
A Guide to the Duchamp Source Finding Software

Matthew Whiting
Australia Telescope National Facility

CSIRO

CONTENTS 2

Contents

1 Introduction and getting going quickly 3
1.1 A summary of the execution steps . 3
1.2 Guide to terminology . 4
1.3 Why “Duchamp”? . 4

2 User Inputs 4

3 What the program is doing 5
3.1 Image input . 5
3.2 Image modification . 5

3.2.1 Milky-Way removal . 5
3.2.2 Blank pixel removal . 6
3.2.3 Baseline removal . 6

3.3 Image reconstruction . 6
3.4 Reconstruction I/O . 8
3.5 Searching the image . 8
3.6 Merging detected objects . 9

4 Outputs 10
4.1 During execution . 10
4.2 Results . 10

5 Notes and hints on the use of Duchamp 14

6 Future Developments 14

A Available parameters 16

B Example parameter files 20

C Example output file 22

D Example VOTable output 23

E Example Karma Annotation File output 24

F Installing Duchamp (README file) 25

G Robust statistics for a Normal distribution 26

H How Gaussian noise changes with wavelet scale. 27

1 INTRODUCTION AND GETTING GOING QUICKLY 3

1 Introduction and getting going quickly

This document gives details on the use of the program Duchamp. This has been designed
to provide a source-detection facility for spectral-line data cubes. The basic execution of
Duchamp is to read in a FITS data cube, find sources in the cube, and produce a text
file of positions, velocities and fluxes of the detections, as well as a postscript file of the
spectra of each detection.

So, you have a FITS cube, and you want to find the sources in it. What do you do? The
first step is to make an input file that contains the list of parameters. Brief and detailed
examples are shown in Appendix B. This provides the input file name, the various output
files, and defines various parameters that control the execution.

The standard way to run Duchamp is by the command

Duchamp -p [parameter file]

replacing [parameter file] with the name of the file you have just created/copied. Al-
ternatively, you can use the syntax

Duchamp -f [FITS file]

where [FITS file] is the file you wish to search. In the latter case, the rest of the
parameters will take their default values detailed in Appendix A. In either case, the
program will then work away and give you the list of detections and their spectra. The
program execution is summarised below, and detailed in §3. Information on inputs is in
§2 and Appendix A, and descriptions of the output is in §4.

1.1 A summary of the execution steps

The basic flow of the program is summarised here. All these steps are discussed in more
detail in the following sections, so read on if you have questions!

1. The parameter file given on the command line is read in, and the parameters ab-
sorbed.

2. From the parameter file, the FITS image is located and read in to memory.

3. If requested, a FITS image with a previously reconstructed array is read in.

4. If requested, blank pixels are trimmed from the edges, and channels corresponding
to bright (e.g. Galactic) emission are excised.

5. If requested, the baseline of each spectrum is removed.

6. If the reconstruction method is requested, and the reconstructed array has not been
read in at Step 3 above, the cube is reconstructed using the á trous wavelet method.

7. Searching for objects then takes place, using the requested thresholding method.

8. The list of objects is trimmed by merging neighbouring objects and removing those
deemed unacceptable.

9. The baselines and trimmed pixels are replaced prior to output.

2 USER INPUTS 4

10. The details on the detections are written to screen and to the requested output file.

11. Maps showing the spatial location of the detections are written.

12. The integrated spectra of each detection are written to a postscript file.

13. If requested, the reconstructed array can be written to a new FITS file.

1.2 Guide to terminology

First, a brief note on the use of terminology in this guide. Duchamp is designed to work on
FITS “cubes”. These are FITS1 image arrays with three dimensions – they are assumed
to have the following form: the first two dimensions (referred to as x and y) are spatial
directions (that is, relating to the position on the sky), while the third dimension, z, is
the spectral direction, which can correspond to frequency, wavelength, or velocity.

Each spatial pixel (a given (x, y) coordinate) can be said to be a single spectrum, while
a slice through the cube perpendicular to the spectral direction at a given z-value is a
single channel (the 2-D image is a channel map).

Features that are detected are assumed to be positive. The user can choose to search
for negative features by setting an input parameter – this inverts the cube prior to the
search (see § 3.5 for details).

Note that it is possible to run Duchamp on a two-dimensional image (i.e. one with no
frequency or velocity information), or indeed a one-dimensional array, and many of the
features of the program will work fine. The focus, however, is on object detection in three
dimensions.

1.3 Why “Duchamp”?

Well, it’s important for a program to have a name, and it certainly beats the initial working
title of “cubefind”. I had planned to call it “Picasso” (as in the father of cubism), but
sadly this had already been used before (Minchin 1999). So I settled on naming it after
Marcel Duchamp, another cubist, but also one of the first artists to work with “found
objects”.

2 User Inputs

Input to the program is provided by means of a parameter file. Parameters are listed
in the file, followed by the value that should be assigned to them. The syntax used is
paramName value. The file is not case-sensitive, and lines in the input file that start
with # are ignored. If a parameter is listed more than once, the latter value is used, but
otherwise the order in which the parameters are listed in the input file is arbitrary.

If a parameter is not listed, the default value is assumed. The defaults are chosen
to provide a good result (using the reconstruction method), so the user doesn’t need to
specify many new parameters in the input file. Note that the image file must be specified!
The parameters that can be set are listed in Appendix A, with their default values in
parentheses.

1FITS is the Flexible Image Transport System – see Hanisch et al. (2001) or websites such as
http://fits.cv.nrao.edu/FITS.html for details.

http://fits.cv.nrao.edu/FITS.html

3 WHAT THE PROGRAM IS DOING 5

The ’flag’ parameters are stored as bool variables, and so are either true = 1 or false
= 0. Currently the program only reads them from the file as integers, and so they should
be entered in the file as 0 or 1 (see example file in Appendix B).

3 What the program is doing

The execution flow of the program is detailed here, indicating the main algorithmic steps
that are used. The program is written in C/C++ and makes use of the cfitsio, wcslib
and pgplot libraries.

3.1 Image input

The cube is read in using basic cfitsio commands, and stored as an array in a special
C++ class structure. This class keeps track of the list of detected objects, as well as
any reconstructed arrays that are made (see §3.3). The World Coordinate System (WCS)
information for the cube is also obtained from the FITS header by wcslib functions
(Calabretta & Greisen 2002; Greisen & Calabretta 2002), and this information, in the
form of a wcsprm structure, is also stored in the same class.

A sub-section of an image can be requested via the subsection parameter in the
parameter file – this can be a good idea if the cube has very noisy edges, which may
produce many spurious detections. The generalised form of the subsection that is used
by cfitsio is [x1:x2:dx,y1:y2:dy,z1:z2:dz], such that the x-coordinates run from x1

to x2 (inclusive), with steps of dx. The step value can be omitted (so a subsection of the
form [2:50,2:50,10:1000] is still valid). Duchamp does not at this stage deal with the
presence of steps in the subsection string, and any that are present are removed before the
file is opened.

If one wants the full range of a coordinate then replace the range with an asterisk, e.g.
[2:50,2:50,*]. If one wants to use just a subsection, one must set flagSubsection =

1. A complete description of the section syntax can be found at the fitsio web site 2.

3.2 Image modification

Several modifications to the cube can be made that improve the execution and efficiency
of Duchamp (these are optional – their use is indicated by the relevant flags set in the
input parameter file).

3.2.1 Milky-Way removal

First, a single set of contiguous channels can be removed – these may exhibit very strong
emission, such as that from the Milky Way as seen in extragalactic Hi cubes (hence the
references to “Milky Way” in relation to this task – apologies to Galactic astronomers!).
Such dominant channels will both produce many unnecessary, uninteresting and large
(in size and hence in memory usage) detections, and will also affect any reconstruction
that is performed (see next section). The use of this feature is controlled by the flagMW

parameter, and the exact channels concerned are able to be set by the user (using maxMW

2 http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c user/node90.html

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node90.html

3 WHAT THE PROGRAM IS DOING 6

and minMW). When employed, the flux in these channels is set to zero. The information in
those channels is not kept.

3.2.2 Blank pixel removal

Second, the cube is trimmed of any BLANK pixels that pad the image out to a rectangular
shape. This is also optional, being determined by the flagBlankPix parameter. The value
for these pixels is read from the FITS header (using the BLANK, BSCALE and BZERO
keywords), but if these are not present then the value can be specified by the user in
the parameter file. If these blank pixels are stored as NaNs, then a normal number will
be substituted (allowing these pixels to be accurately removed without adverse effects).
[NOTE: this appears not to be working correctly at time of writing. If your data has
unspecified BLANKs, be wary, or use the subsectioning option to trim the BLANKs.]

This stage is particularly important for the reconstruction step, as lots of BLANK pixels
on the edges will smooth out features in the wavelet calculation stage. The trimming will
also reduce the size of the cube’s array, speeding up the execution. The amount of trimming
is recorded, and these pixels are added back in once the source-detection is completed (so
that quoted pixel positions are applicable to the original cube).

Rows and columns are trimmed one at a time until the first non-BLANK pixel is
reached, so that the image remains rectangular. In practice, this means that there will be
BLANK pixels left in the trimmed image (if the non-BLANK region is non-rectangular).
However, these are ignored in all further calculations done on the cube.

3.2.3 Baseline removal

Finally, the user may request the removal of baselines from the spectra, via the parameter
flagBaseline. This may be necessary if there is a strong baseline ripple present, which
can result in spurious detections on the high points of the ripple. The baseline is calculated
from a wavelet reconstruction procedure (see §3.3) that keeps only the two largest scales.
This is done separately for each spatial pixel (i.e. for each spectrum in the cube), and the
baselines are stored and added back in before any output is done. In this way the quoted
fluxes and displayed spectra are as one would see from the input cube itself – even though
the detection (and reconstruction if applicable) is done on the baseline-removed cube.

The presence of very strong signals (for instance, masers at several hundred Jy) can
affect the determination of the baseline, leading to a large dip centred on the signal in
the baseline-subtracted spectrum. To prevent this, the signal is trimmed prior to the
reconstruction process at some standard threshold (at 8σ above the mean). The baseline
determined should thus be representative of the true, signal-free baseline. Note that this
trimming is only a temporary measure which does not affect the source-detection.

3.3 Image reconstruction

This is an optional step, but one that greatly enhances the source-detection process. The
user can direct Duchamp to reconstruct the data cube using the à trous wavelet procedure.
A good description of the procedure can be found in Starck & Murtagh (2002). The
reconstruction is an effective way of removing a lot of the noise in the image, allowing one
to search reliably to fainter levels, and reducing the number of spurious detections. The
payoff is that it can be relatively time- and memory-intensive. The steps in the procedure
are as follows:

3 WHAT THE PROGRAM IS DOING 7

1. Set the reconstructed array to 0 everywhere.

2. The cube is discretely convolved with a given filter function. This is determined
from the parameter file via the filterCode parameter – see Appendix A for details
on the filters available.

3. The wavelet coefficients are calculated by taking the difference between the convolved
array and the input array.

4. If the wavelet coefficients at a given point are above the threshold requested (given
by snrRecon as the number of σ above the mean and adjusted to the current scale),
add these to the reconstructed array.

5. The separation of the filter coefficients is doubled.

6. The procedure is repeated from step 2, using the convolved array as the input array.

7. Continue until the required maximum number of scales is reached.

8. Add the final smoothed (i.e. convolved) array to the reconstructed array. This pro-
vides the “DC offset”, as each of the wavelet coefficient arrays will have zero mean.

Note that any BLANK pixels that are still in the cube will not be altered by the
reconstruction – they will be left as BLANK so that the shape of the valid part of the
cube is preserved.

It is important to note that the à trous decomposition is an example of a “redundant”
transformation. If no thresholding is performed, the sum of all the wavelet coefficient
arrays and the final smoothed array is identical to the input array. The thresholding thus
removes only the unwanted structure in the array.

The statistics of the cube are estimated using robust methods, to avoid corruption by
strong outlying points. The mean is actually estimated by the median, while the median
absolute deviation from the median (MADFM) is calculated and corrected assuming Gaus-
sianity to estimate the standard deviation σ. The Gaussianity (or Normality) assumption
is critical, as the MADFM does not give the same value as the usual rms or standard
deviation value – for a normal distribution N(µ, σ) we find MADFM= 0.6744888σ. The
difference between the MADFM and σ is corrected for, so the user need only think in
the usual multiples of σ when setting snrRecon. See Appendix G for a derivation of this
value.

When thresholding the different wavelet scales, the value of σ as measured from the
input array needs to be scaled to account for the increased amount of correlation between
neighbouring pixels (due to the convolution). See Appendix H for details on this scaling.

The user can also select the minimum scale to be used in the reconstruction – the first
scale exhibits the highest frequency variations, and so ignoring this one can sometimes be
beneficial in removing excess noise. The default, however, is to use all scales (minscale
= 1).

The reconstruction has at least two iterations. The first iteration makes a first pass at
the wavelet reconstruction (the process outlined in the 8 stages above), but the residual
array will inevitably have some structure still in it, so the wavelet filtering is done on the
residual, and any significant wavelet terms are added to the final reconstruction. This step
is repeated until the change in the σ of the background is less than some fiducial amount.

3 WHAT THE PROGRAM IS DOING 8

3.4 Reconstruction I/O

The reconstruction stage can be relatively time-consuming, particularly for large cubes.
Duchamp thus has a shortcut to allow users to quickly do multiple searches (e.g. with
different thresholds) on the same reconstruction.

The first step is to select to save the reconstructed image as a FITS file – at the moment
this is just saved in the same directory as the input file, so it won’t work if the user does
not have write permissions on that directory. The name of the file will be derived from
the input file, in the following manner: if the input file is image.fits, the reconstructed
array will be saved in image.RECON?.fits, where ? stands for the value of snrRecon (for
instance, if snrRecon= 4, it will be image.RECON4.fits, and if snrRecon= 4.5, it will be
image.RECON4.5.fits). To save the reconstructed array, set flagOutputRecon = true.

Likewise, the residual image, defined as the difference between the input image and
the reconstructed image, can also be saved in the same manner – its filename will be
image.RESID?.fits. This is done by setting flagOutputResid = true.

If a reconstructed image has been saved, it can be read in and used instead of redoing
the reconstruction. To do so, the user should set flagReconExists = true. The user can
indicate the name of the reconstructed FITS file using the reconFile parameter, or, if
this is not specified, Duchamp searches for the file image.RECON?.fits (as defined above).
If the file is not found, the reconstruction is performed as normal. Note that to do this,
the user needs to set flagAtrous = true (obviously, if this is false, the reconstruction
is not needed).

3.5 Searching the image

The image is searched for detections in two ways: spectrally (a 1-dimensional search in
the spectrum in each spatial pixel), and spatially (a 2-dimensional search in the spatial
image in each channel). In both cases, the algorithm finds connected pixels that are above
the user-specified threshold. In the case of the spatial image search, the algorithm of
Lutz (1980) is used to raster scan through the image and connect groups of pixels on
neighbouring rows.

Note that this algorithm cannot be applied directly to a 3-dimensional case, as it
requires that objects are completely nested in a row: that is, if you are scanning along a
row, and one object finishes and another starts, you know that you will not get back to the
first one (if at all) until the second is finished for that row. Three-dimensional data does
not have this property, which is why we break up the searching into 1- and 2-dimensional
cases.

The determination of the threshold is done in one of two ways. The first way is a
simple sigma-clipping, where a threshold is set at nσ above the mean and pixels above
this threshold are flagged as detected. The value of n is set with the parameter snrCut.
As before, the value for σ is estimated by the MADFM, and corrected by the ratio derived
in Appendix G.

The second method uses the False Discovery Rate (FDR) technique (Hopkins et al.
2002; Miller et al. 2001), whose basis we briefly detail here. The false discovery rate (given
by the number of false detections divided by the total number of detections) is fixed at a
certain value α (e.g. α = 0.05 implies 5% of detections are false positives). In practice, an
α value is chosen, and the ensemble average FDR (i.e. < FDR >) when the method is
used will be less than α. One calculates p – the probability, assuming the null hypothesis is

3 WHAT THE PROGRAM IS DOING 9

true, of obtaining a test statistic as extreme as the pixel value (the observed test statistic)
– for each pixel, and sorts them in increasing order. One then calculates d where

d = max
j

{
j : Pj <

jα

cNN

}
,

and then rejects all hypotheses whose p-values are less than or equal to Pd. (So a Pi < Pd

will be rejected even if Pi ≥ jα/cNN .) Note that “reject hypothesis” here means “accept
the pixel as an object pixel” (i.e. we are rejecting the null hypothesis that the pixel belongs
to the background).

The cN values here are normalisation constants that depend on the correlated nature of
the pixel values. If all the pixels are uncorrelated, then cN = 1. If N pixels are correlated,
then their tests will be dependent on each other, and so cN =

∑N
i=1 i−1. Hopkins et al.

(2002) consider real radio data, where the pixels are correlated over the beam. In this case
the sum is made over the N pixels that make up the beam. The value of N is calculated
from the FITS header (if the correct keywords – BMAJ, BMIN – are not present, a default
value of 10 pixels is assumed).

If a reconstruction has been made, the residuals (defined as original − reconstruction)
are used to estimate the noise parameters of the cube. Otherwise they are estimated
directly from the cube itself. In both cases, the median is used as a robust estimator of
the mean value, although the σ is estimated by the standard deviation (of the residual
array, in the case of the reconstruction, but of the original array otherwise).

Detections must have a minimum number of pixels to be counted. This minimum num-
ber is given by the input parameters minPix (for 2-dimensional searches) and minChannels

(for 1-dimensional searches).
The search only looks for positive features. If one is interested instead in negative

features (such as absorption lines), set the parameter flagNegative = true. This will
invert the cube (i.e. multiply all pixels by −1) prior to the search, and then re-invert the
cube (and the fluxes of any detections) after searching is complete. All outputs are done
in the same manner as normal, so that fluxes of detections will be negative.

3.6 Merging detected objects

The searching step produces a list of detections that will have many repeated detections of a
given object – for instance, spectral detections in adjacent pixels of the same object and/or
spatial detections in neighbouring channels. These are then combined in an algorithm that
matches all objects judged to be “close”. This determination is made in one of two ways.

One way is to define two thresholds – one spatial and one in velocity – and say that two
objects should be merged if there is at least one pair of pixels that lie within these threshold
distances of each other. These thresholds are specified by the parameters threshSpatial
and threshVelocity (in units of pixels and channels respectively).

Alternatively, the spatial requirement can be changed to say that there must be a pair
of pixels that are adjacent – a stricter, but more realistic requirement, particularly when
the spatial pixels have a large angular size (as is the case for Hi surveys). This method
can be selected by setting the parameter flagAdjacent to 1 (i.e. true) in the parameter
file. The velocity thresholding is done in the same way as the first option.

Once the detections have been merged, they may be “grown”. This is a process of
increasing the size of the detection by adding adjacent pixels that are above some secondary
threshold. This threshold is lower than the one used for the initial detection, but above

4 OUTPUTS 10

the noise level, so that faint pixels are only detected when they are close to a bright pixel.
The value of this threshold is a possible input parameter (growthCut), with a default value
of 1.5σ. The use of the growth algorithm is controlled by the flagGrowth parameter –
the default value of which is false. If the detections are grown, they are sent through
the merging algorithm a second time, to pick up any detections that now overlap or have
grown over each other.

Finally, to be accepted, the detections must span both a minimum number of channels
(to remove any spurious single-channel spikes that may be present), and a minimum
number of spatial pixels. These numbers, as for the original detection step, are set with
the minChannels and minPix parameters. The channel requirement means there must be
at least one set of this many consecutive channels in the source for it to be accepted.

4 Outputs

4.1 During execution

Duchamp provides the user with feedback whilst it is running, to keep the user informed
on the progress of the analysis. Most of this consists of self-explanatory messages about
the particular stage the program is up to. The relevant parameters are printed to the
screen at the start (once the file has been successfully read in), so the user is able to make
a quick check that the setup is correct.

If the cube is being trimmed (§3.2), the resulting dimensions are printed to indicate
how much has been trimmed. If a reconstruction is being done, a continually updating
message shows the current iteration and scale (compared to the maximum scale).

During the searching algorithms, the progress through the 1D and 2D searches are
shown. When the searches have completed, the number of objects found in both the 1D
and 2D searches are reported (see §3.5 for details).

In the merging process (where multiple detections of the same object are combined –
see §3.6), two stages of output occur. The first is when each object in the list is compared
with all others. The output shows two numbers: the first being how far through the list
we are, and the second being the length of the list. As the algorithm proceeds, the first
number should increase and the second should decrease (as objects are combined). When
the numbers meet (i.e. the whole list has been compared), the second phase begins, in
which multiply-appearing pixels in each object are removed, as are objects not meeting
the minimum channels requirement. During this phase, the total number of accepted
objects is shown, which should steadily increase until all have been accepted or rejected.
Note that these steps can be very quick for small numbers of detections.

Since this continual printing to screen has some overhead of time and CPU involved,
the user can elect to not print this information by setting the parameter verbose = 0. In
this case, the user is still informed as to the steps being undertaken, but the details of the
progress are not shown.

4.2 Results

Finally, we get to the results – the reason for running Duchamp in the first place. Once the
detection list is finalised, it is sorted by the mean velocity of the detections (or, if there
is no good WCS associated with the cube, by the mean Z-pixel position). The results
are then printed to the screen and to the output file, denoted by the OutFile parameter.

4 OUTPUTS 11

The results list, an example of which can be seen in Appendix C, contains the following
columns (note that the title of the columns depending on WCS information will depend
on the projection of the WCS):

Obj#: The ID number of the detection (simply the sequential count for the
list, which is ordered by increasing velocity).

Name: The IAU-format name of the detection (based on the WCS projection).

X: The average X-pixel position.

Y: The average Y-pixel position.

Z: The average Z-pixel position.

RA/GLON: The Right Ascension or Galactic Longitude of the centre of the object.

DEC/GLAT: The Declination or Galactic Latitude of the centre of the object.

w RA/w GLON: The width of the object in Right Ascension or Galactic Longitude
[arcmin].

w DEC/w GLAT: The width of the object in Declination Galactic Latitude [arcmin].

VEL: The mean velocity of the object [km/s].

w VEL: The full velocity width of the detection (max channel − min channel,
in velocity units [km/s]).

F tot: The integrated flux over the object, in the units of flux times velocity
(e.g. Jy km/s).

F peak: The peak flux over the object, in the units of flux.

X1, X2: The minimum and maximum X-pixel coordinates.

Y1, Y2: The minimum and maximum Y-pixel coordinates.

Z1, Z2: The minimum and maximum Z-pixel coordinates.

Npix: The number of pixels & channels (i.e. distinct (x, y, z) coordinates) in
the detection.

Flag: Whether the detection has any warning flags (see below).

The Name is derived from the WCS position. For instance, the (RA,Dec) position
12h53m45s, -36◦24′12′′ will be called J1253−3624 (if the epoch is J2000) or B1253−3624
(if B1950). An alternative form is used for Galactic coordinates: the position (l,b) =
(323.1245, 5.4567) will be called G323.12+05.45. If the WCS is not valid (i.e. is not
present or does not have all the necessary information), the Name, RA, DEC, VEL and
related columns are not printed, but the pixel coordinates are still provided.

The last column contains any warning flags about the detection. There are currently
two options here. An ‘E’ is printed if the detection is next to the edge of the image,
meaning either the limit of the pixels, or the limit of the non-BLANK pixel region. An
‘N’ is printed if the total flux, summed over all the (non-BLANK) pixels in the smallest
box that completely encloses the detection, is negative. Note that this sum will possibly
include non-detected pixels. It is of use in pointing out detections that lie next to strongly
negative pixels, such as might arise due to interference – the detected pixels might then
also be due to the interference, so caution is advised.

Two alternative results files can also be requested. One option is a VOTable-format
XML file, containing just the RA, Dec, Velocity and the corresponding widths of the

4 OUTPUTS 12

Figure 1: An example of the spectrum output. Note several of the features discussed in the text: the
removal of the Milky Way emission around 0 km/s; the red lines indicating the reconstructed spectrum;
the blue dashed lines indicating the spectral extent of the detection; the blue border showing its spatial
extent on the 0th moment map; and the 15 arcmin-long scale bar.

detections, as well as the fluxes. The user should set flagVOT = 1, and put the desired
filename in the parameter votFile – note that the default is for it not to be produced.
This file should be compatible with all Virtual Observatory tools (such as Aladin3). The
second option is an annotation file for use with the Karma toolkit of visualisation tools
(in particular, with kvis). This will draw a circle at the position of each detection, and
number it according to the Obj# given above. To use, the user should set flagKarma =

1, and put the desired filename in the parameter karmaFile – again, the default is for it
not to be produced.

As the program is running, it also (optionally) records the detections made in each
individual spectrum or channel (see §3.5 for details on this process). This is recorded
in the file denoted by the parameter LogFile. This file does not include the columns
Name, RA, DEC, w RA, w DEC, VEL, w VEL. This file is designed primarily for diagnostic
purposes: e.g. to see if a given set of pixels is detected in, say, one channel image, but does
not survive the merging process. The list of pixels (and their fluxes) in the final detection
list are also printed to this file, again for diagnostic purposes. This feature can be turned
off by setting flagLog = false. (This may be a good idea if you are not interested in its
contents, as it can be a large file.)

As well as the output data file, a postscript file is created that shows the spectrum for
each detection, together with a small cutout image (0th moment) and basic information
about the detection (note that any flags are printed after the name of the detection, in the
format [E]). If the cube was reconstructed, the spectrum from the reconstruction is shown
in red, over the top of the original spectrum. The spectrum that is plotted is governed by
the spectralMethod parameter. It can be either peak, where the spectrum is from the
spatial pixel containing the detection’s peak flux; or sum, where the spectrum is summed
over all spatial pixels, and then corrected for the beam size.

The spectral extent of the detection is indicated with blue lines, and a zoom is shown in
a separate window. The cutout image can optionally include a border around the spatial
pixels that are in the detection (turned on and off by the parameter drawBorders). It also
includes a scale bar in the bottom left corner to indicate size – it is 15 arcmin long (note
that due to projection effects it may be a slightly different physical length from object to
object). An example detection can be seen below in Fig. 1.

3 Aladin can be found on the web at http://aladin.u-strasbg.fr/

http://aladin.u-strasbg.fr/

4 OUTPUTS 13

Figure 2: An example of the moment map created by Duchamp. The full extent of the cube is covered,
and the 0th moment of each object is shown (integrated individually over all the detected channels).

Finally, a couple of images are optionally produced: a 0th moment map of the cube,
combining just the detected channels in each object, showing the integrated flux in grey-
scale; and a “detection image”, a grey-scale image where the pixel values are the number
of channels that spatial pixel is detected in. In both cases, if drawBorders = true, a
border is drawn around the spatial extent of each detection. An example moment map is
shown in Fig. 2. The production or otherwise of these images is governed by the flagMaps
parameter.

The purpose of these images are to provide a visual guide to where the detections have
been made, and, particularly in the case of the moment map, to provide an indication of
the strength of the source. In both cases, the detections are numbered (in the same way
as the output list), and the spatial borders are marked out as for the cutout images in
the spectra file. Both these images are saved as postscript files (given by the parameters
momentMap and detectionMap respectively), with the latter also displayed in a pgplot
window (regardless of the state of flagMaps).

5 NOTES AND HINTS ON THE USE OF DUCHAMP 14

5 Notes and hints on the use of Duchamp

In using Duchamp, the user has to make a number of decisions about the way the program
runs. This section is designed to give the user some idea about what to choose.

The main choice is whether or not to use the wavelet reconstruction. The main benefits
of this are the marked reduction in the noise level, leading to regularly-shaped detections,
and good reliability for faint sources. The main drawback with its use is the long execution
time: to reconstruct a 170× 160× 1024 (hipass) cube often requires three iterations and
takes about 20-25 minutes. The searching part of the procedure is much quicker (although
see the note on merging, below), so if one uses the FDR method on the un-reconstructed
cube, the execution time is only a couple of minutes. Alternatively, using the ability to
read in previously-saved reconstructed arrays makes running the reconstruction more than
once a more feasible prospect.

If one chooses the reconstruction method, a further decision is required on the signal-
to-noise cutoff used in determining acceptable wavelet coefficients. A larger value will
remove more noise from the cube, at the expense of losing fainter sources, while a smaller
value will include more noise, which may produce spurious detections, but will be more
sensitive to faint sources. Values of less than about 3σ tend to not reduce the noise a great
deal and can lead to many spurious sources (although this will depend on the nature of
the cube).

The FDR method certainly produces more reliable results than a simple sigma-clipping
(i.e. thresholding at some number of σ above the mean), particularly if no reconstruction
is done. However, at this point it does not seem to be giving the sensitivity expected for
the supplied value of alpha (i.e. it is not finding as many sources as expected). Work is
being done to assess this, and to judge whether there is a real problem (such as with the
determination of the statistics), or simply a result of working in 3 dimensions as opposed
to 2.

A further point to bear in mind is that the shape of the detections in a cube that has
been reconstructed will be much more regular and smooth – the ragged edges that objects
in the raw cube possess are smoothed by the removal of most of the noise.

Finally, as Duchamp is still undergoing development, there are some elements that are
not fully developed. In particular, it is not as clever as I would like at avoiding interference.
The ability to place requirements on the minimum number of channels and pixels partially
circumvents this problem, but work is being done to make Duchamp smarter at rejecting
signals that are clearly (to a human eye at least) interference. See the following section
for further improvements that are planned.

6 Future Developments

This is both a list of planned improvements and a wish-list of features that would be nice
to include (but are not planned in the immediate future). Let me know if there are items
not on this list, or items on the list you would like prioritised.

• More varied output formats. Planned.

• Better determination of the noise characteristics of spectral-line cubes, including
understanding how the noise is generated and developing a model for it. Planned.

REFERENCES 15

• Include more source analysis. Examples could be: shape information; measurements
of HI mass; better measurements of velocity width and profile... Some planned.

• Provide some indication of the significance of the detection (i.e. some S/N-like value).
Planned.

• Improved ability to reject interference, possibly on the spectral shape of features.
Planned.

• Ability to separate (de-blend) distinct sources that have been merged. Planned.

• Link to lists of possible counterparts (e.g. via NED/SIMBAD/other VO tools?).
Wishlist.

• At this point, the “Milky Way” channels are discarded and set to zero. It may be that
users would like to have those put back in the final cube after the source detection
is done, so at some point this option may be added. Wishlist – if needed.

References

Calabretta M., Greisen E., 2002, A&A, 395, 1077

Greisen E., Calabretta M., 2002, A&A, 395, 1061

Hanisch R., Farris A., Greisen E., Pence W., Schlesinger B., Teuben P., Thompson R.,
Warnock A., 2001, A&A, 376, 359

Hopkins A., Miller C., Connolly A., Genovese C., Nichol R., Wasserman L., 2002, AJ, 123,
1086

Lutz R., 1980, The Computer Journal, 23, 262

Meyer M., et al., 2004, MNRAS, 350, 1195

Miller C., Genovese C., Nichol R., Wasserman L., Connolly A., Reichart D., Hopkins A.,
Schneider J., Moore A., 2001, AJ, 122, 3492

Minchin R., 1999, PASA, 16, 12

Starck J.-L., Murtagh F., 2002, “Astronomical Image and Data Analysis”. Springer

A AVAILABLE PARAMETERS 16

A Available parameters

The full list of parameters that can be listed in the input file are given here. If not listed,
they take the default value given in parentheses. Since the order of the parameters in the
input file does not matter, they are grouped here in logical sections.

Input-output related

ImageFile (no default assumed): The filename of the data cube to be analysed.

flagSubsection [false]: A flag to indicate whether one wants a subsection of the
requested image.

Subsection [[*,*,*]]: The requested subsection, which should be specified in the
format [x1:x2,y1:y2,z1:z2], where the limits are inclusive. If the
full range of a dimension is required, use a *, e.g. if you want the full
spectral range of a subsection of the image, use [30:140,30:140,*].

flagReconExists [false]: A flag to indicate whether the reconstructed array has been
saved by a previous run of Duchamp. If set true, the reconstructed
array will be read from the file given by reconFile, rather than cal-
culated directly.

reconFile (no default assumed): The FITS file that contains the reconstructed ar-
ray. If flagReconExists is true and this parameter is not defined, the
default file searched will be determined by the à trous parameters (see
§3.3).

OutFile [duchamp-Results.txt]: The file containing the final list of detections. This
also records the list of input parameters.

SpectraFile [duchamp-Spectra.ps]: The postscript file containing the resulting inte-
grated spectra and images of the detections.

flagLog [true]: A flag to indicate whether intermediate detections should be logged.

LogFile [duchamp-Logfile.txt]: The file in which intermediate detections are logged.
These are detections that have not been merged. This is primarily for
use in debugging and diagnostic purposes – normal use of the program
will probably not require this.

flagOutputRecon [false]: A flag to say whether or not to save the reconstructed
cube as a FITS file. The filename will be derived from the ImageFile –
the reconstruction of image.fits will be saved as image.RECON?.fits,
where ? stands for the value of snrRecon (see below).

flagOutputResid [false]: As for flagOutputRecon, but for the residual array – the
difference between the original cube and the reconstructed cube. The
filename will be image.RESID?.fits.

flagVOT [false]: A flag to say whether to create a VOTable file corresponding to
the information in outfile. This will be an XML file in the Virtual
Observatory VOTable format.

votFile [duchamp-Results.xml]: The VOTable file with the list of final detections.
Some input parameters are also recorded.

A AVAILABLE PARAMETERS 17

flagKarma [false]: A flag to say whether to create a Karma annotation file cor-
responding to the information in outfile. This can be used as an
overlay for the Karma programs such as kvis.

karmaFile [duchamp-Results.ann]: The Karma annotation file showing the list of
final detections.

flagMaps [true]: A flag to say whether to save postscript files showing the 0th moment
map of the whole cube (parameter momentMap) and the detection image
(detectionMap).

momentMap [duchamp-MomentMap.ps]: A postscript file containing a map of the 0th
moment of the detected sources, as well as pixel and WCS coordinates.

detectionMap [duchamp-DetectionMap.ps]: A postscript file showing each of the de-
tected objects, coloured in greyscale by the number of channels they
span. Also shows pixel and WCS coordinates.

Modifying the cube

flagBlankPix [true]: A flag to say whether to remove BLANK pixels from the analysis
– these are pixels set to some particular value because they fall outside
the imaged area.

blankPixValue [-8.00061]: The value of the BLANK pixels, if this information is
not contained in the FITS header (the usual procedure is to obtain
this value from the header information – in which case the value set
by this parameter is ignored).

flagMW [false]: A flag to say whether to remove channels contaminated by Milky
Way (or other) emission – the flux in these channels is currently just
set to 0.

maxMW [112]: The maximum channel for the Milky Way emission.

minMW [75]: The minimum channel for the Milky Way emission. Note that the
channels specified by maxMW and minMW are assumed to be Milky Way
channels (i.e. the range is inclusive).

flagBaseline [false]: A flag to say whether to remove the baseline from each spectrum
in the cube for the purposes of reconstruction and detection.

Detection related

General detection

flagNegative [false]: A flag to indicate that the features being searched for are neg-
ative. The cube will be inverted prior to searching.

snrCut [3.]: The cut-off value for thresholding, in terms of number of σ above the
mean.

flagGrowth [false]: A flag indicating whether or not to grow the detected objects to
a smaller threshold.

growthCut [2.]: The smaller threshold using in growing detections. In units of σ
above the mean.

A AVAILABLE PARAMETERS 18

à trous reconstruction

flagATrous [true]: A flag indicating whether or not to reconstruct the cube using the
à trous wavelet reconstruction. Currently does this in 3-dimensions.
See §3.3 for details.

scaleMin [1]: The minimum wavelet scale to be used in the reconstruction. A value
of 1 means “use all scales”.

snrRecon [4]: The thresholding cutoff used in the reconstruction – only wavelet co-
efficients this many σ above the mean (or greater) are included in the
reconstruction.

filterCode [2]: The code number of the filter to use in the reconstruction. The options
are:

• 1: B3-spline filter: coefficients = (1
16

, 1
4
, 3

8
, 1

4
, 1

16
)

• 2: Triangle filter: coefficients = (1
4
, 1

2
, 1

4
)

• 3: Haar wavelet: coefficients = (0, 1
2
, 1

2
)

FDR method

flagFDR [false]: A flag indicating whether or not to use the False Discovery Rate
method in thresholding the pixels.

alphaFDR [0.01]: The α parameter used in the FDR analysis. The average number
of false detections, as a fraction of the total number, will be less than
α (see §3.5).

Merging detections

minPix [2]: The minimum number of spatial pixels for a single detection to be
counted.

minChannels [3]: The minimum number of consecutive channels that must be present
in the detection for it to be accepted by the Merging algorithm.

flagAdjacent [true]: A flag indicating whether to use the “adjacent pixel” criterion to
decide whether to merge objects. If not, the next two parameters are
used to determine whether objects are within the necessary thresholds.

threshSpatial [3.]: The maximum allowed minimum spatial separation (in pixels)
between two detections for them to be merged into one. Only used if
flagAdjacent = false.

threshVelocity [7.]: The maximum allowed minimum channel separation between
two detections for them to be merged into one.

Other parameters

spectralMethod [peak]: This indicates which method is used to plot the output spec-
tra: peak means plot the spectrum containing the detection’s peak
pixel; sum means sum the spectra of each detected spatial pixel, and
correct for the beam size. Any other choice defaults to peak.

A AVAILABLE PARAMETERS 19

drawBorders [true]: A flag indicating whether borders are to be drawn around the
detected objects in the moment maps included in the output (see for
example Fig. 1).

verbose [true]: A flag indicating whether to print the progress of computationally-
intensive algorithms (such as the searching and merging) to screen.

B EXAMPLE PARAMETER FILES 20

B Example parameter files

This is what a typical parameter file would look like.

imageFile /DATA/SITAR_1/whi550/cubes/H201_abcde_luther_chop.fits

logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

flagSubsection 0

flagOutputRecon 0

flagOutputResid 0

flagBlankPix 1

flagMW 1

minMW 75

maxMW 112

minPix 3

flagGrowth 1

growthCut 1.5

flagATrous 0

scaleMin 1

snrRecon 4

flagFDR 1

alphaFDR 0.1

numPixPSF 20

snrCut 3

threshSpatial 3

threshVelocity 7

Note that it is not necessary to include all these parameters in the file, only those that
need to be changed from the defaults (as listed in Appendix A), which in this case would
be very few. A minimal parameter file might look like:

imageFile /DATA/SITAR_1/whi550/cubes/H201_abcde_luther_chop.fits

flagLog 0

snrRecon 3

snrCut 2.5

minChannels 4

This will reconstruct the cube with a lower SNR value than the default, select objects at
a lower threshold, with a looser minimum channel requirement, and not keep a log of the
intermediate detections.

The following page demonstrates how the parameters are presented to the user, both
on the screen at execution time and in the output and log files:

B EXAMPLE PARAMETER FILES 21

P
re

se
n
ta

ti
on

of
p
ar

am
et

er
s

in
ou

tp
u
t

an
d

lo
g

fi
le

s:

-
-
-
-

P
a
r
a
m
e
t
e
r
s

-
-
-
-

I
m
a
g
e

t
o

b
e

a
n
a
l
y
s
e
d

=
/
D
A
T
A
/
S
I
T
A
R
_
1
/
w
h
i
5
5
0
/
c
u
b
e
s
/
H
2
0
1
_
a
b
c
d
e
_
l
u
t
h
e
r
_
c
h
o
p
.
f
i
t
s

I
n
t
e
r
m
e
d
i
a
t
e

L
o
g
f
i
l
e

=
d
u
c
h
a
m
p
-
L
o
g
f
i
l
e
.
t
x
t

F
i
n
a
l

R
e
s
u
l
t
s

f
i
l
e

=
d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
t
x
t

S
p
e
c
t
r
u
m

f
i
l
e

=
d
u
c
h
a
m
p
-
S
p
e
c
t
r
a
.
p
s

V
O
T
a
b
l
e

f
i
l
e

=
d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
x
m
l

0
t
h

M
o
m
e
n
t

M
a
p

=
d
u
c
h
a
m
p
-
M
o
m
e
n
t
M
a
p
.
p
s

D
e
t
e
c
t
i
o
n

M
a
p

=
d
u
c
h
a
m
p
-
D
e
t
e
c
t
i
o
n
M
a
p
.
p
s

S
a
v
i
n
g

r
e
c
o
n
s
t
r
u
c
t
e
d

c
u
b
e
?

=
f
a
l
s
e

S
a
v
i
n
g

r
e
s
i
d
u
a
l
s

f
r
o
m

r
e
c
o
n
s
t
r
u
c
t
i
o
n
?

=
f
a
l
s
e

-
-
-
-
-
-

S
e
a
r
c
h
i
n
g

f
o
r

N
e
g
a
t
i
v
e

f
e
a
t
u
r
e
s
?

=
f
a
l
s
e

F
i
x
i
n
g

B
l
a
n
k

P
i
x
e
l
s
?

=
t
r
u
e

B
l
a
n
k

P
i
x
e
l

V
a
l
u
e

=
-
8
.
0
0
0
6
1

R
e
m
o
v
i
n
g

M
i
l
k
y

W
a
y

c
h
a
n
n
e
l
s
?

=
t
r
u
e

M
i
l
k
y

W
a
y

C
h
a
n
n
e
l
s

=
7
5
-
1
1
2

B
e
a
m

S
i
z
e

(
p
i
x
e
l
s
)

=
1
0
.
1
7
8
8

R
e
m
o
v
i
n
g

b
a
s
e
l
i
n
e
s

b
e
f
o
r
e

s
e
a
r
c
h
?

=
f
a
l
s
e

M
i
n
i
m
u
m

#
P
i
x
e
l
s

i
n

a
d
e
t
e
c
t
i
o
n

=
2

G
r
o
w
i
n
g

o
b
j
e
c
t
s

a
f
t
e
r

d
e
t
e
c
t
i
o
n
?

=
f
a
l
s
e

U
s
i
n
g

A
T
r
o
u
s

r
e
c
o
n
s
t
r
u
c
t
i
o
n
?

=
t
r
u
e

M
i
n
i
m
u
m

s
c
a
l
e

i
n

r
e
c
o
n
s
t
r
u
c
t
i
o
n

=
1

S
N
R

T
h
r
e
s
h
o
l
d

w
i
t
h
i
n

r
e
c
o
n
s
t
r
u
c
t
i
o
n

=
4

F
i
l
t
e
r

b
e
i
n
g

u
s
e
d

f
o
r

r
e
c
o
n
s
t
r
u
c
t
i
o
n

=
B
3

s
p
l
i
n
e

f
u
n
c
t
i
o
n

U
s
i
n
g

F
D
R

a
n
a
l
y
s
i
s
?

=
f
a
l
s
e

S
N
R

T
h
r
e
s
h
o
l
d

=
2
.
5

U
s
i
n
g

A
d
j
a
c
e
n
t
-
p
i
x
e
l

c
r
i
t
e
r
i
o
n
?

=
t
r
u
e

M
a
x
.

v
e
l
o
c
i
t
y

s
e
p
a
r
a
t
i
o
n

f
o
r

m
e
r
g
i
n
g

=
7

M
i
n
.

#
c
h
a
n
n
e
l
s

f
o
r

m
e
r
g
i
n
g

=
4

M
e
t
h
o
d

o
f

s
p
e
c
t
r
a
l

p
l
o
t
t
i
n
g

=
p
e
a
k

C EXAMPLE OUTPUT FILE 22

C
E
x
a
m

p
le

o
u
tp

u
t

fi
le

T
h
is

th
e

ty
p
ic

al
co

n
te

n
t

of
an

ou
tp

u
t

fi
le

,
af

te
r

ru
n
n
in

g
D

u
ch

am
p

w
it

h
th

e
p
ar

am
et

er
s

il
lu

st
ra

te
d

on
th

e
p
re

v
io

u
s

p
ag

e.

R
e
s
u
l
t
s

o
f

t
h
e

D
u
c
h
a
m
p

s
o
u
r
c
e

f
i
n
d
e
r
:

T
u
e

M
a
y

2
3

1
4
:
5
1
:
3
8

2
0
0
6

-
-
-
-

P
a
r
a
m
e
t
e
r
s

-
-
-
-

(
.
.
.

o
m
i
t
t
e
d

f
o
r

c
l
a
r
i
t
y

-
-

s
e
e

p
r
e
v
i
o
u
s

p
a
g
e

f
o
r

e
x
a
m
p
l
e
s
.
.
.
)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
o
t
a
l

n
u
m
b
e
r

o
f

d
e
t
e
c
t
i
o
n
s

=
2
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

O
b
j
#

N
a
m
e

X
Y

Z
R
A

D
E
C

w
_
R
A

w
_
D
E
C

V
E
L

w
_
V
E
L

F
_
t
o
t

F
_
p
e
a
k

X
1

X
2

Y
1

Y
2

Z
1

Z
2

N
p
i
x

F
l
a
g

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
J
0
6
0
9
-
2
1
5
6

5
9
.
4

1
4
0
.
6

1
1
4
.
7

0
6
:
0
9
:
2
1
.
0
3

-
2
1
:
5
6
:
5
1
.
0
8

4
8
.
4
8

3
9
.
4
5

2
2
6
.
2
5
3

6
5
.
9
5
7

1
7
.
5
7
2

0
.
2
1
3

5
5

6
6

1
3
6

1
4
5

1
1
3

1
1
8

1
8
5

2
J
0
6
0
7
-
2
6
0
1

6
5
.
2

7
9
.
6

1
1
6
.
2

0
6
:
0
7
:
5
2
.
2
1

-
2
6
:
0
1
:
0
9
.
3
4

4
4
.
4
4

3
9
.
5
0

2
4
6
.
3
1
0

3
9
.
5
7
4

4
.
1
4
4

0
.
1
0
0

6
0

7
0

7
6

8
5

1
1
5

1
1
8

5
0

3
J
0
6
0
6
-
2
7
2
0

7
0
.
8

5
9
.
8

1
2
1
.
4

0
6
:
0
6
:
1
4
.
9
0

-
2
7
:
2
0
:
4
5
.
2
4

5
2
.
4
5

4
7
.
5
9

3
1
5
.
4
0
4

3
9
.
5
7
4

1
7
.
0
6
6

0
.
1
5
0

6
5

7
7

5
3

6
4

1
2
0

1
2
3

2
1
3

4
J
0
6
1
1
-
2
1
3
8

5
2
.
5

1
4
5
.
1

1
6
2
.
5

0
6
:
1
1
:
1
8
.
8
5

-
2
1
:
3
8
:
0
3
.
7
1

3
2
.
3
9

2
3
.
4
9

8
5
6
.
9
1
9

1
1
8
.
7
2
2

4
4
.
3
9
4

0
.
4
1
0

4
9

5
6

1
4
2

1
4
7

1
5
8

1
6
7

3
0
3

E

5
J
0
6
0
0
-
2
8
5
9

8
9
.
7

3
5
.
3

2
0
2
.
4

0
6
:
0
0
:
3
3
.
1
3

-
2
8
:
5
9
:
0
1
.
5
9

2
3
.
9
2

2
8
.
1
0

1
3
8
3
.
4
7
6

1
8
4
.
6
7
8

2
6
.
5
7
3

0
.
1
7
3

8
7

9
2

3
2

3
8

1
9
5

2
0
9

3
1
9

6
J
0
5
5
8
-
2
6
3
9

9
5
.
5

7
0
.
2

2
2
2
.
6

0
5
:
5
8
:
5
2
.
7
9

-
2
6
:
3
9
:
0
4
.
5
6

1
5
.
9
3

1
2
.
1
0

1
6
5
0
.
5
0
8

1
0
5
.
5
3
1

1
.
9
2
5

0
.
0
6
3

9
4

9
7

6
9

7
1

2
1
9

2
2
7

3
5

7
J
0
6
1
7
-
2
7
2
4

3
4
.
8

5
8
.
3

2
2
7
.
5

0
6
:
1
7
:
0
5
.
8
4

-
2
7
:
2
4
:
0
0
.
9
3

2
0
.
7
5

2
3
.
4
2

1
7
1
4
.
9
9
3

3
0
3
.
4
0
0

1
1
.
4
1
4

0
.
0
9
3

3
3

3
7

5
6

6
1

2
1
5

2
3
8

1
7
6

8
J
0
6
0
9
-
2
1
4
1

6
0
.
3

1
4
4
.
4

2
2
9
.
6

0
6
:
0
9
:
0
5
.
7
4

-
2
1
:
4
1
:
3
8
.
7
5

1
6
.
1
4

1
1
.
8
2

1
7
4
2
.
4
7
0

1
0
5
.
5
3
1

1
.
4
7
6

0
.
0
6
8

5
9

6
2

1
4
3

1
4
5

2
2
5

2
3
3

2
5

9
J
0
5
5
8
-
2
5
2
5

9
5
.
7

8
8
.
6

2
3
1
.
1

0
5
:
5
8
:
5
1
.
1
9

-
2
5
:
2
5
:
3
3
.
1
2

2
7
.
8
7

2
4
.
1
6

1
7
6
2
.
6
3
2

2
5
0
.
6
3
5

1
6
.
9
3
0

0
.
1
1
5

9
2

9
8

8
6

9
1

2
2
0

2
3
9

2
5
7

1
0

J
0
6
0
0
-
2
1
4
1

8
8
.
9

1
4
4
.
4

2
3
2
.
3

0
6
:
0
0
:
5
2
.
9
4

-
2
1
:
4
1
:
5
7
.
4
8

3
1
.
9
5

2
4
.
1
5

1
7
7
7
.
8
4
8

2
2
4
.
2
5
2

3
4
.
0
3
0

0
.
1
6
6

8
6

9
3

1
4
2

1
4
7

2
2
2

2
3
9

4
1
5

E

1
1

J
0
6
1
5
-
2
6
3
4

4
0
.
0

7
0
.
8

2
3
2
.
6

0
6
:
1
5
:
2
5
.
9
3

-
2
6
:
3
4
:
3
5
.
7
3

1
6
.
5
4

1
9
.
5
8

1
7
8
2
.
2
2
4

5
2
.
7
6
5

2
.
7
5
7

0
.
0
6
8

3
8

4
1

6
9

7
3

2
3
1

2
3
5

4
4

1
2

J
0
6
0
4
-
2
6
0
6

7
5
.
9

7
8
.
4

2
3
3
.
1

0
6
:
0
4
:
4
2
.
2
4

-
2
6
:
0
6
:
2
2
.
9
8

2
8
.
1
2

2
3
.
8
6

1
7
8
8
.
2
5
8

2
2
4
.
2
5
2

2
7
.
0
5
9

0
.
1
5
5

7
3

7
9

7
6

8
1

2
2
5

2
4
2

3
5
2

1
3

J
0
6
0
1
-
2
3
4
0

8
8
.
0

1
1
4
.
9

2
3
5
.
7

0
6
:
0
1
:
0
8
.
2
7

-
2
3
:
4
0
:
1
7
.
6
6

3
5
.
9
4

3
2
.
0
9

1
8
2
2
.
9
4
1

2
6
3
.
8
2
6

8
5
.
1
3
2

0
.
2
9
7

8
4

9
2

1
1
2

1
1
9

2
2
6

2
4
6

7
2
4

1
4

J
0
6
1
5
-
2
2
3
4

3
8
.
2

1
3
0
.
6

2
5
3
.
6

0
6
:
1
5
:
3
0
.
5
7

-
2
2
:
3
4
:
5
1
.
6
9

1
2
.
3
8

1
5
.
7
1

2
0
5
9
.
7
2
1

1
1
8
.
7
2
2

2
.
3
1
7

0
.
0
7
0

3
7

3
9

1
2
9

1
3
2

2
4
8

2
5
7

4
0

1
5

J
0
6
1
7
-
2
3
0
5

3
1
.
4

1
2
2
.
8

2
5
8
.
0

0
6
:
1
7
:
3
3
.
1
8

-
2
3
:
0
5
:
3
6
.
2
4

1
6
.
4
5

1
5
.
5
4

2
1
1
7
.
1
0
4

3
9
.
5
7
4

1
.
4
2
4

0
.
0
6
2

3
0

3
3

1
2
1

1
2
4

2
5
6

2
5
9

2
3

1
6

J
0
6
1
2
-
2
1
4
9

4
9
.
5

1
4
2
.
3

2
7
1
.
1

0
6
:
1
2
:
1
1
.
7
8

-
2
1
:
4
9
:
2
0
.
2
2

2
4
.
3
5

1
9
.
5
8

2
2
9
0
.
1
6
7

3
9
5
.
7
4
0

2
0
.
7
1
2

0
.
1
0
1

4
7

5
2

1
4
0

1
4
4

2
5
7

2
8
7

3
1
8

1
7

J
0
6
1
6
-
2
1
3
3

3
5
.
2

1
4
5
.
9

3
0
0
.
0

0
6
:
1
6
:
1
6
.
4
4

-
2
1
:
3
3
:
3
6
.
9
6

2
0
.
2
1

7
.
4
7

2
6
7
1
.
7
9
9

2
2
4
.
2
5
2

3
.
8
5
1

0
.
1
2
7

3
3

3
7

1
4
5

1
4
6

2
9
4

3
1
1

4
0

E

1
8

J
0
5
4
4
-
2
7
3
6

1
4
4
.
0

5
4
.
9

3
2
5
.
4

0
5
:
4
4
:
1
3
.
6
2

-
2
7
:
3
6
:
3
4
.
2
4

3
.
5
7

1
2
.
1
3

3
0
0
6
.
5
7
5

3
9
.
5
7
4

0
.
4
3
6

0
.
0
5
7

1
4
4

1
4
4

5
4

5
6

3
2
4

3
2
7

7
E

1
9

J
0
5
5
5
-
2
9
5
6

1
0
7
.
2

2
0
.
7

3
6
7
.
5

0
5
:
5
5
:
1
0
.
3
7

-
2
9
:
5
6
:
4
3
.
1
3

1
9
.
6
5

2
4
.
3
1

3
5
6
1
.
0
0
4

3
9
.
5
7
4

6
.
4
8
2

0
.
1
6
9

1
0
5

1
0
9

1
8

2
3

3
6
6

3
6
9

7
2

2
0

J
0
5
5
8
-
2
3
2
1

9
6
.
0

1
1
9
.
6

5
3
2
.
1

0
5
:
5
8
:
4
7
.
6
4

-
2
3
:
2
1
:
1
7
.
3
8

1
1
.
9
1

1
6
.
0
9

5
7
3
3
.
4
7
9

5
2
.
7
6
5

1
.
2
8
7

0
.
0
5
1

9
5

9
7

1
1
8

1
2
1

5
3
0

5
3
4

2
7

2
1

J
0
6
1
6
-
2
6
4
9

3
7
.
9

6
7
.
0

5
4
7
.
0

0
6
:
1
6
:
0
4
.
6
2

-
2
6
:
4
9
:
1
8
.
3
3

1
2
.
3
5

1
1
.
6
7

5
9
2
9
.
9
2
3

3
9
.
5
7
4

1
.
6
3
7

0
.
0
6
4

3
7

3
9

6
6

6
8

5
4
6

5
4
9

2
5

2
2

J
0
6
1
9
-
2
2
5
2

2
5
.
1

1
2
5
.
9

7
2
4
.
2

0
6
:
1
9
:
2
1
.
5
7

-
2
2
:
5
2
:
1
3
.
9
8

1
2
.
3
8

1
1
.
6
1

8
2
6
7
.
3
0
4

3
9
.
5
7
3

0
.
6
9
8

0
.
0
5
9

2
4

2
6

1
2
5

1
2
7

7
2
3

7
2
6

1
3

E

2
3

J
0
5
5
2
-
2
9
1
6

1
1
6
.
9

3
0
.
5

7
2
7
.
0

0
5
:
5
2
:
1
5
.
0
5

-
2
9
:
1
6
:
4
9
.
6
5

1
1
.
5
9

2
0
.
2
5

8
3
0
4
.
0
3
3

3
0
3
.
4
0
0

3
5
.
8
3
4

0
.
4
7
9

1
1
6

1
1
8

2
8

3
2

7
1
6

7
3
9

1
3
2

N
ot

e
th

at
th

e
w

id
th

of
th

e
ta

b
le

ca
n

m
ak

e
it

h
ar

d
to

re
ad

.
A

go
o
d

tr
ic

k
fo

r
th

os
e

u
si

n
g

U
N

IX
/L

in
u
x

is
to

m
ak

e
u
se

of
th

e
a
2
p
s

co
m

m
an

d
.

T
h
e

fo
ll
ow

in
g

w
or

k
s

w
el

l,
p
ro

d
u
ci

n
g

a
p
os

ts
cr

ip
t

fi
le

r
e
s
u
l
t
s
.
p
s
:

a
2
p
s

-
1

-
r

-
f
8

-
o

d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
p
s

d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
t
x
t

D EXAMPLE VOTABLE OUTPUT 23

D
E
x
a
m

p
le

V
O

T
a
b
le

o
u
tp

u
t

T
h
is

is
p
ar

t
of

th
e

V
O

T
ab

le
,
in

X
M

L
fo

rm
at

,
co

rr
es

p
on

d
in

g
to

th
e

ou
tp

u
t

fi
le

in
A

p
p
en

d
ix

C
(t

h
e

in
d
en

ta
ti

on
h
as

b
ee

n
re

m
ov

ed
to

m
ak

e
it

fi
t

on
th

e
p
ag

e!
).

<
?
x
m
l

v
e
r
s
i
o
n
=
"
1
.
0
"
?
>

<
V
O
T
A
B
L
E

v
e
r
s
i
o
n
=
"
1
.
1
"

x
m
l
n
s
:
x
s
i
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
-
i
n
s
t
a
n
c
e
"

x
s
i
:
n
o
N
a
m
e
s
p
a
c
e
S
c
h
e
m
a
L
o
c
a
t
i
o
n
=
"
h
t
t
p
:
/
/
w
w
w
.
i
v
o
a
.
n
e
t
/
x
m
l
/
V
O
T
a
b
l
e
/
V
O
T
a
b
l
e
/
v
1
.
1
"
>

<
C
O
O
S
Y
S

I
D
=
"
J
2
0
0
0
"

e
q
u
i
n
o
x
=
"
J
2
0
0
0
.
"

e
p
o
c
h
=
"
J
2
0
0
0
.
"

s
y
s
t
e
m
=
"
e
q
_
F
K
5
"
/
>

<
R
E
S
O
U
R
C
E

n
a
m
e
=
"
D
u
c
h
a
m
p

O
u
t
p
u
t
"
>

<
T
A
B
L
E

n
a
m
e
=
"
D
e
t
e
c
t
i
o
n
s
"
>

<
D
E
S
C
R
I
P
T
I
O
N
>
D
e
t
e
c
t
e
d

s
o
u
r
c
e
s

a
n
d

p
a
r
a
m
e
t
e
r
s

f
r
o
m

r
u
n
n
i
n
g

t
h
e

D
u
c
h
a
m
p

s
o
u
r
c
e

f
i
n
d
e
r
.
<
/
D
E
S
C
R
I
P
T
I
O
N
>

<
P
A
R
A
M

n
a
m
e
=
"
F
I
T
S

f
i
l
e
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

u
c
d
=
"
m
e
t
a
.
f
i
l
e
;
m
e
t
a
.
f
i
t
s
"

v
a
l
u
e
=
"
/
D
A
T
A
/
S
I
T
A
R
_
1
/
w
h
i
5
5
0
/
c
u
b
e
s
/
H
2
0
1
_
a
b
c
d
e
_
l
u
t
h
e
r
_
c
h
o
p
.
f
i
t
s
"
/
>

<
P
A
R
A
M

n
a
m
e
=
"
T
h
r
e
s
h
o
l
d
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

u
c
d
=
"
s
t
a
t
.
s
n
r
"

v
a
l
u
e
=
"
2
.
5
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

n
o
t
e
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

u
c
d
=
"
m
e
t
a
.
n
o
t
e
"

v
a
l
u
e
=
"
T
h
e

a
t
r
o
u
s

r
e
c
o
n
s
t
r
u
c
t
i
o
n

m
e
t
h
o
d

w
a
s

u
s
e
d
,

w
i
t
h

t
h
e

f
o
l
l
o
w
i
n
g

p
a
r
a
m
e
t
e
r
s
.
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

C
u
t
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

u
c
d
=
"
s
t
a
t
.
s
n
r
"

v
a
l
u
e
=
"
4
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

M
i
n
i
m
u
m

S
c
a
l
e
"

d
a
t
a
t
y
p
e
=
"
i
n
t
"

u
c
d
=
"
s
t
a
t
.
p
a
r
a
m
"

v
a
l
u
e
=
"
1
"
>

<
P
A
R
A
M

n
a
m
e
=
"
A
T
r
o
u
s

F
i
l
t
e
r
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

u
c
d
=
"
m
e
t
a
.
c
o
d
e
;
s
t
a
t
"

v
a
l
u
e
=
"
B
3

s
p
l
i
n
e

f
u
n
c
t
i
o
n
"
>

<
F
I
E
L
D

n
a
m
e
=
"
I
D
"

I
D
=
"
c
o
l
1
"

u
c
d
=
"
m
e
t
a
.
i
d
"

d
a
t
a
t
y
p
e
=
"
i
n
t
"

w
i
d
t
h
=
"
4
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
N
a
m
e
"

I
D
=
"
c
o
l
2
"

u
c
d
=
"
m
e
t
a
.
i
d
;
m
e
t
a
.
m
a
i
n
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

a
r
r
a
y
s
i
z
e
=
"
1
4
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
R
A
"

I
D
=
"
c
o
l
3
"

u
c
d
=
"
p
o
s
.
e
q
.
r
a
;
m
e
t
a
.
m
a
i
n
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
1
0
"

p
r
e
c
i
s
i
o
n
=
"
6
"

u
n
i
t
=
"
d
e
g
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
D
e
c
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
o
s
.
e
q
.
d
e
c
;
m
e
t
a
.
m
a
i
n
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
1
0
"

p
r
e
c
i
s
i
o
n
=
"
6
"

u
n
i
t
=
"
d
e
g
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
R
A
"

I
D
=
"
c
o
l
3
"

u
c
d
=
"
p
h
y
s
.
a
n
g
S
i
z
e
;
p
o
s
.
e
q
.
r
a
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
7
"

p
r
e
c
i
s
i
o
n
=
"
2
"

u
n
i
t
=
"
a
r
c
m
i
n
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
D
e
c
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
h
y
s
.
a
n
g
S
i
z
e
;
p
o
s
.
e
q
.
d
e
c
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
7
"

p
r
e
c
i
s
i
o
n
=
"
2
"

u
n
i
t
=
"
a
r
c
m
i
n
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
V
e
l
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
h
y
s
.
v
e
l
o
c
;
s
r
c
.
d
o
p
p
l
e
r
V
e
l
o
c
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
9
"

p
r
e
c
i
s
i
o
n
=
"
3
"

u
n
i
t
=
"
k
m
/
s
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
V
e
l
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
h
y
s
.
v
e
l
o
c
;
s
r
c
.
d
o
p
p
l
e
r
V
e
l
o
c
;
s
p
e
c
t
.
l
i
n
e
.
w
i
d
t
h
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
8
"

p
r
e
c
i
s
i
o
n
=
"
3
"

u
n
i
t
=
"
k
m
/
s
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
I
n
t
e
g
r
a
t
e
d
_
F
l
u
x
"

I
D
=
"
c
o
l
4
"

u
c
d
=
"
p
h
y
s
.
f
l
u
x
;
s
p
e
c
t
.
l
i
n
e
.
i
n
t
e
n
s
i
t
y
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
1
0
"

p
r
e
c
i
s
i
o
n
=
"
3
"

u
n
i
t
=
"
k
m
/
s
"
/
>

<
D
A
T
A
>

<
T
A
B
L
E
D
A
T
A
>

<
T
R
>

<
T
D
>

1
<
/
T
D
>
<
T
D
>

J
0
6
0
9
-
2
2
0
0
<
/
T
D
>
<
T
D
>

9
2
.
4
1
0
4
1
6
<
/
T
D
>
<
T
D
>
-
2
2
.
0
1
3
3
9
0
<
/
T
D
>
<
T
D
>

4
8
.
5
0
<
/
T
D
>
<
T
D
>

3
9
.
4
2
<
/
T
D
>
<
T
D
>

2
1
3
.
0
6
1
<
/
T
D
>
<
T
D
>

6
5
.
9
5
7
<
/
T
D
>
<
T
D
>

1
7
.
5
7
2
<
/
T
D
>

<
/
T
R
>

<
T
R
>

<
T
D
>

2
<
/
T
D
>
<
T
D
>

J
0
6
0
8
-
2
6
0
5
<
/
T
D
>
<
T
D
>

9
2
.
0
4
2
6
3
3
<
/
T
D
>
<
T
D
>
-
2
6
.
0
8
5
1
5
7
<
/
T
D
>
<
T
D
>

4
4
.
4
7
<
/
T
D
>
<
T
D
>

3
9
.
4
7
<
/
T
D
>
<
T
D
>

2
3
3
.
1
1
9
<
/
T
D
>
<
T
D
>

3
9
.
5
7
4
<
/
T
D
>
<
T
D
>

4
.
1
4
4
<
/
T
D
>

<
/
T
R
>

<
T
R
>

<
T
D
>

3
<
/
T
D
>
<
T
D
>

J
0
6
0
6
-
2
7
2
4
<
/
T
D
>
<
T
D
>

9
1
.
6
3
7
8
4
0
<
/
T
D
>
<
T
D
>
-
2
7
.
4
1
2
0
2
2
<
/
T
D
>
<
T
D
>

5
2
.
4
8
<
/
T
D
>
<
T
D
>

4
7
.
5
7
<
/
T
D
>
<
T
D
>

3
0
2
.
2
1
3
<
/
T
D
>
<
T
D
>

3
9
.
5
7
4
<
/
T
D
>
<
T
D
>

1
7
.
0
6
6
<
/
T
D
>

<
/
T
R
>

(
.
.
.

t
a
b
l
e

t
r
u
n
c
a
t
e
d

f
o
r

c
l
a
r
i
t
y

.
.
.
)

<
/
T
A
B
L
E
D
A
T
A
>

<
/
D
A
T
A
>

<
/
T
A
B
L
E
>

<
/
R
E
S
O
U
R
C
E
>

<
/
V
O
T
A
B
L
E
>

E EXAMPLE KARMA ANNOTATION FILE OUTPUT 24

E Example Karma Annotation File output

This is the format of the Karma Annotation file, showing the locations of the detected
objects. This can be loaded by the plotting tools of the Karma package (for instance,
kvis) as an overlay on the FITS file.

Duchamp Source Finder results for

cube /DATA/SITAR_1/whi550/cubes/H201_abcde_luther_chop.fits

COLOR RED

COORD W

CIRCLE 92.3376 -21.9475 0.403992

TEXT 92.3376 -21.9475 1

CIRCLE 91.9676 -26.0193 0.37034

TEXT 91.9676 -26.0193 2

CIRCLE 91.5621 -27.3459 0.437109

TEXT 91.5621 -27.3459 3

CIRCLE 92.8285 -21.6344 0.269914

TEXT 92.8285 -21.6344 4

CIRCLE 90.1381 -28.9838 0.234179

TEXT 90.1381 -28.9838 5

CIRCLE 89.72 -26.6513 0.132743

TEXT 89.72 -26.6513 6

CIRCLE 94.2743 -27.4003 0.195175

TEXT 94.2743 -27.4003 7

CIRCLE 92.2739 -21.6941 0.134538

TEXT 92.2739 -21.6941 8

CIRCLE 89.7133 -25.4259 0.232252

TEXT 89.7133 -25.4259 9

CIRCLE 90.2206 -21.6993 0.266247

TEXT 90.2206 -21.6993 10

CIRCLE 93.8581 -26.5766 0.163153

TEXT 93.8581 -26.5766 11

CIRCLE 91.176 -26.1064 0.234356

TEXT 91.176 -26.1064 12

CIRCLE 90.2844 -23.6716 0.299509

TEXT 90.2844 -23.6716 13

CIRCLE 93.8774 -22.581 0.130925

TEXT 93.8774 -22.581 14

CIRCLE 94.3882 -23.0934 0.137108

TEXT 94.3882 -23.0934 15

CIRCLE 93.0491 -21.8223 0.202928

TEXT 93.0491 -21.8223 16

CIRCLE 94.0685 -21.5603 0.168456

TEXT 94.0685 -21.5603 17

CIRCLE 86.0568 -27.6095 0.101113

TEXT 86.0568 -27.6095 18

CIRCLE 88.7932 -29.9453 0.202624

TEXT 88.7932 -29.9453 19

F INSTALLING DUCHAMP (README FILE) 25

F Installing Duchamp (README file)

There is an executable (Duchamp) that has been compiled on a Debian

Linux kernel 2.6.8-2-686, with gcc version 3.3.5 (Debian 1:3.3.5-13)

If that is no good to you, you can compile it yourself using the

Makefile included in this directory (sorry for not having a configure

script or similar yet!).

Duchamp uses three main external libraries: pgplot, cfitsio and

wcslib. You will need to set the paths for the base directory and

three libraries, as they are currently configured for my use and will

not be of much use to you! These are:

BASE --> the current directory

PGDIR --> where the pgplot libraries (and header files) are located

CFITSIODIR --> where the header file fitsio.h is

CFITSIOLDIR --> where the cfitsio library is located (libcfitsio.a)

WCSDIR --> where the wcslib header files are

WCSLDIR --> where the wcslib library is located (libwcs.a)

If you do not have the libraries, they can be downloaded from the

following locations:

PGPlot -- http://www.astro.caltech.edu/~tjp/pgplot/

cfitsio -- http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

wcslib -- http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/index.html

Once you’ve set up the Makefile correctly, then simply typing

> make duchamp

will compile the program.

To run it, you need to use the syntax

> Duchamp -p parameterFile

where parameterFile is a file with the input parameters, including the

name of the cube you want to search.

There are two example input files included with the distribution. The

smaller one, InputExample, shows the typical parameters one might want

to set. The large one, InputComplete, lists all parameters that can be

entered, and a brief description of them. Refer to the documentation

for further details.

To get going quickly, just replace the "your-file-here" in

InputExample with your image name, and type

> Duchamp -p InputExample

and you’re off!

G ROBUST STATISTICS FOR A NORMAL DISTRIBUTION 26

G Robust statistics for a Normal distribution

The Normal, or Gaussian, distribution for mean µ and standard deviation σ can be written
as

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

When one has a purely Gaussian signal, it is straightforward to estimate σ by calcu-
lating the standard deviation (or rms) of the data. However, if there is a small amount
of signal present on top of Gaussian noise, and one wants to estimate the σ for the noise,
the presence of the large values from the signal can bias the estimator to higher values.

An alternative way is to use the median (m) and median absolute deviation from the
median (s) to estimate µ and σ. The median is the middle of the distribution, defined for
a continuous distribution by ∫ m

−∞
f(x)dx =

∫ ∞

m
f(x)dx.

From symmetry, we quickly see that for the continuous Normal distribution, m = µ. We
consider the case henceforth of µ = 0, without loss of generality.

To find s, we find the distribution of the absolute deviation from the median, and then
find the median of that distribution. This distribution is given by

g(x) = distribution of |x|
= f(x) + f(−x), x ≥ 0

=

√
2

πσ2
e−x2/2σ2

, x ≥ 0.

So, the median absolute deviation from the median, s, is given by∫ s

0
g(x)dx =

∫ ∞

s
g(x)dx.

Now,
∫∞
0 e−x2/2σ2

dx =
√

πσ2/2, and so
∫∞
s e−x2/2σ2

dx =
√

πσ2/2 −
∫ s
0 e−

x2

2σ2 dx. Hence, to

find s we simply solve the following equation (setting σ = 1 for simplicity – equivalent to
stating x and s in units of σ): ∫ s

0
e−x2/2dx−

√
π/8 = 0.

This is hard to solve analytically (no nice analytic solution exists for the finite integral that
I’m aware of), but straightforward to solve numerically, yielding the value of s = 0.6744888.
Thus, to estimate σ for a Normally distributed data set, one can calculate s, then divide
by 0.6744888 (or multiply by 1.4826042) to obtain the correct estimator.

Note that this is different to solutions quoted elsewhere, specifically in Meyer et al.
(2004), where the same robust estimator is used but with an incorrect conversion to

standard deviation – they assume σ = s
√

π/2. This, in fact, is the conversion used to
convert the mean absolute deviation from the mean to the standard deviation. This means
that the cube noise in the hipass catalogue (their parameter Rmscube) should be 18% larger
than quoted.

H HOW GAUSSIAN NOISE CHANGES WITH WAVELET SCALE. 27

H How Gaussian noise changes with wavelet scale.

The key element in the wavelet reconstruction of an array is the thresholding of the
individual wavelet coefficient arrays. This is usually done by choosing a level to be some
number of standard deviations above the mean value.

However, since the wavelet arrays are produced by convolving the input array by an
increasingly large filter, the pixels in the coefficient arrays become increasingly correlated
as the scale of the filter increases. This results in the measured standard deviation from a
given coefficient array decreasing with increasing scale. To calculate this, we need to take
into account how many other pixels each pixel in the convolved array depends on.

To demonstrate, suppose we have a 1-D array with N pixel values given by Fi, i =
1, ..., N , and we convolve it with the B3-spline filter, defined by the set of coefficients
{1/16, 1/4, 3/8, 1/4, 1/16}. The flux of the ith pixel in the convolved array will be

F ′
i =

1

16
Fi−2 +

1

16
Fi−2 +

3

8
Fi +

1

4
Fi−1 +

1

16
Fi+2

and the flux of the corresponding pixel in the wavelet array will be

W ′
i = Fi − F ′

i =
1

16
Fi−2 +

1

16
Fi−2 +

5

8
Fi +

1

4
Fi−1 +

1

16
Fi+2

Now, assuming each pixel has the same standard deviation σi = σ, we can work out the
standard deviation for the coefficient array:

σ′i = σ

√(
1

16

)2

+
(

1

4

)2

+
(

5

8

)2

+
(

1

4

)2

+
(

1

16

)2

= 0.72349 σ

Thus, the first scale wavelet coefficient array will have a standard deviation of 72.3% of
the input array. This procedure can be followed to calculate the necessary values for all
scales, dimensions and filters used by Duchamp.

Calculating these values is, therefore, a critical step in performing the reconstruction.
Starck & Murtagh (2002) did so by simulating data sets with Gaussian noise, taking
the wavelet transform, and measuring the value of σ for each scale. We take a different
approach, by calculating the scaling factors directly from the filter coefficients by taking
the wavelet transform of an array made up of a 1 in the central pixel and 0s everywhere else.
The scaling value is then derived by adding in quadrature all the wavelet coefficient values
at each scale. We give the scaling factors for the three filters available to Duchamp on the
following page. These values are hard-coded into Duchamp, so no on-the-fly calculation
of them is necessary.

Memory limitations prevent us from calculating factors for large scales, particularly
for the three-dimensional case (hence the – symbols in the tables). To calculate factors
for higher scales than those available, we note the following relationships apply for large
scales to a sufficient level of precision:

• 1-D: factor(scale i) = factor(scale i− 1)/
√

2.

• 2-D: factor(scale i) = factor(scale i− 1)/2.

• 1-D: factor(scale i) = factor(scale i− 1)/
√

8.

H HOW GAUSSIAN NOISE CHANGES WITH WAVELET SCALE. 28

• B3-Spline Function: {1/16, 1/4, 3/8, 1/4, 1/16}
Scale 1 dimension 2 dimension 3 dimension
1 0.723489806 0.890796310 0.956543592
2 0.285450405 0.200663851 0.120336499
3 0.177947535 0.0855075048 0.0349500154
4 0.122223156 0.0412474444 0.0118164242
5 0.0858113122 0.0204249666 0.00413233507
6 0.0605703043 0.0101897592 0.00145703714
7 0.0428107206 0.00509204670 0.000514791120
8 0.0302684024 0.00254566946 –
9 0.0214024008 0.00127279050 –
10 0.0151336781 0.000636389722 –
11 0.0107011079 0.000318194170 –
12 0.00756682272 – –
13 0.00535055108 – –

• Triangle Function: {1/4, 1/2, 1/4}
Scale 1 dimension 2 dimension 3 dimension
1 0.612372436 0.800390530 0.895954449
2 0.330718914 0.272878894 0.192033014
3 0.211947812 0.119779282 0.0576484078
4 0.145740298 0.0577664785 0.0194912393
5 0.102310944 0.0286163283 0.00681278387
6 0.0722128185 0.0142747506 0.00240175885
7 0.0510388224 0.00713319703 0.000848538128
8 0.0360857673 0.00356607618 0.000299949455
9 0.0255157615 0.00178297280 –
10 0.0180422389 0.000891478237 –
11 0.0127577667 0.000445738098 –
12 0.00902109930 0.000222868922 –
13 0.00637887978 – –

• Haar Wavelet: {0, 1/2, 1/2}
Scale 1 dimension 2 dimension 3 dimension
1 0.707167810 0.433012702 0.935414347
2 0.500000000 0.216506351 0.330718914
3 0.353553391 0.108253175 0.116926793
4 0.250000000 0.0541265877 0.0413398642
5 0.176776695 0.0270632939 0.0146158492
6 0.125000000 0.0135316469 0.00516748303

	Introduction and getting going quickly
	A summary of the execution steps
	Guide to terminology
	Why ``Duchamp''?

	User Inputs
	What the program is doing
	Image input
	Image modification
	Milky-Way removal
	Blank pixel removal
	Baseline removal

	Image reconstruction
	Reconstruction I/O
	Searching the image
	Merging detected objects

	Outputs
	During execution
	Results

	Notes and hints on the use of Duchamp
	Future Developments
	Available parameters
	Example parameter files
	Example output file
	Example VOTable output
	Example Karma Annotation File output
	Installing Duchamp (README file)
	Robust statistics for a Normal distribution
	How Gaussian noise changes with wavelet scale.

