the merging process. The list of pixels (and their fluxes) in the final detection list are also
printed to this file, again for diagnostic purposes. The file also records the execution time,
as well as the command-line statement used to run Duchamp. The creation of this log file
can be prevented by setting flaglog = false.

4.2.3 Graphical output — spectra

As well as the output data file, a postscript file is created that shows the spectrum for each
detection, together with a small cutout image (the Oth moment) and basic information about
the detection (note that any flags are printed after the name of the detection, in the format
[E]). If the cube was reconstructed, the spectrum from the reconstruction is shown in red,
over the top of the original spectrum. The spectral extent of the detected object is indicated
by two dashed blue lines, and the region covered by the “Milky Way” channels is shown by
a green hashed box. An example detection can be seen below in Fig. 1.

6 Aladin can be found on the web at http://aladin.u-strasbg.fr/

http://aladin.u-strasbg.fr/

4 OUTPUTS 17

#OWZL: JOB60441-260613 06:04:41.33, —26:06:13.16, 1/85.87/8 km/s
w_RA=20.12, w_DEC=23.90, w_Vel=211.061 km/s, F;,=22.397 Jy km/s, F__,,=0.155 Jy/beam, S/N__ =12 44
Centre: (75.9, 78.4, 232.9), Size: 256 voxels, Range: [74:78, 76:81, 225:241]
0.15 F ' f ' f ' f ' f ' f ' = 0.15 F T ‘
0.1 E 1 04 F
0-05 ¢ 0.05 F

Flux [Jy/beam]

-0.05 £,

. | . | . . L
0 2000 4000 6000 8000 10000 12000 W59‘7.37

Velocity [km/s]

Figure 1: An example of the spectrum output. Note several of the features discussed in the text: the
red lines indicating the reconstructed spectrum; the blue dashed lines indicating the spectral extent of
the detection; the green hashed area indicating the Milky Way channels that are ignored by the searching
algorithm; the blue border showing its spatial extent on the Oth moment map; and the 15 arcmin-long scale
bar.

The spectrum that is plotted is governed by the spectralMethod parameter. It can
be either peak (the default), where the spectrum is from the spatial pixel containing the
detection’s peak flux; or sum, where the spectrum is summed over all spatial pixels, and then
corrected for the beam size. The spectral extent of the detection is indicated with blue lines,
and a zoom is shown in a separate window.

The cutout image can optionally include a border around the spatial pixels that are in
the detection (turned on and off by the parameter drawBorders — the default is true). It
includes a scale bar in the bottom left corner to indicate size — its length is indicated next
to it (the choice of length depends on the size of the image).

There may also be one or two extra lines on the image. A yellow line shows the limits of
the cube’s spatial region: when this is shown, the detected object will lie close to the edge,
and the image box will extend outside the region covered by the data. A purple line, however,
shows the dividing line between BLANK and non-BLANK pixels. The BLANK pixels will
always be shown in black. The first type of line is always drawn, while the second is governed
by the parameter drawBlankEdges (whose default is true), and obviously whether there are
any BLANK pixel present.

4.2.4 Graphical output — maps

Finally, a couple of images are optionally produced: a Oth moment map of the cube, combin-
ing just the detected channels in each object, showing the integrated flux in grey-scale; and
a “detection image”, a grey-scale image where the pixel values are the number of channels
that spatial pixel is detected in. In both cases, if drawBorders = true, a border is drawn
around the spatial extent of each detection, and if drawBlankEdges = true, the purple line
dividing BLANK and non-BLANK pixels (as described above) is drawn. An example mo-
ment map is shown in Fig. 2. The production or otherwise of these images is governed by
the flagMaps parameter.

The moment map is also displayed in a PGPlot XWindow. This feature can be turned off
by setting the flagXOutput parameter to false — this might be useful if running Duchamp
on a terminal with no window display capability, or if you have set up a script to run it in
a batch mode.

The purpose of these images are to provide a visual guide to where the detections have

4 OUTPUTS 18

/DATA/SITAR_1 /whi550/0bsData /cubes/H201_abcde_luther_chop.fits

100

Flux [Jy km/s]

150

10

100

Y pixel
04d

50

0.1

100

X pixel

Figure 2: An example of the moment map created by Duchamp. The full extent of the cube is covered,
and the Oth moment of each object is shown (integrated individually over all the detected channels). The
purple line indicates the limit of the non-BLANK pixels.

been made, and, particularly in the case of the moment map, to provide an indication of
the strength of the source. In both cases, the detections are numbered (in the same sense as
the output list and as the spectral plots), and the spatial borders are marked out as for the
cutout images in the spectra file. Both these images are saved as postscript files (given by
the parameters momentMap and detectionMap respectively), with the latter also displayed
in a PGPLOT window (regardless of the state of flagMaps).

5 NOTES AND HINTS ON THE USE OF DUCHAMP 19

5 Notes and hints on the use of Duchamp

In using Duchamp, the user has to make a number of decisions about the way the program
runs. This section is designed to give the user some idea about what to choose.

The main choice is whether or not to use the wavelet reconstruction. The main benefits
of this are the marked reduction in the noise level, leading to regularly-shaped detections,
and good reliability for faint sources. The main drawback with its use is the long execution
time: to reconstruct a 170 x 160 x 1024 (HIPASS) cube often requires three iterations and
takes about 20-25 minutes to run completely. Note that this is for the more complete three-
dimensional reconstruction: using reconDim=1 makes the reconstruction quicker (the full
program then takes about 6 minutes), but it is still the largest part of the time.

The searching part of the procedure is much quicker: searching an un-reconstructed cube
leads to execution times of only a couple of minutes. Alternatively, using the ability to read
in previously-saved reconstructed arrays makes running the reconstruction more than once
a more feasible prospect.

On the positive side, the shape of the detections in a cube that has been reconstructed
will be much more regular and smooth — the ragged edges that objects in the raw cube
possess are smoothed by the removal of most of the noise. This enables better determination
of the shapes and characteristics of objects.

A further point to consider when using the reconstruction is that if the two-dimensional
reconstruction is chosen (reconDim=2), it can be susceptible to edge effects. If the valid area
in the cube (i.e. the part that is not BLANK) has non-rectangular edges, the convolution
can produce artefacts in the reconstruction that mimic the edges and can lead (depending on
the selection threshold) to some spurious sources. Caution is advised with such data — the
user is advised to check carefully the reconstructed cube for the presence of such artefacts.
Note, however, that the 1- and 3-dimensional reconstructions are not susceptible in the same
way, since the spectral direction does not generally exhibit these BLANK edges, and so we
recommend the use of either of these.

If one chooses the reconstruction method, a further decision is required on the signal-to-
noise cutoff used in determining acceptable wavelet coefficients. A larger value will remove
more noise from the cube, at the expense of losing fainter sources, while a smaller value will
include more noise, which may produce spurious detections, but will be more sensitive to
faint sources. Values of less than about 30 tend to not reduce the noise a great deal and can
lead to many spurious sources (this depends, of course on the cube itself).

When it comes to searching, the FDR method produces more reliable results than simple
sigma-clipping, particularly in the absence of reconstruction. However, it does not work in
exactly the way one would expect for a given value of alpha. For instance, setting fairly
liberal values of alpha (say, 0.1) will often lead to a much smaller fraction of false detections
(i.e. much less than 10%). This is the effect of the merging algorithms, that combine the
sources after the detection stage, and reject detections not meeting the minimum pixel or
channel requirements. It is thus better to aim for larger alpha values than those derived
from a straight conversion of the desired false detection rate.

Finally, as Duchamp is still undergoing development, there are some elements that are
not fully developed. In particular, it is not as clever as [would like at avoiding interference.
The ability to place requirements on the minimum number of channels and pixels partially
circumvents this problem, but work is being done to make Duchamp smarter at rejecting
signals that are clearly (to a human eye at least) interference. See the following section for
further improvements that are planned.

6 FUTURE DEVELOPMENTS 20

6 Future developments

Here are lists of planned improvements and a wish-list of features that would be nice to
include (but are not planned in the immediate future). Let me know if there are items not
on these lists, or items on the list you would like prioritised.

Planned developments:

e Parallelisation of the code, to improve speed particularly on multi-core machines.

e Better determination of the noise characteristics of spectral-line cubes, including un-
derstanding how the noise is generated and developing a model for it.

e Include more source analysis. Examples could be: shape information; measurements
of HI mass; more variety of measurements of velocity width and profile.

e Improved ability to reject interference, possibly on the spectral shape of features.

e Ability to separate (de-blend) distinct sources that have been merged.

Wish-list:

e Incorporation of Swinburne’s S2PLOT ” code for improved visualisation.

e Link to lists of possible counterparts (e.g. via NED/SIMBAD /other VO tools?).

e On-line web service interface, so a user can upload a cube and get back a source-list.

e Embed Duchamp in a GUI, to move away from the text-based interaction.

7 Why Duchamp?

Well, it’s important for a program to have a name, and the initial working title of cubefind
was somewhat uninspiring. I wanted to avoid the classic astronomical approach of designing a
cute acronym, and since it is designed to work on cubes, I looked at naming it after a cubist.
Picasso, sadly, was already taken (Minchin 1999), so I settled on naming it after Marcel
Duchamp, another cubist, but also one of the first artists to work with “found objects”.

"http:/ /astronomy.swin.edu.au/s2plot /

http://astronomy.swin.edu.au/s2plot/

REFERENCES 21

References

M.R. Calabretta and E.W. Greisen. “Representations of celestial coordinates in FITS”.
AEA, 395:1077-1122, December 2002. .

E.W. Greisen and M.R. Calabretta. “Representations of world coordinates in FITS”. A&A,
395:1061-1075, December 2002.

R.J. Hanisch, A. Farris, E.-W. Greisen, W.D. Pence, B.M. Schlesinger, P.J. Teuben, R.W.
Thompson, and A. Warnock. “Definition of the Flexible Image Transport System (FITS)”.
AEA, 376:359-380, September 2001.

A.M. Hopkins, C.J. Miller, A.J. Connolly, C. Genovese, R.C. Nichol, and L. Wasserman. “A
New Source Detection Algorithm Using the False-Discovery Rate”. A.J, 123:1086-1094,
February 2002.

R.K. Lutz. “An algorithm for the real time analysis of digitised images”. The Computer
Journal, 23:262-269, 1980.

M.J. Meyer et al. “The HIPASS catalogue - 1. Data presentation”. MNRAS, 350:1195-12009,
June 2004.

C.J. Miller, C. Genovese, R.C. Nichol, L. Wasserman, A. Connolly, D. Reichart, A. Hopkins,
J. Schneider, and A. Moore. “Controlling the False-Discovery Rate in Astrophysical Data
Analysis”. AJ, 122:3492-3505, December 2001.

R.F. Minchin. “Finding the Bivariate Brightness Distribution of Galaxies from an HI Selected
Sample”. PASA, 16:12-17, 1999.

J.-L. Starck and F. Murtagh. “Astronomical Image and Data Analysis”. Springer, 2002.

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...395%.1077C&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...395%.1061G&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...395%.1061G&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001A%26A...376..359H&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002AJ....123.1086H&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002AJ....123.1086H&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004MNRAS.350.1195M&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004MNRAS.350.1195M&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001AJ....122.3492M&db_key=AST

A OBTAINING AND INSTALLING DUCHAMP 22

A Obtaining and installing Duchamp

A.1 Installing

The Duchamp web page can be found at the following location:
http://www.atnf.csiro.au/people/Matthew. Whiting /Duchamp
Here you can find a gzipped tar archive of the source code that can be downloaded and
extracted, as well as this User’s Guide in postscript and hyperlinked PDF formats.

To build Duchamp, you will need three main external libraries: PGPLOT, CFITSIO (this
needs to be version 2.5 or greater — version 3+ is better) and wcsLIB. If these are not
present on your system, you can download them from the following locations:

e PGPLOT: http://www.astro.caltech.edu/ tjp/pgplot/
e CFITSIO: http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
e WCSLIB: http://www.atnf.csiro.au/people/Mark.Calabretta/ WCS /index.html

Duchamp can be built on Unix/Linux systems by typing (assuming that the prompt your
terminal provides is a > — don’t type this character!):

> ./configure
> make
> make clean (optional -- to remove the object files)

Run in this manner, configure should find all the necessary libraries, but if some libraries
have been installed in non-standard locations, it may fail. In this case, you can specify
additional directories to look in by giving extra command-line arguments. There are separate
options for library files (eg. libcpgplot.a) and header files (eg. cpgplot.h).

For example, suppose WCSLIB had been locally installed in /home/mduchamp/wcslib.
There will then be two libraries created that are likely to be in the following subdirectories:
C/ and pgsbox/. Each subdirectory needs to be searched for library and header files, so one
could build Duchamp by typing:

> ./configure \
LIBDIRS="/home/mduchamp/wcslib/C /home/mduchamp/wcslib/pgsbox" \
INCDIRS="/home/mduchamp/wcslib/C /home/mduchamp/wcslib/pgsbox"

And then just run make in the usual fashion:
> make

This will produce the executable Duchamp. You can verify that it is running correctly by
running the verification shell script:

> VerifyDuchamp.sh

This will use a dummy FITS image in the verification/ directory — this image has some
Gaussian random noise, with five Gaussian sources present, plus a dummy WCS. The script
runs Duchamp on this image with three different sets of inputs, and compares to known
results, looking for differences and reporting any. There should be none reported if everything
is working correctly.

http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
http://www.astro.caltech.edu/~tjp/pgplot/
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/index.html

A OBTAINING AND INSTALLING DUCHAMP 23

A.2 Running Duchamp

You can then run Duchamp on your own data. This can be done in one of two ways. The
first is:

> Duchamp -f [FITS file]

where [FITS file] is the file you wish to search. This method simply uses the default
values of all parameters.
The second method allows some determination of the parameter values by the user. Type:

> Duchamp -p [parameter file]

where [parameterFile] is a file with the input parameters, including the name of the cube
you want to search. There are two example input files included with the distribution. The
smaller one, InputExample, shows the typical parameters one might want to set. The large
one, InputComplete, lists all possible parameters that can be entered, and a brief description
of them. To get going quickly, just replace the ”your-file-here” in InputExample with your
image name, and type

> Duchamp -p InputExample

The following appendices provide details on the individual parameters, and show exam-
ples of the output files that Duchamp produces.

A.3 Feedback

It may happen that you discover bugs or problems with Duchamp, or you have suggestions
for improvements or additional features to be included in future releases. You can submit a
“ticket” (a trackable bug report) at the Duchamp Trac wiki at the following location:
http://sourcecode.atnf.csiro.au/cgi-bin/trac_duchamp.cgi/simpleticket (there is a link to this
page from the Duchamp website).

There is also an email exploder, duchamp-user|[at]atnf.csiro.au, that users can subscribe
to keep up to date with changes, updates, and other news about Duchamp. To sub-
scribe, send an email (from the account you wish to subscribe to the list) to duchamp-
user-request[at]atnf.csiro.au with the single word “subscribe” in the body of the message.
To be removed from this list, send a message with “unsubscribe” in its body to the same
address.

http://sourcecode.atnf.csiro.au/cgi-bin/trac_duchamp.cgi/simpleticket

B AVAILABLE PARAMETERS 24

B Available parameters

The full list of parameters that can be listed in the input file are given here. If not listed,
they take the default value given in parentheses. Since the order of the parameters in the
input file does not matter, they are grouped here in logical sections.

Input related

ImageFile (no default assumed): The filename of the data cube to be analysed.

flagSubsection [false]: A flag to indicate whether one wants a subsection of the re-
quested image.

Subsection [[*,*,*]]: The requested subsection, which should be specified in the
format [x1:x2,y1:y2,z1:22], where the limits are inclusive. If the full
range of a dimension is required, use a *, e.g. if you want the full spectral
range of a subsection of the image, use [30:140,30:140,*] (thus the
default is the full cube).

flagReconExists [false]: A flag to indicate whether the reconstructed array has been
saved by a previous run of Duchamp. If set true, the reconstructed array
will be read from the file given by reconFile, rather than calculated
directly.

reconFile (no default assumed): The FITS file that contains the reconstructed array.
If flagReconExists is true and this parameter is not defined, the default
file searched will be determined by the a trous parameters (see §3.3).

flagSmoothExists [false]: A flag to indicate whether the Hanning-smoothed array has
been saved by a previous run of Duchamp. If set true, the smoothed array
will be read from the file given by smoothFile, rather than calculated
directly.

smoothFile (no default assumed): The FITS file that contains the Hanning-smoothed
array. If flagSmoothExists is true and this parameter is not defined, the

default file searched will be determined by the Hanning width parameter
(see §3.5).

Output related

OutFile [duchamp-Results.txt]: The file containing the final list of detections. This
also records the list of input parameters.

SpectraFile [duchamp-Spectra.ps]: The postscript file containing the resulting inte-
grated spectra and images of the detections.

flaglog [truel: A flag to indicate whether intermediate detections should be logged.

LogFile [duchamp-Logfile.txt]: The file in which intermediate detections are logged.
These are detections that have not been merged. This is primarily for
use in debugging and diagnostic purposes — normal use of the program
will probably not require this.

flagOutputRecon [false]: A flag to say whether or not to save the reconstructed cube
as a FITS file. The filename will be derived according to the naming

B AVAILABLE PARAMETERS 25

scheme detailed in Section 3.4.

flagOutputResid [false]: As for flagOutputRecon, but for the residual array — the
difference between the original cube and the reconstructed cube. The
filename will be derived according to the naming scheme detailed in Sec-
tion 3.4.

flagOutputSmooth [false]: A flag to say whether or not to save the smoothed cube
as a FITS file. The filename will be derived according to the naming
scheme detailed in Section 3.5.

flagVOT [falsel: A flag to say whether to create a VOTable file corresponding to the
information in outfile. This will be an XML file in the Virtual Obser-
vatory VOTable format.

votFile [duchamp-Results.xml]: The VOTable file with the list of final detections. Some
input parameters are also recorded.

flagKarma [false]: A flag to say whether to create a Karma annotation file correspond-
ing to the information in outfile. This can be used as an overlay for
the Karma programs such as kvis.

karmaFile [duchamp-Results.ann]: The Karma annotation file showing the list of final
detections.

flagMaps [truel: A flag to say whether to save postscript files showing the Oth moment
map of the whole cube (parameter momentMap) and the detection image
(detectionMap).

momentMap [duchamp-MomentMap.ps]: A postscript file containing a map of the Oth
moment of the detected sources, as well as pixel and WCS coordinates.

detectionMap [duchamp-DetectionMap.ps]: A postscript file showing each of the de-
tected objects, coloured in greyscale by the number of channels spanned
by each pixel. Also shows pixel and WCS coordinates.

flagXOutput [truel: A flag to say whether to display a Oth moment map in a PGPlot
Xwindow. This will be in addition to any that are saved to a file.

Modifying the cube

flagBlankPix [true]: A flag to say whether to remove BLANK pixels from the analysis
— these are pixels set to some particular value because they fall outside
the imaged area.

blankPixValue [-8.00061]: The value of the BLANK pixels, if this information is not
contained in the FITS header (the usual procedure is to obtain this value
from the header information — in which case the value set by this param-
eter is ignored).

flagMW [false]: A flag to say whether to ignore channels contaminated by Milky Way
(or other) emission — the searching algorithms will not look at these
channels.

maxMW [112]: The maximum channel number containing “Milky Way” emission.

minMW [75]: The minimum channel number containing “Milky Way” emission. Note
that the range specified by maxMW and minMW is inclusive.

B AVAILABLE PARAMETERS 26

flagBaseline [false]: A flag to say whether to remove the baseline from each spectrum

in the cube for the purposes of reconstruction and detection.

Detection related

General detection

flagNegative [false]: A flag to indicate that the features being searched for are nega-

snrCut [3.]:

tive. The cube will be inverted prior to searching.

The cut-off value for thresholding, in terms of number of ¢ above the
mean.

threshold (no default assumed): The actual value of the threshold. Normally the

threshold is calculated from the cube’s statistics, but the user can man-
ually specify a value to be used that overrides the calculated value. If
this is not specified, the calculated value is used. Also, when the FDR
method is requested (see below), the value of the threshold parameter
is ignored.

flagGrowth [false]: A flag indicating whether or not to grow the detected objects to a

smaller threshold.

growthCut [2.]: The smaller threshold using in growing detections. In units of o above

the mean.

beamSize [10.]: The size of the beam in pixels. If the header keywords BMAJ and

BMIN are present, then these will be used to calculate the beam size,
and this parameter will be ignored.

A trous reconstruction

flagATrous [true]: A flag indicating whether or not to reconstruct the cube using the a

reconDim [3]:

scaleMin [1]:

snrRecon [4]:

filterCode [1]:

trous wavelet reconstruction. See §3.3 for details.

The number of dimensions to use in the reconstruction. 1 means re-
construct each spectrum separately, 2 means each channel map is done
separately, and 3 means do the whole cube in one go.

The minimum wavelet scale to be used in the reconstruction. A value of
1 means “use all scales”.

The thresholding cutoff used in the reconstruction — only wavelet co-
efficients this many o above the mean (or greater) are included in the
reconstruction.

The code number of the filter to use in the reconstruction. The options
are:

B AVAILABLE PARAMETERS 27

Smoothing the cube

flagSmooth [false]: A flag indicating whether to Hanning-smooth the cube. See §3.5
for details.

hanningWidth [5]: The width of the Hanning smoothing kernel.

FDR method

flagFDR [falsel: A flag indicating whether or not to use the False Discovery Rate
method in thresholding the pixels.

alphaFDR [0.01]: The a parameter used in the FDR analysis. The average number of
false detections, as a fraction of the total number, will be less than « (see

§3.6).

Merging detections

minPix [2]: The minimum number of spatial pixels for a single detection to be counted.

minChannels [3]: The minimum number of consecutive channels that must be present
in a detection.

flagAdjacent [true]: A flag indicating whether to use the “adjacent pixel” criterion to
decide whether to merge objects. If not, the next two parameters are
used to determine whether objects are within the necessary thresholds.

threshSpatial [3.]: The maximum allowed minimum spatial separation (in pixels) be-
tween two detections for them to be merged into one. Only used if
flaghAdjacent = false.

threshVelocity [7.]: The maximum allowed minimum channel separation between two
detections for them to be merged into one.

Other parameters

spectralMethod [peak]: This indicates which method is used to plot the output spectra:
peak means plot the spectrum containing the detection’s peak pixel; sum
means sum the spectra of each detected spatial pixel, and correct for the
beam size. Any other choice defaults to peak.

spectralUnits [km/s]: The user can specify the units of the spectral axis. Assuming
the WCS of the FITS file is valid, the spectral axis is transformed into
velocity, and put into these units for all output and for calculations such
as the integrated flux of a detection.

drawBorders [true]: A flag indicating whether borders are to be drawn around the
detected objects in the moment maps included in the output (see for
example Fig. 1).

drawBlankEdges [true]: A flag indicating whether to draw the dividing line between

BLANK and non-BLANK pixels on the 2-dimensional images (see for
example Fig. 2).

verbose [true]: A flag indicating whether to print the progress of computationally-
intensive algorithms (such as the searching and merging) to screen.

C EXAMPLE PARAMETER FILES 28

C Example parameter files

This is what a typical parameter file would look like.

imageFile /home/mduchamp/fountain.fits
logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

flagSubsection false
flagOutputRecon false
flagOutputResid 0
flagBlankPix 1

flagMw 1
minMW 75
maxMW 112
minPix 3
flagGrowth 1
growthCut 1.5
flagATrous 0
scaleMin 1
snrRecon 4
flagFDR 1
alphaFDR 0.1
numPixPSF 20
snrCut 3

threshSpatial 3
threshVelocity 7

Note that, as in this example, the flag parameters can be entered as strings (true/false)
or integers (1/0). Also, note that it is not necessary to include all these parameters in the
file, only those that need to be changed from the defaults (as listed in Appendix B), which
in this case would be very few. A minimal parameter file might look like:

imageFile /home/mduchamp/fountain.fits
flaglog false

snrRecon 3

snrCut 2.5

minChannels 4

This will reconstruct the cube with a lower SNR value than the default, select objects at
a lower threshold, with a looser minimum channel requirement, and not keep a log of the
intermediate detections.

The following page demonstrates how the parameters are presented to the user, both
on the screen at execution time, and in the output and log files. On each line, there is a
description on the parameter, the relevant parameter name that is used in the input file (if
there is one that the user can enter), and the value of the parameter being used.

29

C EXAMPLE PARAMETER FILES

yead

L
anIg

€

asTes

(uotgouny sutlds gg) T
i

I

€
anIg

osTeJ
€

4

osTel
88.1°0T1
C1T-G.4
anIg
79000 8-
anIg
osTer

osTeY
osTeJY

sd - deyuotaoe18qg-dureyonp

sd - dejausuop-dureyonp

sd - exqoedg-dureyonp

1x17 " saTnsey-dueyonp

1x3 "o T T80 T-dureyonp

sa13 uresunoJ/dureyonpu/swoy/

[poyzeTeIgoads] - Sutqio1d Texazoads Fo poyaol
[£aTo0Tepyseayq] " - "Sur3iew x0F uoTgeredes A3T00TeA "X
[queoe(pySery] """ """ JU0TIe1TID Toxtd-queoe(py Surtsp
[AMDIUE] * 7 f v s v s e s s PTOYSSIYL HNS
”.mﬁ.mw.m.”%u_ ;stsATeue yqq Sutsp
[ePODIOQTTF] """ """ " UOT]ONIJSUODSI JI0J posn JuTleq IolTT4
[uodeyIus] """ UOT3ONILSUO0DSI UTYITM PTOYSOIYL HNS
[UTWOTEOS] """ " " " """ UOTAONI]ISUODSI UT STeDS WNUTUT
[WTquododx] """ """ UOT3ONIJSUODSI UT SUOTSUSWIP JO IoqUILN
[snoxlySeTF] - """ JUOTAONIZSUODSOI SNoI] ¥ Jursp
[yamoxndery] """ " """ 5, u0T30939p Ioajye saoelqo Burtmoin
[STouUuRyQUTW] * " """ """ UOT30910p B UT STOUURY) # WNWTUT)
[XTQUTU] - - cereeeeee W0T10010p © UT STOXTJ # UNWTUTH
[outTesegdeTy] """ """ JUyoIees oJ0Jeq sourTeseq Jurasouwsy
...................................... Am._uwum._”&v 9ZTg weaq
[MAXRW — MPUTW] """ ccrrrrrrssse sTeuuey) Lep KITTR
HBZw.m.ﬁwu jsTouueys Lem AT Sutasowey
....................................... onTe)\ TOXTd XUeld
”uﬁ.nmxﬁm.”mmm.ﬁ%”_ ;STOXTd YueTq SUTXTJ
[eaTqeBoNSeTy] " js0injes] oaTieldeN I0I SurysIesyg

[pTsexandianofeTy] ' ", UOT]ONIJSUODSI WOIJ STeNnprsel JUTARS

[uooexgndanofery] - 5,9QqND POIONI]SU0ISI FUTARG
”nHwZHHOHPUQPO.@H sz HHOHPU@P@Q
_”Q.QZPHHOEOSu Q.@Z P.HHWEOE :PO
H@HH.M.Q.HPUWQWH w._”._”% EZ.HPU@Qm
[OTTAAMO] <« « s v v s v vsre e e STTJ S3nSey TeuT
_Hm._m._”.mwo._“”_ O._“Hmnmo.l._” @P.m..m.UQE.HOPHHH
Hw.”._”.mmw.ma.h”_U@W.%HM.G“.N wﬂ. OP @WMEH

———— sJI®%0WRIRJ ———o

:so[y So[pue jndjno ur siejeurered jo uoryejuasard [eordAT,

30

D EXAMPLE RESULTS FILE

1x13 - s31nsoy-duweyonp sd-saynsey-dueyonp o- ,j- I- T- sdge
:sd-sq1nsex o[y jduos)sod e Sunnpoid [om S}I0M SUIMO[[OJ O], ‘PURIIUIOD
sdze oY) Jo asn axewW 0} ST XNUIT/XIN[) SUISN 9SOT[} I0J YDOLI} POOS Y ‘Pedl 0} PIRY 1 oyRW URD S[R} 9} JO YIPIM oY) Jey] 30N

0Tt 8EL 9TL TE 8T 8TT 91T 99°8E 6.L%°0 96C°S€ 60C°06C ST 0T 695 1T G6G°00€8 00°LG:9T:6C- T8°€T:CS:G0 8°9CL §°0€ 6°9TT 99916C-E£TTSSOrL CC
" 8%G 9% 89 99 6€ LE 9T°'S ¥90°0 LT0°T €8€°9C L9°T1T SeCT G89°%C6S 9.°C0:8%:9C- €0°€0:9T:90 9°9%S ¥°L9 0°8€ TO8Y9IT-£09190r TT
N LT 8€¥ OE¥ OET LCT T0T 66 8¥'€T L9T°0 €0L°T TEG°S0T CT°9T 88°T1T 9., 8EVY S6°CV:9¥:CC- LL E€V:LS:G0 O0°%EY C°8CT 8°'66 <CV9¥CC-€V.LSS0r 0T
6% 69€ 99¢ €C 6T 60T G0T CT9'ET 6910 98%°9 v.5°6€ 0g€°0C TL 6T 6%1°T9G€ 68°0%:95:6C- 05°80:G5:G0 G°L9¢ 0'TC €°L0OT O¥S56C-80S5G0L 6T
k! 92 0TE ¥6C 9%T S¥T LE €€ €T'0T LTT'O 11.8°C 190°11C ¥ L 2202 TTO"€99C 0S 6T €L TC- 80°9T:9T:90 ¥ '66C 6°S¥T €°GE 6IEETT-9T9T90r 8T
CLT 18T LST ¥¥T 1T¥T 1S 8% <CI'8 1010 STE €T ovL S6E €L°GT 1297 9C9°9.CC Lv°6C:6%:TC- 98°0T:CT:90 T°0LC T'CTVT 9°'6% 6C6%1C-07CT90C LT
€T 6SC LST ¥CT ¢CT ¢ 1€ ¢TO'S T90°'0 8%¥8°0 €8€°9C LL'TT €€°8 €ET"6TTC 88°L.G:G0:€C- €€ E€E€:LT:90 T°8GT L'TTT ¥ 1€ LSSOET-EELT90L 9T
8C9 G¥C LTC 8TT CIT 16 S8 06°€C L6T O ¢C9° 18 v¥v LeC L0°8C 96° LT 6€9°€C8T 67 °€C:0¥:€C- 9.°80:70:90 8°SET 6 ¥IT 6 L8 €COYEC-80T090r ST
99C¢ I¥C S¢C 18 9. 8L ¥L. ¥¥'C2T 9ST1°0 L6€°CC T90°11C 06°€T [4 V4 8.8°G98LT 9T°€1:90:9C- €€ T¥:¥0:90 6°CET ¥'8L 6°GL €T909C-1¥¥090L ¥T
q [44% 6€C CCC L¥T CVT T6 98 €€°€T 99T°0 8€3°6C ¢ST '¥CC €1°%¢C 96°LC CTO"T8LT 89°CS:TH:1C- T0°%¥S5:00:90 G°CEC S '¥¥PT 8°88 <TST¥IC-¥S0090 €T
92 SET T€ECT CTL 69 T¥ 6€ 1S°S 890°0 €08°T §9.°C8 69°GT 474" OTL 6LLT LT 60:%E:9C- 6L ¥T:GT:90 ¥°CTET 6°'0L O0°'0F 60¥E9C-¥CTSTI0C TT
7ST 6€C 1CC 16 L8 86 €6 0€°6 SIT°0 CTL TT vvv-LeC ¥T1°0C 88°€C TET TLLT 09°GC:S9C:SC- ST°6%:85:90 8°T€C 9°88 8°96 GTSCSC-6¥8SS0C TT
S6 LET STCT 09 9§ 9¢ €€ 8¥'L €60°0 LET" L 60C°06C €S°6T %997 V68 CTLT €6 ¥V:€CT:LC- OV L0:LT:90 ¥°.2C €°85 L'¥E ¥PETLT-L0LTO0C OT
49 ,ZC 0TT TL OL 96 G6 L0'S €90°0 2SL°0 6€€°C6 G0°8 S6° L G0L°8S9T T9°CG:8€:9C- TS'€9:85:G0 CT°€TT T'0L ¥'G6 TS8EIT-£98GS0l 6
G9C 60T 96T 8€ €€ T6 L8 CTB'ET €ELT O 115" €T 187 TLT 0T°%C €6 €T PTT C8ET 95°959:89:8C- ¥9°¥€:00:90 €°C0C €°GE L°'68 S§9898C-%£0090r 8
k! 99C 19T 8ST L¥T C¥T 95 6% S0°€E OIv 0 €06°C¥ 2CTL 81T 6% €T 6€°CE 80C°8S8 9G°9C:.LE:TC- 66°6T:1T:90 9°C9T €'S¥T S°CS 9TLETC-6TTTI0C L
671 ¢CT 0CT %9 S LL S99 GO'CT O0ST'0 0%0"¥T €8€°9C 69°6E 9€°¢S 88L°€TE 9T PE:6T:.C- $6°0T:90:90 €°ICT T°09 T°'TL ¥EBTLZ-0T9090C 9
8¢ 6TT LIT 98 18 98 T8 6%'6 8IT'0 S6C°€ €8€°9C 66°€ET T0°0C L,.T°69C SG¥°0G:9%:9C- ¥C°8T:C0:90 6°LIT €°'€8 0°'¥8 099¥5C-872090r S
1S 6TT LTT L6 C6 68 €8 86°6 ¥C1'0 4% €8€°9C TO'¥¢C 66°LC G20°69C 89°8T:00:9C- 69°C¥:T0:90 6°LTT 6°'%¥6 0°98 8T005C-CHT090 ¥
k! (48 LTT STT %L 89 1T¥ 9C ¥¥'6 LIT°O Z8T 1T €8€°9¢C 11°9¢C ¢6° %9 09G°LET ¥0°9€:€€:9C- 99°CC:LT:90 G°STT 8'0L G'€E€ 9EEEIT-TTLIIOL €
S€ 9TT ¥TIT S¥T T¥T €¥T 8ET €C°L 060°0 11.8°C €8€°9C 8L°0C 25°€T 665°9CC CT6°CE:¥V:TC- LO°SS:S¥:G0 L ¥IT 6°C¥T O'I¥T CEVPTIC-GSSPSOr T
0LT 9TT €TT SPT €€T G9 GS <CT'LT €IT'0 696°9T v.5°6€ T1G°19 99 ¥¥ 6€8°€CC ¥8°00:L.5:T7C- ST 6T:60:90 S '¥IT S O%¥T S°6S 00LGTC-6T6090C T
[xTd] [weaq/Lr] [s/wx £r] [S/uy] [utwoxe] [utwoxe] [s/uy]
8e1d xtdN 2z TZ TA TA TX TX xeuy/g yeed 4 Ut g TN olc (e vy a TIA 0da vy VA A X sweN #lao

27 = SUOT30918p FO JIO9QUNU R30I
660¥2T0°0 = peaxds oSTON ‘$L0TZT000°0 = ToAST oSTON
wesq/Lr 6TSELE0 0 = PTOUSSIYZ UOTID838Q

(" rsordurexs 1oy o8ed snotasid o8s -- L3TILTD IOF pPojlaTWoO **°)
———— sIojowWRIRy —-——-

900Z 8€:T1G:%¥T €¢ Le enl :xeputry eoanos dweyong oYz JFo s3Tnsey

o8ed snoraord o) uo pojensnyl sojourered oy Yym dwpyon(Suruunl wye ‘o[mndino ue jo jyuejuod [eotdAy oyy Sy [,

o[y synsod ojdwrexy (I

31

E EXAMPLE VOTABLE OUTPUT

<dTdVI0N/>

<dDYN0sdd/>

<1dvVL/>

<V1va/>

<Y1Lvaaigvi/>

(' £aTtIeTd> IOy pejedunIy o[qel ‘")

<4lL/>

<AL/>990° LT <AL><AL/>%LS°6€ <AL><AL/>ETT TOE <AL><AL/>LS° L% <AL><AL/>8% TS <AL><AL/>TTOTT¥ " LT-<AL><AL/>0¥8LE9 T6 <AL><AL/>¥T.LT-9090f <AL><AL/>€ <aL>
<4I>

<4lL/>

<AL/>%9%1°¥% <AL><AL/>¥L.G°6E€ <AL><AL/>6TT E€ET <AL><AL/>.¥V 6E€ <AL><AL/>.¥ %% <AL><AL/>LSTS80°92-<AL><AL/>EE9TV0°C6 <AL><AL/>S092-8090f <AL><AL/>T <arL>
<dl>

<4lL/>

<AL/>TLS" LT <AL><AL/>.G6°G9 <AL><AL/>T90°€TCT <AL><AL/>T¥ 6E€ <AL><AL/>0S°8% <AL><AL/>06EET0°TT-<AL><AL/>9TH0T¥ T6 <AL><AL/>00TZ-6090f <AL><AL/>T <arL>
<HIL>

<V1vaidigvi>

<VLVa>

</uS/uf,=31Un ,g,=uotsto8ad ,0T,=UaPts ,3e0TF,=odL3esep ,L3Tsuejut-eury 31oedsixnyy-sfyd,=pon ,$T102,=0I ,XNIJ Po31eISSIUT,=oWeU QTITI>
</uS/W,=31Tun ,g,=uotsroead ,g,=qipTa w3e0TI,=odLqeiep ,yipIa-eull 3oedsioorepzetddop-oasioores shyd,=pon ,§T02,=AI .TOA™H,=0WeU QTITI>
</us/m,=3TUN ,g,=uotstosad ,6,=YIPTA ,3e0T],=0dLrerep ,ooTepreTddop oasioorea shyd,=pon ,$T109,=0I .ToA,=0WRU (QTAIA>

</, utwdIe,=1Tun ,g,=uorstosxd ,.,=yapta ,1eory,=odLqeqep ,000gf,=FoI ,00p-be-sodiezrgl3ue-shyd, =pon ,$7109,=qI ,2°Q MA,=°Weu qTATI>
</yUTWore,=3TUN ,Z,=uotstoexd ,.,=YIpTa ,3eoT¥,=odLrerep ,0002(.=Fo1 ,el1 be-sodfezrglue sfyd,=pon ,g102,=ql V4 #,=0WeU QTIII>

</uw3op,=21Un ,9,=uorstoaad ,0T,=UY2aPTA ,1e0T],=odLqerep ,0002f,=Fo1 ,uTeu ejewoop-ba-sod,=pon ,$702,=qI ,2°(Q,=°Weu QTIII>

</u8ep,=2Tun ,9,=uotsto8ad ,QT,=Y3IPTA ,3e0TF,=odLrerep ,000Zr,=Fo1 ,ureu ejsuiei-be‘sod,=pon ,£102,=AI .V4.=oWeU QIIII>

</w¥T.=0zT1skeare ,Ieyo,=edAjeiep ,utew elowW!pT eISW,=PON ,ZT0,=Ql ,OWeN,=SWeu QIIIJI>

</ubu=U3pTA ,3UT,=0df1ejep ,pT e3eW,=pon ,IT02,=0I ,dI.=°Weu QIIII>

<y uotTzouny aurids g€g,=enTes ,3e1s{epod-eiaw,=pon ,Ieyd,=edLiejep ,I83TTJ SNOILY,=°WeU WYHYd>

<uTy=enTea ,wexed-ieis,=pon ,3ur,=ed43ejep ,oTedS WNWIUT| SNOILY,=0WRU KYHYd>

<ubu=onTeA ,IUS°3e3S,=pon ,3e0TF,=0dLje3ep ,3In) SNOILY,=0WRU WYHVdI>

< gu=onten __Pdemwﬁou.Mu.wﬁ_.HﬁUﬂ :u.ﬁ._”__ﬂmnm%u.mn_.ﬁﬁ WUOTSUSUWT(SNOILY,=0Weu E<ﬁ<n~V

A:.WHWP@EM.HMQ MQHSOHHOH a3} Y3iTtm .med. SeM poyjewWw UOT3IONIZSUOOSI SNOIJ ® 9YL,=9NTeA ,930U’elsu,=pon __HMQU:Hwnm.APNPMﬂ n30U SNOILY,=9Wweu NyyVd>
<u§'Ty=onTBA ,IUS°3R3S,=Pon ,3e0TF,=odA3e3ep ,pTOUSOIYL,=0WRU WYYYd>

</uS3TF urTejunoy/dweyonpu/swoy/,=enes ,S3TF eI8W!STTI ©IOW,=pon ,Ieyd,=odLjesep ,oT1TF SIIJd,=OWeU Wy vd>

AZDHH&H&UWMQ\V.HQUQHH 22anos Q.EM.SU.SQ a3 wﬂﬂﬂﬂdh woxJ mhwpws.mhm_.‘m pue sS92JIN0S P930939(0<KNOILdIYDSHI>

<, SUOT3O9318(, =dweu HTgvVL>

<yindang dureyonq,=oweu IHYNOSIYU>

</uGdd be,=we3shs - 000zr =uo0ode , 000Zr =xoutnbs ,000Zf.,=AI SAS00D>
<uT'TA/STQeIOA/9TARLOA/TWX /30U €OAT MMM/ /:d12Y, =UOTIeDOTRWOYDGoORdSOWRNOU : TSX

,©OURISUT-RWOYISTHK/T00Z /310 gn-mnmn//:daay,=TSX: SUTWX ,T°T,=UOTSIoA TIIVIOA>

<éu0’T,=UOTSISA TUWX,>

“(e8ed o1y woO 97 M

OyRUI 0} PIAOTISI U9d(SeY| uoljejuspul ayy) (] xipuaddy ur o[y jndino oy 03 urpuodseriod ‘yeuriof TINX Ul ‘D[qRT,OA oY Jo 11ed s

mdjino s[qe,OA °ojdurexy

TSIy,

Cl

F EXAMPLE KARMA ANNOTATION FILE OUTPUT 32

F Example Karma Annotation file output

This is the format of the Karma Annotation file, showing the locations of the detected
objects. This can be loaded by the plotting tools of the Karma package (for instance, kvis)
as an overlay on the FITS file.

Duchamp Source Finder results for FITS file:
/home/mduchamp/fountain.fits
Threshold = 4

No ATrous reconstruction done.
#

COLOR RED

COORD W

CIRCLE 92.3376 -21.9475 0.403992
TEXT 92.3376 -21.9475 1

CIRCLE 91.9676 -26.0193 0.37034
TEXT 91.9676 -26.0193 2

CIRCLE 91.5621 -27.3459 0.437109
TEXT 91.5621 -27.3459 3

CIRCLE 92.8285 -21.6344 0.269914
TEXT 92.8285 -21.6344 4

CIRCLE 90.1381 -28.9838 0.234179
TEXT 90.1381 -28.9838 5

CIRCLE 89.72 -26.6513 0.132743
TEXT 89.72 -26.6513 6

CIRCLE 94.2743 -27.4003 0.195175
TEXT 94.2743 -27.4003 7

CIRCLE 92.2739 -21.6941 0.134538
TEXT 92.2739 -21.6941 8

CIRCLE 89.7133 -25.4259 0.232252
TEXT 89.7133 -25.4259 9

CIRCLE 90.2206 -21.6993 0.266247
TEXT 90.2206 -21.6993 10

CIRCLE 93.8581 -26.5766 0.163153
TEXT 93.8581 -26.5766 11

CIRCLE 91.176 -26.1064 0.234356
TEXT 91.176 -26.1064 12

G ROBUST STATISTICS FOR A NORMAL DISTRIBUTION 33

G Robust statistics for a Normal distribution

The Normal, or Gaussian, distribution for mean g and standard deviation o can be written
as |
_ - —(z—p)?/20?
f(z) Norv e .

When one has a purely Gaussian signal, it is straightforward to estimate o by calculating
the standard deviation (or rms) of the data. However, if there is a small amount of signal
present on top of Gaussian noise, and one wants to estimate the o for the noise, the presence
of the large values from the signal can bias the estimator to higher values.

An alternative way is to use the median (m) and median absolute deviation from the
median (s) to estimate p and o. The median is the middle of the distribution, defined for a
continuous distribution by

/_7:0 f(z)dx = /OO f(z)dx.

m

From symmetry, we quickly see that for the continuous Normal distribution, m = u. We
consider the case henceforth of = 0, without loss of generality.

To find s, we find the distribution of the absolute deviation from the median, and then
find the median of that distribution. This distribution is given by

g(x) = distribution of |z|
= flx)+ f(-z), >0
2

279 2
= —QGx/QU,xZO.
o

So, the median absolute deviation from the median, s, is given by
/ g(x)dzr = / g(x)dz.
0 s

902
Now, [e " /?7°dx = \/n62/2, and so [*e /2 dx = \/n02/2 — [§e 22dz. Hence, to
find s we simply solve the following equation (setting o = 1 for simplicity — equivalent to

stating = and s in units of 0):
/ e~ dx — \/7/8 = 0.
0

This is hard to solve analytically (no nice analytic solution exists for the finite integral that
I'm aware of), but straightforward to solve numerically, yielding the value of s = 0.6744888.
Thus, to estimate o for a Normally distributed data set, one can calculate s, then divide by
0.6744888 (or multiply by 1.4826042) to obtain the correct estimator.

Note that this is different to solutions quoted elsewhere, specifically in Meyer et al.
(2004), where the same robust estimator is used but with an incorrect conversion to standard
deviation — they assume o = sm. This, in fact, is the conversion used to convert the
mean absolute deviation from the mean to the standard deviation. This means that the cube
noise in the HIPASS catalogue (their parameter Rms.ype) should be 18% larger than quoted.

H HOW GAUSSIAN NOISE CHANGES WITH WAVELET SCALE 34

H How (Gaussian noise changes with wavelet scale

The key element in the wavelet reconstruction of an array is the thresholding of the individual
wavelet coefficient arrays. This is usually done by choosing a level to be some number of
standard deviations above the mean value.

However, since the wavelet arrays are produced by convolving the input array by an
increasingly large filter, the pixels in the coefficient arrays become increasingly correlated
as the scale of the filter increases. This results in the measured standard deviation from a
given coefficient array decreasing with increasing scale. To calculate this, we need to take
into account how many other pixels each pixel in the convolved array depends on.

To demonstrate, suppose we have a 1-D array with N pixel values given by F;, i =
1,..., N, and we convolve it with the Bs-spline filter, defined by the set of coefficients
{1/16,1/4,3/8,1/4,1/16}. The flux of the ith pixel in the convolved array will be

1 1 3 1 1
F’i/ = TﬁE_Q + Zﬂ_l + ng + EFH-I + EE-&Q

and the flux of the corresponding pixel in the wavelet array will be

-1 1 5 1 1
W/:E—FlziFl, —*F;', *Fi—*FZ' —7F1Z
i TR R e S R R TR
Now, assuming each pixel has the same standard deviation o; = o, we can work out the

standard deviation for the wavelet array:

, 1 2 1 2 5 2 1 2 1 2

i U\/(16> " <4) " (8) " (4) " (16) = 0723890

Thus, the first scale wavelet coefficient array will have a standard deviation of 72.3% of the
input array. This procedure can be followed to calculate the necessary values for all scales,
dimensions and filters used by Duchamp.

Calculating these values is clearly a critical step in performing the reconstruction. The
method used by Starck and Murtagh (2002) was to simulate data sets with Gaussian noise,
take the wavelet transform, and measure the value of o for each scale. We take a different
approach, by calculating the scaling factors directly from the filter coefficients by taking the
wavelet transform of an array made up of a 1 in the central pixel and Os everywhere else.
The scaling value is then derived by taking the square root of the sum (in quadrature) of all
the wavelet coefficient values at each scale. We give the scaling factors for the three filters
available to Duchamp on the following page. These values are hard-coded into Duchamp, so
no on-the-fly calculation of them is necessary.

Memory limitations prevent us from calculating factors for large scales, particularly for
the three-dimensional case (hence the — symbols in the tables). To calculate factors for
higher scales than those available, we note the following relationships apply for large scales
to a sufficient level of precision:

e 1-D: factor(scale i) = factor(scale i — 1)/+/2.
e 2-D: factor(scale i) = factor(scale i — 1)/2.

e 1-D: factor(scale i) = factor(scale i — 1)/+/8.

H HOW GAUSSIAN NOISE CHANGES WITH WAVELET SCALE

e B;-Spline Function: {1/16,1/4,3/8,1/4,1/16}

Scale 1 dimension 2 dimension 3 dimension

1 0.723489806 0.890796310 0.956543592

2 0.285450405 0.200663851 0.120336499

3 0.177947535 0.0855075048 0.0349500154
4 0.122223156 0.0412474444 0.0118164242
5 0.0858113122 0.0204249666 0.00413233507
6 0.0605703043 0.0101897592 0.00145703714
7 0.0428107206 0.00509204670 0.000514791120
8 0.0302684024 0.00254566946 —

9 0.0214024008 0.00127279050 -

10 0.0151336781 0.000636389722 —

11 0.0107011079 0.000318194170 —

12 0.00756682272 — -

13 0.00535055108 — —

e Triangle Function: {1/4,1/2,1/4}

Scale 1 dimension 2 dimension 3 dimension

1 0.612372436 0.800390530 0.895954449

2 0.330718914 0.272878894 0.192033014

3 0.211947812 0.119779282 0.0576484078

4 0.145740298 0.0577664785 0.0194912393

5 0.102310944 0.0286163283 0.00681278387
6 0.0722128185 0.0142747506 0.00240175885
7 0.0510388224 0.00713319703 0.000848538128
8 0.0360857673 0.00356607618 0.000299949455
9 0.0255157615 0.00178297280 —

10 0.0180422389 0.000891478237 —

11 0.0127577667 0.000445738098 —

12 0.00902109930 0.000222868922 —

13 0.00637887978 — —

e Haar Wavelet: {0,1/2,1/2}

Scale 1 dimension 2 dimension 3 dimension

1 0.707167810 0.433012702 0.935414347

2 0.500000000 0.216506351 0.330718914

3 0.353553391 0.108253175 0.116926793

4 0.250000000 0.0541265877 0.0413398642
5 0.176776695 0.0270632939 0.0146158492
6 0.125000000 0.0135316469 0.00516748303

35

	Title Page
	Contents
	Introduction and getting going quickly
	A summary of the execution steps
	Guide to terminology and conventions

	User Inputs
	What Duchamp is doing
	Image input
	Image modification
	BLANK pixel removal
	Baseline removal
	Ignoring bright Milky Way emission

	Image reconstruction
	Algorithm
	Note on Statistics
	User control of reconstruction parameters

	Input/Output of reconstructed arrays
	Smoothing the cube
	Searching the image
	Merging detected objects

	Outputs
	During execution
	Results
	Table of results
	Other results lists
	Graphical output -- spectra
	Graphical output -- maps

	Notes and hints on the use of Duchamp
	Future developments
	Why Duchamp?
	References
	Obtaining and installing Duchamp
	Installing
	Running Duchamp
	Feedback

	Available parameters
	Example parameter files
	Example results file
	Example VOTable output
	Example Karma Annotation file output
	Robust statistics for a Normal distribution
	How Gaussian noise changes with wavelet scale

