
Source Detection with
Duchamp

A User’s Guide

Matthew Whiting
Australia Telescope National Facility

CSIRO

Duchamp version 1.1.6
September 8, 2008

CONTENTS 2

Contents

1 Introduction and getting going quickly 4
1.1 About Duchamp . 4
1.2 What to do . 4
1.3 Guide to terminology and conventions 5
1.4 A summary of the execution steps 6

2 User Inputs 10

3 What Duchamp is doing 11
3.1 Image input . 11
3.2 Image modification . 12

3.2.1 BLANK pixel removal 12
3.2.2 Baseline removal . 12
3.2.3 Ignoring bright Milky Way emission 13

3.3 Image reconstruction . 13
3.3.1 Algorithm . 14
3.3.2 Note on Statistics . 15
3.3.3 User control of reconstruction parameters 15

3.4 Smoothing the cube . 16
3.4.1 Spectral smoothing . 16
3.4.2 Spatial smoothing . 16

3.5 Input/Output of reconstructed/smoothed arrays 17
3.6 Searching the image . 18

3.6.1 Technique . 18
3.6.2 Calculating statistics 19
3.6.3 Determining the threshold 20

3.7 Merging and growing detected objects 21

4 Outputs 22
4.1 During execution . 22
4.2 Text-based output files . 23

4.2.1 Table of results . 23
4.2.2 Other results lists . 25

4.3 Graphical output . 27
4.3.1 Mask image . 27
4.3.2 Spectral plots . 27
4.3.3 Output for 2-dimensional images 29
4.3.4 Spatial maps . 29

4.4 Re-using previous detections 29

5 Notes and hints on the use of Duchamp 31

6 Future developments 33

CONTENTS 3

7 Why “Duchamp”? 33

A Obtaining and installing Duchamp 35
A.1 Installing . 35

A.1.1 Basic installation . 35
A.1.2 Tweaking the installation process 35
A.1.3 Making sure it all works 36

A.2 Running Duchamp . 37
A.3 Feedback . 37
A.4 Beta Versions . 38

B Available parameters 39

C Example parameter files 47

D Example results file 49

E Example VOTable output 51

F Example Karma Annotation file output 52

G Robust statistics for a Normal distribution 53

H How Gaussian noise changes with wavelet scale 55

1 INTRODUCTION AND GETTING GOING QUICKLY 4

1 Introduction and getting going quickly

1.1 About Duchamp

This document provides a user’s guide to Duchamp, an object-finder for
use on spectral-line data cubes. The basic execution of Duchamp is to read
in a FITS data cube, find sources in the cube, and produce a text file of
positions, velocities and fluxes of the detections, as well as a postscript file
of the spectra of each detection.

Duchamp has been designed to search for objects in particular sorts
of data: those with relatively small, isolated objects in a large amount of
background or noise. Examples of such data are extragalactic Hi surveys, or
maser surveys. Duchamp searches for groups of connected voxels (or pixels)
that are all above some flux threshold. No assumption is made as to the
shape of detections, and the only size constraints applied are those specified
by the user.

Duchamp has been written as a three-dimensional finder, but it is pos-
sible to run it on a two-dimensional image (i.e. one with no frequency or
velocity information), or indeed a one-dimensional array, and many of the
features of the program will work fine. The focus, however, is on object
detection in three dimensions, one of which is a spectral dimension. Note,
in particular, that it does not do any fitting of source profiles, a feature
common (and desirable) for many two-dimensional source finders. This is
beyond the current scope of Duchamp, whose aim is reliable detection of
spectral-line objects.

1.2 What to do

So, you have a FITS cube, and you want to find the sources in it. What
do you do? First, you need to get Duchamp: there are instructions in
Appendix A for obtaining and installing it. Once you have it running, the
first step is to make an input file that contains the list of parameters. Brief
and detailed examples are shown in Appendix C. This file provides the
input file name, the various output files, and defines various parameters
that control the execution.

The standard way to run Duchamp is by the command

> Duchamp -p [parameter file]

replacing [parameter file] with the name of the file listing the parame-
ters.

An even easier way is to use the default values for all parameters (these
are given in Appendix B and in the file InputComplete included in the
distribution directory) and use the syntax

> Duchamp -f [FITS file]

1 INTRODUCTION AND GETTING GOING QUICKLY 5

where [FITS file] is the file you wish to search.
The default action includes displaying a map of detected objects in

a PGPLOT X-window. This can be disabled by setting the parameter
flagXOutput = false or using the -x command-line option, as in

> Duchamp -x -p [parameter file]

and similarly for the -f case.
Once a FITS file and parameters have been set, the program will then

work away and give you the list of detections and their spectra. The program
execution is summarised below, and detailed in §3. Information on inputs
is in §2 and Appendix B, and descriptions of the output is in §4.

1.3 Guide to terminology and conventions

First, a brief note on the use of terminology in this guide. Duchamp is de-
signed to work on FITS “cubes”. These are FITS1 image arrays with (at
least) three dimensions. They are assumed to have the following form: the
first two dimensions (referred to as x and y) are spatial directions (that is,
relating to the position on the sky – often, but not necessarily, correspond-
ing to Equatorial or Galactic coordinates), while the third dimension, z, is
the spectral direction, which can correspond to frequency, wavelength, or
velocity. The three dimensional analogue of pixels are “voxels”, or volume
cells – a voxel is defined by a unique (x, y, z) location and has a single value
of flux, intensity or brightness (or something equivalent) associated with it.

Sometimes, some pixels in a FITS file are labelled as BLANK – that is,
they are given a nominal value, defined by FITS header keywords blank,
bscale, & bzero, that marks them as not having a flux value. These are
often used to pad a cube out so that it has a rectangular spatial shape.
Duchamp has the ability to avoid these: see §3.2.1.

Note that it is possible for the FITS file to have more than three dimen-
sions (for instance, there could be a fourth dimension representing a Stokes
parameter). Only the two spatial dimensions and the spectral dimension
are read into the array of pixel values that is searched for objects. All other
dimensions are ignored2. Herein, we discuss the data in terms of the three
basic dimensions, but you should be aware it is possible for the FITS file to
have more than three. Note that the order of the dimensions in the FITS
file does not matter.

With this setup, each spatial pixel (a given (x, y) coordinate) can be said
to be a single spectrum, while a slice through the cube perpendicular to the

1FITS is the Flexible Image Transport System – see Hanisch et al. (2001) or websites
such as http://fits.cv.nrao.edu/FITS.html for details.

2This actually means that the first pixel only of that axis is used, and the array is read
by the fits read subsetnull command from the cfitsio library.

http://fits.cv.nrao.edu/FITS.html

1 INTRODUCTION AND GETTING GOING QUICKLY 6

spectral direction at a given z-value is a single channel, with the 2-D image
in that channel called a channel map.

Detection involves locating a contiguous group of voxels with fluxes above
a certain threshold. Duchamp makes no assumptions as to the size or shape
of the detected features, other than having user-selected minimum size cri-
teria. Features that are detected are assumed to be positive. The user can
choose to search for negative features by setting an input parameter – this
inverts the cube prior to the search (see §3.6 for details).

1.4 A summary of the execution steps

The basic flow of the program is summarised here – all steps are discussed
in more detail in the following sections.

1. The necessary parameters are recorded.

How this is done depends on the way the program is run from the
command line. If the -p option is used, the parameter file given on
the command line is read in, and the parameters therein are read. All
other parameters are given their default values (listed in Appendix B).

If the -f option is used, all parameters are assigned their default values.

2. The FITS image is located and read in to memory.

The file given is assumed to be a valid FITS file. As discussed above,
it can have any number of dimensions, but Duchamp only reads in the
two spatial and the one spectral dimensions. A subset of the FITS
array can be given (see §3.1 for details).

3. If requested, a FITS file containing a previously reconstructed or
smoothed array is read in.

When a cube is either smoothed or reconstructed with the à trous
wavelet method, the result can be saved to a FITS file, so that sub-
sequent runs of Duchamp can read it in to save having to re-do the
calculations (as they can be relatively time-intensive).

4. If requested, BLANK pixels are trimmed from the edges, and the base-
line of each spectrum is removed.

BLANK pixels, while they are ignored by all calculations in Duchamp,
do increase the size in memory of the array above that absolutely
needed. This step trims them from the spatial edges, recording the
amount trimmed so that they can be added back in later.

A spectral baseline (or bandpass) can also be removed at this point
as well. This may be necessary if there is a ripple or other large-scale
feature present that will hinder detection of faint sources.

1 INTRODUCTION AND GETTING GOING QUICKLY 7

5. If the reconstruction method is requested, and the reconstructed array
has not been read in at Step 3 above, the cube is reconstructed using
the à trous wavelet method.

This step uses the à trous method to determine the amount of struc-
ture present at various scales. A simple thresholding technique then
removes random noise from the cube, leaving the significant signal.
This process can greatly reduce the noise level in the cube, enhancing
the detectability of sources.

6. Alternatively (and if requested), the cube is smoothed, either spec-
trally or spatially.

This step presents two options. The first considers each spectrum
individually, and convolves it with a Hanning filter (with width chosen
by the user). The second considers each channel map separately, and
smoothes it with a Gaussian kernel of size and shape chosen by the
user. This step can help to reduce the amount of noise visible in the
cube and enhance fainter sources.

7. A threshold for the cube is then calculated, based on the pixel statistics
(unless a threshold is manually specified by the user).

The threshold can either be chosen as a simple nσ threshold (i.e. a
certain number of standard deviations above the mean), or calculated
via the “False Discovery Rate” method. Alternatively, the threshold
can be specified as a simple flux value, without care as to the statistical
significance (e.g. “I want every source brighter than 10mJy”).

By default, the full cube is used for the statistics calculation, although
the user can nominate a subsection of the cube to be used instead.

8. Searching for objects then takes place, using the requested threshold-
ing method.

The cube is searched one channel-map at a time. Detections are com-
pared to already detected objects and either combined with a neigh-
bouring one or added to the end of the list.

9. The list of objects is condensed by merging neighbouring objects and
removing those deemed unacceptable.

While some merging has been done in the previous step, this process
is a much more rigorous comparison of each object with every other
one. If a pair of objects lie within requested limits, they are combined.

After the merging is done, the list is culled (although see comment
for the next step). There are certain criteria the user can specify
that objects must meet: minimum numbers of spatial pixels and spec-
tral channels, and minimum separations between neighbouring objects.
Those that do not meet these criteria are deleted from the list.

1 INTRODUCTION AND GETTING GOING QUICKLY 8

10. If requested, the objects are “grown” down to a lower threshold, and
then the merging step is done a second time.

In this case, each object has pixels in its neighbourhood examined,
and if they are above a secondary threshold, they are added to the
object. The merging process is done a second time in case two objects
have grown over the top of one another. Note that the rejection part
of the previous step is not done until the end of the second merging
process.

11. The baselines and trimmed pixels are replaced prior to output.

This is just the inverse of step #4.

12. The details of the detections are written to screen and to the requested
output file.

Crucial properties of each detection are provided, showing its location,
extent, and flux. These are presented in both pixel coordinates and
world coordinates (e.g. sky position and velocity). Any warning flags
are also printed, showing detections to be wary of. Alternative output
options are available, such as a VOTable or a Karma annotation file.

13. Maps showing the spatial location of the detections are written.

These are 2-dimensional maps, showing where each detection lies on
the spatial coverage of the cube. This is provided as an aid to the
user so that a quick idea of the distribution of object positions can be
gained e.g. are all the detections on the edge?

Two maps are provided: one is a 0th moment map, showing the 0th
moment (i.e. a map of the integrated flux) of each detection in its
appropriate position, while the second is a “detection map”, showing
the number of times each spatial pixel was detected in the searching
routines (including those pixels rejected at step 9 and so not in any of
the final detections).

These maps are written to postscript files, and the 0th moment map
can also be displayed in a PGPLOT X-window.

14. The integrated or peak spectra of each detection are written to a
postscript file.

The spectral equivalent of the maps – what is the spectral profile of
each detection? Also provided here are basic information for each
object (a summary of the information in the results file), as well as a
0th moment map of the detection.

15. If requested, the reconstructed or smoothed array can be written to a
new FITS file.

1 INTRODUCTION AND GETTING GOING QUICKLY 9

If either of these procedures were done, the resulting array can be
saved as a FITS file for later use. The FITS header will be the same
as the input file, with a few additional keywords to identify the file.

2 USER INPUTS 10

2 User Inputs

Input to the program is provided by means of a parameter file. Parameters
are listed in the file, followed by the value that should be assigned to them.
The syntax used is

parameterName value.

Parameter names are not case-sensitive, and lines in the input file that start
with # are ignored. If a parameter is listed more than once, the latter value
is used, but otherwise the order in which the parameters are listed in the
input file is arbitrary. Example input files can be seen in Appendix C.

If a parameter is not listed, the default value is assumed. The defaults
are chosen to provide a good result (using the reconstruction method), so
the user doesn’t need to specify many new parameters in the input file. Note
that the image file must be specified! The parameters that can be set are
listed in Appendix B, with their default values in parentheses.

The parameters with names starting with flag are stored as bool vari-
ables, and so are either true = 1 or false = 0. They can be entered in
the file either in text or integer format – Duchamp will read them correctly
in either case.

An example input file is included in the distribution tar file. It is as
follows:

imageFile your-file-here
logFile logfile.txt
outFile results.txt
spectraFile spectra.ps
minPix 2
flagATrous 1
snrRecon 5.
snrCut 3.
minChannels 3
flagBaseline 1

You would, of course, replace the “your-file-here” with the FITS file
you wanted to search. Further examples are given in Appendix C.

3 WHAT DUCHAMP IS DOING 11

3 What Duchamp is doing

Each of the steps that Duchamp goes through in the course of its execution
are discussed here in more detail. This should provide enough background
information to fully understand what Duchamp is doing and what all the
output information is. For those interested in the programming side of
things, Duchamp is written in C/C++ and makes use of the cfitsio, wcslib
and pgplot libraries.

3.1 Image input

The cube is read in using basic cfitsio commands, and stored as an ar-
ray in a special C++ class. This class keeps track of the list of detected
objects, as well as any reconstructed arrays that are made (see §3.3). The
World Coordinate System (WCS)3 information for the cube is also obtained
from the FITS header by wcslib functions (Calabretta and Greisen 2002;
Greisen and Calabretta 2002), and this information, in the form of a wcsprm
structure, is also stored in the same class.

A sub-section of a cube can be requested by defining the subsection with
the subsection parameter and setting flagSubsection = true – this can
be a good idea if the cube has very noisy edges, which may produce many
spurious detections.

There are two ways of specifying the subsection string. The first is
the generalised form [x1:x2:dx,y1:y2:dy,z1:z2:dz,...], as used by the
cfitsio library. This has one set of colon-separated numbers for each axis
in the FITS file. In this manner, the x-coordinates run from x1 to x2
(inclusive), with steps of dx. The step value can be omitted, so a subsection
of the form [2:50,2:50,10:1000] is still valid. In fact, Duchamp does not
make use of any step value present in the subsection string, and any that
are present are removed before the file is opened.

If the entire range of a coordinate is required, one can replace the range
with a single asterisk, e.g. [2:50,2:50,*]. Thus, the subsection string
[*,*,*] is simply the entire cube. Note that the pixel ranges for each axis
start at 1, so the full pixel range of a 100-pixel axis would be expressed as
1:100. A complete description of this section syntax can be found at the
fitsio web site4.

Making full use of the subsection requires knowledge of the size of each
of the dimensions. If one wants to, for instance, trim a certain number of
pixels off the edges of the cube, without examining the cube to obtain the
actual size, one can use the second form of the subsection string. This just

3This is the information necessary for translating the pixel locations to quantities such
as position on the sky, frequency, velocity, and so on.

4http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c user/node91.html

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node91.html

3 WHAT DUCHAMP IS DOING 12

gives a number for each axis, e.g. [5,5,5] (which would trim 5 pixels from
the start and end of each axis).

All types of subsections can be combined e.g. [5,2:98,*].
Typically, the units of pixel brightness are given by the FITS file’s

BUNIT keyword. However, this may often be unwieldy (for instance, the
units are Jy/beam, but the values are around a few mJy/beam). It is
therefore possible to nominate new units, to which the pixel values will be
converted, by using the newFluxUnits input parameter. The units must
be directly translatable from the existing ones – for instance, if BUNIT is
Jy/beam, you cannot specify mJy, it must be mJy/beam. If an incompatible
unit is given, the BUNIT value is used instead.

3.2 Image modification

Several modifications to the cube can be made that improve the execution
and efficiency of Duchamp (their use is optional, governed by the relevant
flags in the parameter file).

3.2.1 BLANK pixel removal

If the imaged area of a cube is non-rectangular (see the example in Fig. 2,
a cube from the HIPASS survey), BLANK pixels are used to pad it out
to a rectangular shape. The value of these pixels is given by the FITS
header keywords BLANK, BSCALE and BZERO. While these pixels make
the image a nice shape, they will take up unnecessary space in memory, and
so to potentially speed up the processing we can trim them from the edge.
This is done when the parameter flagTrim = true. If the above keywords
are not present, the trimming will not be done (in this case, a similar effect
can be accomplished, if one knows where the “blank” pixels are, by using
the subsection option).

The amount of trimming is recorded, and these pixels are added back in
once the source-detection is completed (so that quoted pixel positions are
applicable to the original cube). Rows and columns are trimmed one at a
time until the first non-BLANK pixel is reached, so that the image remains
rectangular. In practice, this means that there will be some BLANK pixels
left in the trimmed image (if the non-BLANK region is non-rectangular).
However, these are ignored in all further calculations done on the cube.

3.2.2 Baseline removal

Second, the user may request the removal of baselines from the spectra, via
the parameter flagBaseline. This may be necessary if there is a strong
baseline ripple present, which can result in spurious detections at the high
points of the ripple. The baseline is calculated from a wavelet reconstruction
procedure (see §3.3) that keeps only the two largest scales. This is done

3 WHAT DUCHAMP IS DOING 13

separately for each spatial pixel (i.e. for each spectrum in the cube), and the
baselines are stored and added back in before any output is done. In this way
the quoted fluxes and displayed spectra are as one would see from the input
cube itself – even though the detection (and reconstruction if applicable) is
done on the baseline-removed cube.

The presence of very strong signals (for instance, masers at several hun-
dred Jy) could affect the determination of the baseline, and would lead to
a large dip centred on the signal in the baseline-subtracted spectrum. To
prevent this, the signal is trimmed prior to the reconstruction process at
some standard threshold (at 8σ above the mean). The baseline determined
should thus be representative of the true, signal-free baseline. Note that
this trimming is only a temporary measure which does not affect the source-
detection.

3.2.3 Ignoring bright Milky Way emission

Finally, a single set of contiguous channels can be ignored – these may
exhibit very strong emission, such as that from the Milky Way as seen in
extragalactic Hi cubes (hence the references to “Milky Way” in relation to
this task – apologies to Galactic astronomers!). Such dominant channels
will produce many detections that are unnecessary, uninteresting (if one
is interested in extragalactic Hi) and large (in size and hence in memory
usage), and so will slow the program down and detract from the interesting
detections.

The use of this feature is controlled by the flagMW parameter, and the
exact channels concerned are able to be set by the user (using maxMW and
minMW – these give an inclusive range of channels). When employed, these
channels are ignored for the searching, and the scaling of the spectral output
(see Fig. 1) will not take them into account. They will be present in the
reconstructed array, however, and so will be included in the saved FITS file
(see §3.5). When the final spectra are plotted, the range of channels covered
by these parameters is indicated by a green hashed box.

3.3 Image reconstruction

The user can direct Duchamp to reconstruct the data cube using the à
trous wavelet procedure. A good description of the procedure can be found
in Starck and Murtagh (2002). The reconstruction is an effective way of
removing a lot of the noise in the image, allowing one to search reliably to
fainter levels, and reducing the number of spurious detections. This is an
optional step, but one that greatly enhances the source-detection process,
with the payoff that it can be relatively time- and memory-intensive.

3 WHAT DUCHAMP IS DOING 14

3.3.1 Algorithm

The steps in the à trous reconstruction are as follows:

1. The reconstructed array is set to 0 everywhere.

2. The input array is discretely convolved with a given filter function.
This is determined from the parameter file via the filterCode pa-
rameter – see Appendix B for details on the filters available.

3. The wavelet coefficients are calculated by taking the difference between
the convolved array and the input array.

4. If the wavelet coefficients at a given point are above the requested
threshold (given by snrRecon as the number of σ above the mean and
adjusted to the current scale – see Appendix H), add these to the
reconstructed array.

5. The separation between the filter coefficients is doubled. (Note that
this step provides the name of the procedure5, as gaps or holes are
created in the filter coverage.)

6. The procedure is repeated from step 2, using the convolved array as
the input array.

7. Continue until the required maximum number of scales is reached.

8. Add the final smoothed (i.e. convolved) array to the reconstructed
array. This provides the “DC offset”, as each of the wavelet coefficient
arrays will have zero mean.

The range of scales at which the selection of wavelet coefficients is made
is governed by the scaleMin and scaleMax parameters. The minimum scale
used is given by scaleMin, where the default value is 1 (the first scale). This
parameter is useful if you want to ignore the highest-frequency features (e.g.
high-frequency noise that might be present). Normally the maximum scale
is calculated from the size of the input array, but it can be specified by
using scaleMax. A value ≤ 0 will result in the use of the calculated value,
as will a value of scaleMax greater than the calculated value. Use of these
two parameters can allow searching for features of a particular scale size, for
instance searching for narrow absorption features.

The reconstruction has at least two iterations. The first iteration makes
a first pass at the wavelet reconstruction (the process outlined in the 8 stages
above), but the residual array will likely have some structure still in it, so the
wavelet filtering is done on the residual, and any significant wavelet terms
are added to the final reconstruction. This step is repeated until the change

5à trous means “with holes” in French.

3 WHAT DUCHAMP IS DOING 15

in the measured standard deviation of the background (see note below on
the evaluation of this quantity) is less than some fiducial amount.

It is important to note that the à trous decomposition is an example of
a “redundant” transformation. If no thresholding is performed, the sum of
all the wavelet coefficient arrays and the final smoothed array is identical to
the input array. The thresholding thus removes only the unwanted structure
in the array.

Note that any BLANK pixels that are still in the cube will not be altered
by the reconstruction – they will be left as BLANK so that the shape of the
valid part of the cube is preserved.

3.3.2 Note on Statistics

The correct calculation of the reconstructed array needs good estimators
of the underlying mean and standard deviation (or rms) of the background
noise distribution. The methods used to estimate these quantities are de-
tailed in §3.6.2 – the default behaviour is to use robust estimators, to avoid
biasing due to bright pixels.

When thresholding the different wavelet scales, the value of the rms
as measured from the wavelet array needs to be scaled to account for the
increased amount of correlation between neighbouring pixels (due to the
convolution). See Appendix H for details on this scaling.

3.3.3 User control of reconstruction parameters

The most important parameter for the user to select in relation to the re-
construction is the threshold for each wavelet array. This is set using the
snrRecon parameter, and is given as a multiple of the rms (estimated by
the MADFM) above the mean (which for the wavelet arrays should be ap-
proximately zero). There are several other parameters that can be altered
as well that affect the outcome of the reconstruction.

By default, the cube is reconstructed in three dimensions, using a 3-
dimensional filter and 3-dimensional convolution. This can be altered, how-
ever, using the parameter reconDim. If set to 1, this means the cube is re-
constructed by considering each spectrum separately, whereas reconDim=2
will mean the cube is reconstructed by doing each channel map separately.
The merits of these choices are discussed in §5, but it should be noted that a
2-dimensional reconstruction can be susceptible to edge effects if the spatial
shape of the pixel array is not rectangular.

The user can also select the minimum scale to be used in the recon-
struction. The first scale exhibits the highest frequency variations, and so
ignoring this one can sometimes be beneficial in removing excess noise. The
default is to use all scales (minscale = 1).

3 WHAT DUCHAMP IS DOING 16

Finally, the filter that is used for the convolution can be selected by
using filterCode and the relevant code number – the choices are listed
in Appendix B. A larger filter will give a better reconstruction, but take
longer and use more memory when executing. When multi-dimensional
reconstruction is selected, this filter is used to construct a 2- or 3-dimensional
equivalent.

3.4 Smoothing the cube

An alternative to doing the wavelet reconstruction is to smooth the cube.
This technique can be useful in reducing the noise level slightly (at the cost
of making neighbouring pixels correlated and blurring any signal present),
and is particularly well suited to the case where a particular signal size (i.e.
a certain channel width or spatial size) is believed to be present in the data.

There are two alternative methods that can be used: spectral smoothing,
using the Hanning filter; or spatial smoothing, using a 2D Gaussian kernel.
These alternatives are outlined below. To utilise the smoothing option, set
the parameter flagSmooth=true and set smoothType to either spectral or
spatial.

3.4.1 Spectral smoothing

When smoothType = spectral is selected, the cube is smoothed only in the
spectral domain. Each spectrum is independently smoothed by a Hanning
filter, and then put back together to form the smoothed cube, which is
then used by the searching algorithm (see below). Note that in the case
of both the reconstruction and the smoothing options being requested, the
reconstruction will take precedence and the smoothing will not be done.

There is only one parameter necessary to define the degree of smoothing
– the Hanning width a (given by the user parameter hanningWidth). The
coefficients c(x) of the Hanning filter are defined by

c(x) =

{
1
2

(
1 + cos(πx

a)
)

|x| ≤ (a + 1)/2
0 |x| > (a + 1)/2.

, a, x ∈ Z

Note that the width specified must be an odd integer (if the parameter
provided is even, it is incremented by one).

3.4.2 Spatial smoothing

When smoothType = spatial is selected, the cube is smoothed only in the
spatial domain. Each channel map is independently smoothed by a two-
dimensional Gaussian kernel, put back together to form the smoothed cube,
and used in the searching algorithm (see below). Again, reconstruction is
always done by preference if both techniques are requested.

3 WHAT DUCHAMP IS DOING 17

The two-dimensional Gaussian has three parameters to define it, gov-
erned by the elliptical cross-sectional shape of the Gaussian function: the
FWHM (full-width at half-maximum) of the major and minor axes, and the
position angle of the major axis. These are given by the user parameters
kernMaj, kernMin & kernPA. If a circular Gaussian is required, the user
need only provide the kernMaj parameter. The kernMin parameter will then
be set to the same value, and kernPA to zero. If we define these parameters
as a, b, θ respectively, we can define the kernel by the function

k(x, y) = exp
[
−0.5

(
X2

σ2
X

+
Y 2

σ2
Y

)]
where (x, y) are the offsets from the central pixel of the gaussian function,
and

X = x sin θ − y cos θ Y = x cos θ + y sin θ

σ2
X =

(a/2)2

2 ln 2
σ2

Y =
(b/2)2

2 ln 2

3.5 Input/Output of reconstructed/smoothed arrays

The smoothing and reconstruction stages can be relatively time-consuming,
particularly for large cubes and reconstructions in 3-D (or even spatial
smoothing). To get around this, Duchamp provides a shortcut to allow users
to perform multiple searches (e.g. with different thresholds) on the same re-
construction/smoothing setup without re-doing the calculations each time.

To save the reconstructed array as a FITS file, set flagOutputRecon =
true. The file will be saved in the same directory as the input image, so the
user needs to have write permissions for that directory.

The filename will be derived from the input filename, with extra informa-
tion detailing the reconstruction that has been done. For example, suppose
image.fits has been reconstructed using a 3-dimensional reconstruction
with filter #2, thresholded at 4σ using all scales. The output filename will
then be image.RECON-3-2-4-1.fits (i.e. it uses the four parameters rele-
vant for the à trous reconstruction as listed in Appendix B). The new FITS
file will also have these parameters as header keywords. If a subsection of
the input image has been used (see §3.1), the format of the output filename
will be image.sub.RECON-3-2-4-1.fits, and the subsection that has been
used is also stored in the FITS header.

Likewise, the residual image, defined as the difference between the input
and reconstructed arrays, can also be saved in the same manner by setting
flagOutputResid = true. Its filename will be the same as above, with
RESID replacing RECON.

3 WHAT DUCHAMP IS DOING 18

If a reconstructed image has been saved, it can be read in and used
instead of redoing the reconstruction. To do so, the user should set the
parameter flagReconExists = true. The user can indicate the name of
the reconstructed FITS file using the reconFile parameter, or, if this is not
specified, Duchamp searches for the file with the name as defined above. If
the file is not found, the reconstruction is performed as normal. Note that
to do this, the user needs to set flagAtrous = true (obviously, if this is
false, the reconstruction is not needed).

To save the smoothed array, set flagOutputSmooth = true. The name
of the saved file will depend on the method of smoothing used. It will
be either image.SMOOTH-1D-a.fits, where a is replaced by the Hanning
width used, or image.SMOOTH-2D-a-b-c.fits, where the Gaussian kernel
parameters are a,b,c. Similarly to the reconstruction case, a saved file can
be read in by setting flagSmoothExists = true and either specifying a file
to be read with the smoothFile parameter or relying on Duchamp to find
the file with the name as given above.

3.6 Searching the image

3.6.1 Technique

The basic idea behind detection in Duchamp is to locate sets of contiguous
voxels that lie above some threshold. No size or shape requirement is im-
posed upon the detections – that is, Duchamp does not fit e.g. a Gaussian
profile to each source. All it does is find connected groups of bright voxels.

One threshold is calculated for the entire cube, enabling calculation of
signal-to-noise ratios for each source (see Section 4 for details). The user can
manually specify a value (using the parameter threshold) for the threshold,
which will override the calculated value. Note that this option overrides any
settings of snrCut or FDR options (see below).

The cube is searched one channel map at a time, using the 2-dimensional
raster-scanning algorithm of Lutz (1980) that connects groups of neighbour-
ing pixels. Such an algorithm cannot be applied directly to a 3-dimensional
case, as it requires that objects are completely nested in a row (when scan-
ning along a row, if an object finishes and other starts, you won’t get back
to the first until the second is completely finished for the row). Three-
dimensional data does not have this property, hence the need to treat the
data on a 2-dimensional basis.

Although there are parameters that govern the minimum number of
pixels in a spatial and spectral sense that an object must have (minPix and
minChannels respectively), these criteria are not applied at this point. It
is only after the merging and growing (see §3.7) is done that objects are
rejected for not meeting these criteria.

Finally, the search only looks for positive features. If one is interested

3 WHAT DUCHAMP IS DOING 19

instead in negative features (such as absorption lines), set the parameter
flagNegative = true. This will invert the cube (i.e. multiply all pixels by
−1) prior to the search, and then re-invert the cube (and the fluxes of any
detections) after searching is complete. All outputs are done in the same
manner as normal, so that fluxes of detections will be negative.

3.6.2 Calculating statistics

A crucial part of the detection process (as well as the wavelet reconstruction:
§3.3) is estimating the statistics that define the detection threshold. To
determine a threshold, we need to estimate from the data two parameters:
the middle of the noise distribution (the “noise level”), and the width of
the distribution (the “noise spread”). The noise level is estimated by either
the mean or the median, and the noise spread by the rms (or the standard
deviation) or the median absolute deviation from the median (MADFM).
The median and MADFM are robust statistics, in that they are not biased
by the presence of a few pixels much brighter than the noise.

All four statistics are calculated automatically, but the choice of parame-
ters that will be used is governed by the input parameter flagRobustStats.
This has the default value true, meaning the underlying mean of the noise
distribution is estimated by the median, and the underlying standard de-
viation is estimated by the MADFM. In the latter case, the value is cor-
rected, under the assumption that the underlying distribution is Normal
(Gaussian), by dividing by 0.6744888 – see Appendix G for details. If
flagRobustStats=false, the mean and rms are used instead.

The choice of pixels to be used depend on the analysis method. If the
wavelet reconstruction has been done, the residuals (defined in the sense of
original − reconstruction) are used to estimate the noise spread of the cube,
since the reconstruction should pick out all significant structure. The noise
level (the middle of the distribution) is taken from the original array.

If smoothing of the cube has been done instead, all noise parameters
are measured from the smoothed array, and detections are made with these
parameters. When the signal-to-noise level is quoted for each detection (see
§4), the noise parameters of the original array are used, since the smoothing
process correlates neighbouring pixels, reducing the noise level.

If neither reconstruction nor smoothing has been done, then the statistics
are calculated from the original, input array.

The parameters that are estimated should be representative of the noise
in the cube. For the case of small objects embedded in many noise pixels
(e.g. the case of Hi surveys), using the full cube will provide good estimators.
It is possible, however, to use only a subsection of the cube by setting the
parameter flagStatSec = true and providing the desired subsection to
the StatSec parameter. This subsection works in exactly the same way
as the pixel subsection discussed in §3.1. Note that this subsection applies

3 WHAT DUCHAMP IS DOING 20

only to the statistics used to determine the threshold. It does not affect
the calculation of statistics in the case of the wavelet reconstruction. Note
also that pixels flagged as BLANK or as part of the “Milky Way” range of
channels are ignored in the statistics calculations.

3.6.3 Determining the threshold

Once the statistics have been calculated, the threshold is determined in one
of two ways. The first way is a simple sigma-clipping, where a threshold
is set at a fixed number n of standard deviations above the mean, and
pixels above this threshold are flagged as detected. The value of n is set
with the parameter snrCut. The “mean” and “standard deviation” here are
estimated according to flagRobustStats, as discussed in §3.6.2. In this first
case only, if the user specifies a threshold, using the threshold parameter,
the sigma-clipped value is ignored.

The second method uses the False Discovery Rate (FDR) technique
(Hopkins et al. 2002; Miller et al. 2001), whose basis we briefly detail here.
The false discovery rate (given by the number of false detections divided by
the total number of detections) is fixed at a certain value α (e.g. α = 0.05
implies 5% of detections are false positives). In practice, an α value is cho-
sen, and the ensemble average FDR (i.e. 〈FDR〉) when the method is used
will be less than α. One calculates p – the probability, assuming the null
hypothesis is true, of obtaining a test statistic as extreme as the pixel value
(the observed test statistic) – for each pixel, and sorts them in increasing
order. One then calculates d where

d = max
j

{
j : Pj <

jα

cNN

}
,

and then rejects all hypotheses whose p-values are less than or equal to Pd.
(So a Pi < Pd will be rejected even if Pi ≥ jα/cNN .) Note that “reject
hypothesis” here means “accept the pixel as an object pixel” (i.e. we are
rejecting the null hypothesis that the pixel belongs to the background).

The cN value here is a normalisation constant that depends on the cor-
related nature of the pixel values. If all the pixels are uncorrelated, then
cN = 1. If N pixels are correlated, then their tests will be dependent on each
other, and so cN =

∑N
i=1 i−1. Hopkins et al. (2002) consider real radio data,

where the pixels are correlated over the beam. For the calculations done in
Duchamp, N = 2B, where B is the beam size in pixels, calculated from the
FITS header (if the correct keywords – BMAJ, BMIN – are not present, the
size of the beam is taken from the parameter beamSize). The factor of 2
comes about because we treat neighbouring channels as correlated. In the
case of a two-dimensional image, we just have N = B.

The theory behind the FDR method implies a direct connection between
the choice of α and the fraction of detections that will be false positives.

3 WHAT DUCHAMP IS DOING 21

These detections, however, are individual pixels, which undergo a process
of merging and rejection (§3.7), and so the fraction of the final list of de-
tected objects that are false positives will be much smaller than α. See the
discussion in §5.

3.7 Merging and growing detected objects

The searching step produces a list of detected objects that will have many
repeated detections of a given object – for instance, spectral detections in
adjacent pixels of the same object and/or spatial detections in neighbouring
channels. These are then combined in an algorithm that matches all objects
judged to be “close”, according to one of two criteria.

One criterion is to define two thresholds – one spatial and one in velocity
– and say that two objects should be merged if there is at least one pair of
pixels that lie within these threshold distances of each other. These thresh-
olds are specified by the parameters threshSpatial and threshVelocity
(in units of pixels and channels respectively).

Alternatively, the spatial requirement can be changed to say that there
must be a pair of pixels that are adjacent – a stricter, but perhaps more
realistic requirement, particularly when the spatial pixels have a large an-
gular size (as is the case for Hi surveys). This method can be selected by
setting the parameter flagAdjacent to 1 (i.e. true) in the parameter file.
The velocity thresholding is done in the same way as the first option.

Once the detections have been merged, they may be “grown”. This is
a process of increasing the size of the detection by adding nearby pixels
(according to the threshSpatial and threshVelocity parameters) that
are above some secondary threshold. This threshold should be lower than
the one used for the initial detection, but above the noise level, so that faint
pixels are only detected when they are close to a bright pixel. This threshold
is specified via one of two input parameters. It can be given in terms of the
noise statistics via growthCut (which has a default value of 3σ), or it can
be directly given via growthThreshold. Note that if you have given the
detection threshold with the threshold parameter, the growth threshold
must be given with growthThreshold.

The use of the growth algorithm is controlled by the flagGrowth pa-
rameter – the default value of which is false. If the detections are grown,
they are sent through the merging algorithm a second time, to pick up any
detections that now overlap or have grown over each other.

Finally, to be accepted, the detections must span both a minimum num-
ber of channels (enabling the removal of any spurious single-channel spikes
that may be present), and a minimum number of spatial pixels. These num-
bers, as for the original detection step, are set with the minChannels and
minPix parameters. The channel requirement means a source must have at
least one set of minChannels consecutive channels to be accepted.

4 OUTPUTS 22

4 Outputs

4.1 During execution

Duchamp provides the user with feedback whilst it is running, to keep the
user informed on the progress of the analysis. Most of this consists of self-
explanatory messages about the particular stage the program is up to. The
relevant parameters are printed to the screen at the start (once the file has
been successfully read in), so the user is able to make a quick check that the
setup is correct (see Appendix app-input for an example).

If the cube is being trimmed (§3.2), the resulting dimensions are printed
to indicate how much has been trimmed. If a reconstruction is being done,
a continually updating message shows either the current iteration and scale,
compared to the maximum scale (when reconDim = 3), or a progress bar
showing the amount of the cube that has been reconstructed (for smaller
values of reconDim).

During the searching algorithms, the progress through the search is
shown. When completed, the number of objects found is reported (this
is the total number found, before any merging is done).

In the merging process (where multiple detections of the same object
are combined – see §3.7), two stages of output occur. The first is when
each object in the list is compared with all others. The output shows two
numbers: the first being how far through the list the current object is, and
the second being the length of the list. As the algorithm proceeds, the
first number should increase and the second should decrease (as objects are
combined). When the numbers meet, the whole list has been compared.
If the objects are being grown, a similar output is shown, indicating the
progress through the list. In the rejection stage, in which objects not meeting
the minimum pixels/channels requirements are removed, the total number
of objects remaining in the list is shown, which should steadily decrease with
each rejection until all have been examined. Note that these steps can be
very quick for small numbers of detections.

Since this continual printing to screen has some overhead of time and
CPU involved, the user can elect to not print this information by setting the
parameter verbose = false. In this case, the user is still informed as to
the steps being undertaken, but the details of the progress are not shown.

There may also be Warning or Error messages printed to screen. The
Warning messages occur when something happens that is unexpected (for
instance, a desired keyword is not present in the FITS header), but not
detrimental to the execution. An Error message is something more serious,
and indicates some part of the program was not able to complete its task.
The message will also indicate which function or subroutine generated it –
this is primarily a tool for debugging, but can be useful in determining what
went wrong.

4 OUTPUTS 23

4.2 Text-based output files

4.2.1 Table of results

Finally, we get to the results – the reason for running Duchamp in the first
place. Once the detection list is finalised, it is sorted by the mean velocity
of the detections (or, if there is no good WCS associated with the cube, by
the mean z-pixel position). The results are then printed to the screen and
to the output file, given by the OutFile parameter.

The output consists of two sections. First, a list of the parameters are
printed to the output file, for future reference. Next, the detection threshold
that was used is given, so comparison can be made with other searches. The
statistics estimating the noise parameters are given (see §3.6.2). Thirdly,
the number of detections are reported.

All this information, known as the “header”, can either be written to
the start of the output file (denoted by the parameter OutFile), or written
to a separate file from the list of detections. This second option is activated
by the parameter flagSeparateHeader, and the information is written to
the file given by HeaderFile.

The most interesting part, however, is the list of detected objects. This
list, an example of which can be seen in Appendix D, contains the following
columns (note that the title of the columns depending on WCS information
will depend on the details of the WCS projection: they are shown below for
the Equatorial and Galactic projection cases).

Obj#: The ID number of the detection (simply the sequential
count for the list, which is ordered by increasing velocity,
or channel number, if the WCS is not good enough to
find the velocity).

Name: The “IAU”-format name of the detection (derived from
the WCS position – see below for a description of the
format).

X,Y,Z: The “centre” pixel position, determined by the input
parameter pixelCentre.

RA/GLON: The Right Ascension or Galactic Longitude of the centre
of the object.

DEC/GLAT: The Declination or Galactic Latitude of the centre of the
object.

VEL: The mean velocity of the object [units given by the
spectralUnits parameter].

w RA/w GLON: The width of the object in Right Ascension or Galactic
Longitude (depending on FITS coordinates) [arcmin].

4 OUTPUTS 24

w DEC/w GLAT: The width of the object in Declination Galactic Latitude
[arcmin].

w 50: The velocity width of the detection at 50% of the peak
flux (the measured full-width at half-maximum, FWHM),
in velocity units [see note below].

F int: The integrated flux over the object, in the units of flux
times velocity, corrected for the beam if necessary.

F peak: The peak flux over the object, in the units of flux.

S/Nmax: The signal-to-noise ratio at the peak pixel.

X1, X2: The minimum and maximum X-pixel coordinates.

Y1, Y2: The minimum and maximum Y-pixel coordinates.

Z1, Z2: The minimum and maximum Z-pixel coordinates.

Npix: The number of voxels (i.e. distinct (x, y, z) coordinates)
in the detection.

Flag: Whether the detection has any warning flags (see below).

These parameters are written to the screen during execution. There
are alternative ways of calculating the total flux, the position and velocity
width, however, and so additional parameters are written to the output file:

w 20: The velocity width of the detection at 20% of the peak
flux, in velocity units [see note below].

w VEL: The full velocity width of the detection (max channel −
min channel, in velocity units).

F tot: The sum of the flux values of all detected voxels.

X av, Y av, Z av:The average pixel value in each axis direction i.e. X av is
the average of the x-values of all pixels in the detection.

X cent, Y cent, Z cent:
The centroid position, being the flux-weighted average
of the pixels.

X peak, Y peak, Z peak:
The location of the pixel containing the peak flux value.

The velocity width of the detection is calculated at 50% and 20% of the
peak flux, as well as the full detected width (if the detection threshold is
greater than 20% or 50% of the peak, then these values will be the same as
w VEL. The type of position value given in the X, Y, Z columns in the screen
output is determined by the pixelCentre parameter. All three alternatives
are shown in the output file.

The user can specify the precision used to display the flux, velocity
and S/Nmax values, by using the input parameters precFlux, precVel and

4 OUTPUTS 25

precSNR respectively. These values apply to the tables written to the screen
and to the output file, as well as for the VOTable (see below).

The Name is derived from the WCS position. For instance, a source that
is centred on the RA,Dec position 12h53m45s, -36◦24′12′′ will be given the
name J125345−362412, if the epoch is J2000, or the name B125345−362412
if it is B1950. An alternative form is used for Galactic coordinates: a
source centred on the position (l,b) = (323.1245, 5.4567) will be called
G323.124+05.457. If the WCS is not valid (i.e. is not present or does not
have all the necessary information), the Name, RA, DEC, VEL and related
columns are not printed, but the pixel coordinates are still provided.

The velocity units can be specified by the user, using the parameter
spectralUnits (enter it as a single string with no spaces). The default
value is km/s, which should be suitable for most users. These units are
also used to give the units of integrated flux. Note that if there is no rest
frequency specified in the FITS header, the Duchamp output will instead
default to using Frequency, with units of MHz.

If the WCS is absent or not sufficiently specified, then all columns from
RA/GLON to w VEL will be left blank. Also, F int will be replaced with the
more simple F tot.

The Flag column contains any warning flags, such as:

• E – The detection is next to the spatial edge of the image, meaning
either the limit of the pixels, or the limit of the non-BLANK pixel
region.

• S – The detection lies at the edge of the spectral region.

• N – The total flux, summed over all the (non-BLANK) pixels in the
smallest box that completely encloses the detection, is negative. Note
that this sum is likely to include non-detected pixels. It is of use in
pointing out detections that lie next to strongly negative pixels, such
as might arise due to interference – the detected pixels might then also
be due to the interference, so caution is advised.

4.2.2 Other results lists

Three additional results files can also be requested. One option is a VOTable-
format XML file, containing just the RA, Dec, Velocity and the correspond-
ing widths of the detections, as well as the fluxes. The user should set
flagVOT = true, and put the desired filename in the parameter votFile –
note that the default is for it not to be produced. This file should be com-
patible with all Virtual Observatory tools (such as Aladin6 or TOPCAT7).

6http://aladin.u-strasbg.fr/
7http://www.star.bristol.ac.uk/ mbt/topcat/

http://aladin.u-strasbg.fr/
http://www.star.bristol.ac.uk/~mbt/topcat/

4 OUTPUTS 26

A second option is an annotation file for use with the Karma toolkit
of visualisation tools (in particular, with kvis). There are two options on
how objects are represented, governed by the annotationType parameter.
Setting this to borders results in a border being drawn around the spatial
pixels of the object, in a manner similar to that seen in Fig. 1. Note that
Karma/kvis does not always do this perfectly, so the lines may not be
directly lined up with pixel borders. The other option is annotationType
= circles. This will draw a circle at the position of each detection, scaled
by the spatial size of the detection, and number it according to the Obj#
given above. To make use of this option, the user should set flagKarma =
true, and put the desired filename in the parameter karmaFile – again, the
default is for it not to be produced.

The final optional results file produced is a simple text file that contains
the spectra for each detected object. The format of the file is as follows:
the first column has the spectral coordinate, over the full range of values;
the remaining columns represent the flux values for each object at the corre-
sponding spectral position. The flux value used is the same as that plotted
in the spectral plot detailed below, and governed by the spectralMethod
parameter. An example of what a spectral text file might look like is given
below:

1405.00219727 0.01323344 0.23648241 0.04202826 -0.00506790
1405.06469727 0.01302835 0.27393046 0.04686056 -0.00471084
1405.12719727 0.01583361 0.27760920 0.04114933 -0.01168737
1405.18969727 0.01271889 0.31489247 0.03307962 -0.00300790
1405.25219727 0.01597644 0.30401203 0.05356426 -0.00551653
1405.31469727 0.00773827 0.30031312 0.04074831 -0.00570147
1405.37719727 0.00738304 0.27921870 0.05272378 -0.00504959
1405.43969727 0.01353923 0.26132512 0.03667958 -0.00151006
1405.50219727 0.01119724 0.28987029 0.03497849 -0.00645589
1405.56469727 0.00813379 0.29839963 0.04711142 0.00536576
1405.62719727 0.00774377 0.26530230 0.04620502 0.00724631
1405.68969727 0.00576067 0.23215000 0.04995513 0.00290841
1405.75219727 0.00452834 0.16484940 0.04261605 -0.00612812
1405.81469727 0.01406293 0.15989439 0.03817926 -0.00758385
1405.87719727 0.01116611 0.11890682 0.05499069 -0.00626362
1405.93969727 0.00687582 0.10620256 0.04743370 0.00055177
...

...
...

...
...

In addition to these three files, a log file can also be produced. As
the program is running, it also (optionally) records the detections made in
each individual spectrum or channel (see §3.6 for details on this process).
This is recorded in the file given by the parameter LogFile. This file does
not include the columns Name, RA, DEC, w RA, w DEC, VEL, w VEL. This
file is designed primarily for diagnostic purposes: e.g. to see if a given set
of pixels is detected in, say, one channel image, but does not survive the
merging process. The list of pixels (and their fluxes) in the final detection

4 OUTPUTS 27

Figure 1: An example of the spectral output. Note several of the features discussed
in the text: the red lines indicating the reconstructed spectrum; the blue dashed lines
indicating the spectral extent of the detection; the green hashed area indicating the Milky
Way channels that are ignored by the searching algorithm; the blue border showing its
spatial extent on the 0th moment map; and the 15 arcmin-long scale bar.

list are also printed to this file, again for diagnostic purposes. The file also
records the execution time, as well as the command-line statement used to
run Duchamp. The creation of this log file can be prevented by setting
flagLog = false (which is the default).

4.3 Graphical output

4.3.1 Mask image

It is possible to create a FITS file containing a mask array. This array is
designed to indicate the location of detected objects, by setting pixel values
to 1 for pixels in a detected object and 0 elsewhere. To create this FITS
file, set the input parameter flagOutputMask=true. The file will be given
the name image.MASK.fits (where the input image is called image.fits).

4.3.2 Spectral plots

As well as the output data file, a postscript file (with the filename given by
the spectralFile parameter) is created that shows the spectrum for each
detection, together with a small cutout image (the 0th moment) and basic
information about the detection (note that any flags are printed after the
name of the detection, in the format [E]). If the cube was reconstructed,
the spectrum from the reconstruction is shown in red, over the top of the
original spectrum. The spectral extent of the detected object is indicated by
two dashed blue lines, and the region covered by the “Milky Way” channels
is shown by a green hashed box. An example detection can be seen in Fig. 1.

The spectrum that is plotted is governed by the spectralMethod pa-
rameter. It can be either peak (the default), where the spectrum is from the
spatial pixel containing the detection’s peak flux; or sum, where the spec-
trum is summed over all spatial pixels, and then corrected for the beam size.

4 OUTPUTS 28

Figure 2: An example of the moment map created by Duchamp. The full extent of the
cube is covered, and the 0th moment of each object is shown (integrated individually over
all the detected channels). The purple line indicates the limit of the non-BLANK pixels.

The spectral extent of the detection is indicated with blue lines, and a zoom
is shown in a separate window.

The cutout image can optionally include a border around the spatial
pixels that are in the detection (turned on and off by the drawBorders
parameter – the default is true). It includes a scale bar in the bottom left
corner to indicate size – its length is indicated next to it (the choice of length
depends on the size of the image).

There may also be one or two extra lines on the image. A yellow line
shows the limits of the cube’s spatial region: when this is shown, the detected
object will lie close to the edge, and the image box will extend outside the
region covered by the data. A purple line, however, shows the dividing line
between BLANK and non-BLANK pixels. The BLANK pixels will always
be shown in black. The first type of line is always drawn, while the second
is governed by the parameter drawBlankEdges (whose default is true), and

4 OUTPUTS 29

obviously whether there are any BLANK pixel present.

4.3.3 Output for 2-dimensional images

When the input image is two-dimensional, with no spectral dimension, this
spectral plot would not make much sense. Instead, Duchamp creates a
similar postscript file that simply includes the text headers as well as the
0th-moment map of the detection. As for the normal spectral case, this file
will be written to the filename given by the spectralFile parameter.

4.3.4 Spatial maps

Finally, a couple of images are optionally produced: a 0th moment map of
the cube, combining just the detected channels in each object, showing the
integrated flux in grey-scale; and a “detection image”, a grey-scale image
where the pixel values are the number of channels that spatial pixel is de-
tected in. In both cases, if drawBorders = true, a border is drawn around
the spatial extent of each detection, and if drawBlankEdges = true, the
purple line dividing BLANK and non-BLANK pixels (as described above)
is drawn. An example moment map is shown in Fig. 2. The production or
otherwise of these images is governed by the flagMaps parameter.

The moment map is also displayed in a PGPlot XWindow (with the /xs
display option). This feature can be turned off by setting flagXOutput =
false – this might be useful if running Duchamp on a terminal with no
window display capability, or if you have set up a script to run it in a batch
mode.

The purpose of these images are to provide a visual guide to where the
detections have been made, and, particularly in the case of the moment
map, to provide an indication of the strength of the source. In both cases,
the detections are numbered (in the same sense as the output list and as
the spectral plots), and the spatial borders are marked out as for the cutout
images in the spectra file. Both these images are saved as postscript files
(given by the parameters momentMap and detectionMap respectively), with
the latter also displayed in a pgplot window (regardless of the state of
flagMaps).

4.4 Re-using previous detections

It may be the case that, once you have run Duchamp with a set of pa-
rameters, you are unsatisfied with the output spectra – perhaps you would
have preferred integrated rather than peak flux to be plotted. However, the
searching might have taken a while to run, and the thought of doing it again
just for different plots may be a bit off-putting.

Well, provided you have made a log file when running Duchamp (with
the flagLog=true setting), it is possible to do this easily without having to

4 OUTPUTS 30

go through the process of detecting your sources a second time. By using the
same input file, with the additional parameter usePrevious=true, the log
file that was created with a previous Duchamp run can be read to extract
each of the individual detections. The output stage is then run again, with
the parameters (in particular pixelCentre and spectralMethod) as given
in the input file.

Perhaps you would also like to extract a single source’s spectral plot
(e.g. for use in a journal paper). The use-previous method allows you to
specify particular sources to re-plot. Only these sources will be plotted in
the SpectraFile file, and individual files will be created for each of the
listed sources. Their filenames will follow the format of SpectraFile: if,
SpectraFile=file.ps, source #3 will appear in file-03.ps. To give a
list of sources, use the objectList parameter, and provide a string with
individual object numbers or object ranges: e.g. 1,2,4-7,8,11.

5 NOTES AND HINTS ON THE USE OF DUCHAMP 31

5 Notes and hints on the use of Duchamp

In using Duchamp, the user has to make a number of decisions about the
way the program runs. This section is designed to give the user some idea
about what to choose.

The main choice is whether to alter the cube to try and enhance the
detectability of objects, by either smoothing or reconstructing via the à trous
method. The main benefits of both methods are the marked reduction in
the noise level, leading to regularly-shaped detections, and good reliability
for faint sources.

The main drawback with the à trous method is the long execution time:
to reconstruct a 170×160×1024 (hipass) cube often requires three iterations
and takes about 20-25 minutes to run completely. Note that this is for
the more complete three-dimensional reconstruction: using reconDim = 1
makes the reconstruction quicker (the full program then takes less than 5
minutes), but it is still the largest part of the time.

The smoothing procedure is computationally simpler, and thus quicker,
than the reconstruction. The spectral Hanning method adds only a very
small overhead on the execution, and the spatial Gaussian method, while
taking longer, will be done (for the above example) in less than 2 minutes.
Note that these times will depend on the size of the filter/kernel used: a
larger filter means more calculations.

The searching part of the procedure is much quicker: searching an un-
reconstructed cube leads to execution times of less than a minute. Alter-
natively, using the ability to read in previously-saved reconstructed arrays
makes running the reconstruction more than once a more feasible prospect.

On the positive side, the shape of the detections in a cube that has
been reconstructed or smoothed will be much more regular and smooth –
the ragged edges that objects in the raw cube possess are smoothed by the
removal of most of the noise. This enables better determination of the shapes
and characteristics of objects.

While the time overhead is larger for the reconstruction case, it will
potentially provide a better recovery of real sources than the smoothing
case. This is because it probes the full range of scales present in the cube (or
spectral domain), rather than the specific scale determined by the Hanning
filter or Gaussian kernel used in the smoothing.

When considering the reconstruction method, note that the 2D recon-
struction (reconDim = 2) can be susceptible to edge effects. If the valid area
in the cube (i.e. the part that is not BLANK) has non-rectangular edges,
the convolution can produce artefacts in the reconstruction that mimic the
edges and can lead (depending on the selection threshold) to some spurious
sources. Caution is advised with such data – the user is advised to check
carefully the reconstructed cube for the presence of such artefacts. Note,
however, that the 1- and 3-dimensional reconstructions are not susceptible

5 NOTES AND HINTS ON THE USE OF DUCHAMP 32

in the same way, since the spectral direction does not generally exhibit these
BLANK edges, and so we recommend the use of either of these.

If one chooses the reconstruction method, a further decision is required
on the signal-to-noise cutoff used in determining acceptable wavelet coeffi-
cients. A larger value will remove more noise from the cube, at the expense
of losing fainter sources, while a smaller value will include more noise, which
may produce spurious detections, but will be more sensitive to faint sources.
Values of less than about 3σ tend to not reduce the noise a great deal and
can lead to many spurious sources (this depends, of course on the cube
itself).

The smoothing options have less parameters to consider: basically just
the size of the smoothing function or kernel. Spectrally smoothing with a
Hanning filter of width 3 (the smallest possible) is very efficient at removing
spurious one-channel objects that may result just from statistical fluctua-
tions of the noise. One may want to use larger widths or kernels of larger
size to look for features of a particular scale in the cube.

When it comes to searching, the FDR method produces more reliable
results than simple sigma-clipping, particularly in the absence of reconstruc-
tion. However, it does not work in exactly the way one would expect for a
given value of alpha. For instance, setting fairly liberal values of alpha (say,
0.1) will often lead to a much smaller fraction of false detections (i.e. much
less than 10%). This is the effect of the merging algorithms, that combine
the sources after the detection stage, and reject detections not meeting the
minimum pixel or channel requirements. It is thus better to aim for larger
alpha values than those derived from a straight conversion of the desired
false detection rate.

If the FDR method is not used, caution is required when choosing the
S/N cutoff. Typical cubes have very large numbers of pixels, so even an
apparently large cutoff will still result in a not-insignificant number of de-
tections simply due to random fluctuations of the noise background. For
instance, a 4σ threshold on a cube of Gaussian noise of size 100×100×1024
will result in ∼ 340 detections. This is where the minimum channel and
pixel requirements are important in rejecting spurious detections.

Finally, as Duchamp is still undergoing development, there are some
elements that are not fully developed. In particular, it is not as clever as I
would like at avoiding interference. The ability to place requirements on the
minimum number of channels and pixels partially circumvents this problem,
but work is being done to make Duchamp smarter at rejecting signals that
are clearly (to a human eye at least) interference. See the following section
for further improvements that are planned.

6 FUTURE DEVELOPMENTS 33

6 Future developments

Here are lists of planned improvements and a wish-list of features that would
be nice to include (but are not planned in the immediate future). Let me
know if there are items not on these lists, or items on the list you would like
prioritised.

Planned developments:

• Parallelisation of the code, to improve speed particularly on multi-core
machines.

• Better determination of the noise characteristics of spectral-line cubes,
including understanding how the noise is generated and developing a
model for it.

• Include more source analysis. Examples could be: shape information;
measurements of HI mass; more variety of measurements of velocity
width and profile.

• Improved ability to reject interference, possibly on the spectral shape
of features.

• Ability to separate (de-blend) distinct sources that have been merged.

Wish-list:

• Incorporation of Swinburne’s S2PLOT 8 code for improved visualisa-
tion.

• Link to lists of possible counterparts (e.g. via NED/SIMBAD/other
VO tools?).

• On-line web service interface, so a user can upload a cube and get back
a source-list.

• Embed Duchamp in a GUI, to move away from the text-based inter-
action.

7 Why “Duchamp”?

Well, it’s important for a program to have a name, and the initial working
title of cubefind was somewhat uninspiring. I wanted to avoid the classic
astronomical approach of designing a cute acronym, and since it is designed
to work on cubes, I looked at naming it after a cubist. Picasso, sadly,
was already taken (Minchin 1999), so I settled on naming it after Marcel
Duchamp, another cubist, but also one of the first artists to work with
“found objects”.

8http://astronomy.swin.edu.au/s2plot/

http://astronomy.swin.edu.au/s2plot/

REFERENCES 34

References

M.R. Calabretta and E.W. Greisen. “Representations of celestial coordinates
in FITS”. A&A, 395:1077–1122, December 2002. .

E.W. Greisen and M.R. Calabretta. “Representations of world coordinates
in FITS”. A&A, 395:1061–1075, December 2002.

R.J. Hanisch, A. Farris, E.W. Greisen, W.D. Pence, B.M. Schlesinger, P.J.
Teuben, R.W. Thompson, and A. Warnock. “Definition of the Flexible
Image Transport System (FITS)”. A&A, 376:359–380, September 2001.

A.M. Hopkins, C.J. Miller, A.J. Connolly, C. Genovese, R.C. Nichol, and
L. Wasserman. “A New Source Detection Algorithm Using the False-
Discovery Rate”. AJ, 123:1086–1094, February 2002.

R.K. Lutz. “An algorithm for the real time analysis of digitised images”.
The Computer Journal, 23:262–269, 1980.

M.J. Meyer et al. “The HIPASS catalogue - I. Data presentation”. MNRAS,
350:1195–1209, June 2004.

C.J. Miller, C. Genovese, R.C. Nichol, L. Wasserman, A. Connolly, D. Re-
ichart, A. Hopkins, J. Schneider, and A. Moore. “Controlling the False-
Discovery Rate in Astrophysical Data Analysis”. AJ, 122:3492–3505, De-
cember 2001.

R.F. Minchin. “Finding the Bivariate Brightness Distribution of Galaxies
from an HI Selected Sample”. PASA, 16:12–17, 1999.

J.-L. Starck and F. Murtagh. “Astronomical Image and Data Analysis”.
Springer, 2002.

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...395%.1077C&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%26A...395%.1061G&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001A%26A...376..359H&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002AJ....123.1086H&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004MNRAS.350.1195M&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004MNRAS.350.1195M&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001AJ....122.3492M&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001AJ....122.3492M&db_key=AST

A OBTAINING AND INSTALLING DUCHAMP 35

A Obtaining and installing Duchamp

A.1 Installing

The Duchamp web page can be found at the following location:
http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
Here you can find a gzipped tar archive of the source code that can be
downloaded and extracted, as well as this User’s Guide in postscript and
hyperlinked PDF formats.

To build Duchamp, you will need three main external libraries: pgplot,
cfitsio (this needs to be version 2.5 or greater – version 3+ is better) and
wcslib. If these are not present on your system, you can download them
from the following locations:

• pgplot: http://www.astro.caltech.edu/ tjp/pgplot/

• cfitsio: http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

• wcslib: http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/index.html

A.1.1 Basic installation

Duchamp can be built on Unix/Linux systems by typing (assuming that the
prompt your terminal provides is a > – don’t type this character!):

> ./configure

> make

> make lib (optional -- to create a library for development purposes)

> make clean (optional -- to remove the object files)

> make install

This default setup will search in standard locations for the necessary
libraries, and install the executable (‘‘Duchamp’’) in /usr/local/bin (a
copy will also be in the current directory). The library (if you’ve made it)
will be installed in /usr/local/lib, and the full set of header files will be
installed in /usr/local/include/duchamp and subdirectories thereof. If
you want these to go somewhere else, e.g. if you don’t have write-access
to that directory, or you need to tweak the libraries, see the next section.
Otherwise, jump to the testing section.

A.1.2 Tweaking the installation process

The configure script allows the user to tailor the installation according to
the particular requirements of their system.

To install Duchamp in a directory other than /usr/local/bin, use the
--prefix option with configure, specifying the directory above the bin/
directory e.g.

http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
http://www.astro.caltech.edu/~tjp/pgplot/
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/index.html

A OBTAINING AND INSTALLING DUCHAMP 36

> ./configure --prefix=/home/mduchamp

and then run make, (make lib if you like), and make install as stated
above. This will put the binary in the directory /home/mduchamp/bin. The
library, if made, will be put in /home/mduchamp/lib and the header files in
/home/mduchamp/include/duchamp and subdirectories.

If the above-mentioned libraries have been installed in non-standard
locations, or you have more than one version installed on your system,
you can specify specific locations by using the --with-cfitsio=<dir>,
--with-wcslib=<dir> or --with-pgplot=<dir> flags. For example:

> ./configure --with-wcslib=/home/mduchamp/wcslib-4.2

Duchamp can be compiled without pgplot if it is not installed on your
system – the searching and text-based output remains the same, but you
will not have any graphical output. To manually specify this option, use the
--without-pgplot flag:

> ./configure --without-pgplot

(Note that CFITSIO and WCSLIB are essential, however, so flags such
as --without-wcslib or --without-cfitsio will not work.). Even if you
do not give the --without-pgplot option, and the pgplot library is not
found, Duchamp will still compile (albeit without graphical capabilities).

An additional option that is useful is the ability to specify which compiler
to use. This is very important for the Fortran compiler (used for linking due
to the use of pgplot), particularly on Mac OS X, where gfortran is often
used instead of gcc. To specify a particular Fortran compiler, use the F77
flag:

> ./configure F77=gfortran

Of course, all desired flags should be combined in one configure call.
For a full list of the options with configure, run:

> ./configure --help

Once configure has run correctly, simply run make and make install to
build Duchamp and put it in the correct place (either /usr/local/bin or
the location given by the --prefix option discussed above).

A.1.3 Making sure it all works

Running make will create the executable Duchamp-1.1.6. You can verify
that it is running correctly by running the verification shell script:

> ./VerifyDuchamp.sh

A OBTAINING AND INSTALLING DUCHAMP 37

This will use a dummy FITS image in the verification/ directory – this
image has some Gaussian random noise, with five Gaussian sources present,
plus a dummy WCS. The script runs Duchamp on this image with four dif-
ferent sets of inputs, and compares to known results, looking for differences
and reporting any. There should be none reported if everything is working
correctly. You can then install Duchamp on your system via:

> make install

A.2 Running Duchamp

You can then run Duchamp on your own data. This can be done in one of
two ways. The first is:

> Duchamp -f [FITS file]

where [FITS file] is the file you wish to search. This method simply uses
the default values of all parameters.

The second method allows some determination of the parameter values
by the user. Type:

> Duchamp -p [parameter file]

where [parameterFile] is a file with the input parameters, including the
name of the cube you want to search. There are two example input files
included with the distribution. The smaller one, InputExample, shows the
typical parameters one might want to set. The large one, InputComplete,
lists all possible parameters that can be entered, and a brief description
of them. To get going quickly, just replace the "your-file-here" in the
InputExample file with your image name, and type

> Duchamp -p InputExample

To disable the use of X-window plotting (in displaying the map of detec-
tions), one can either set the parameter flagXOutput = false or use the
-x command-line option:

> Duchamp -x -p [parameter file] , or
> Duchamp -x -f [FITS file]

The following appendices provide details on the individual parameters,
and show examples of the output files that Duchamp produces.

A.3 Feedback

It may happen that you discover bugs or problems with Duchamp, or you
have suggestions for improvements or additional features to be included in
future releases. You can submit a “ticket” (a trackable bug report) at the

A OBTAINING AND INSTALLING DUCHAMP 38

Duchamp Trac wiki at the following location:
http://svn.atnf.csiro.au/trac/duchamp/newticket
(there is a link to this page from the Duchamp website).

There is also an email exploder, duchamp-user[at]atnf.csiro.au, that
users can subscribe to keep up to date with changes, updates, and other
news about Duchamp. To subscribe, send an email (from the account you
wish to subscribe to the list) to duchamp-user-request[at]atnf.csiro.au with
the single word “subscribe” in the body of the message. To be removed
from this list, send a message with “unsubscribe” in its body to the same
address.

A.4 Beta Versions

On the Duchamp website there may be a beta version listed in the downloads
section. As Duchamp is still under development, there will be times when
there has been new functionality added to the code, but the time has not
yet come to release a new minor (or indeed major) version.

Sometimes I will post the updated version of the code on the website as a
“beta” version, particularly if I’m interested in people testing it. It will not
have been tested as rigorously as the proper releases, but it will certainly
work in the basic cases that I use to test it during development. So feel free
to give it a try – the CHANGES file will usually detail what is different to the
last numbered release.

http://svn.atnf.csiro.au/trac/duchamp/newticket

B AVAILABLE PARAMETERS 39

B Available parameters

The full list of parameters that can be listed in the input file are given here.
If not listed, they take the default value given in parentheses. Since the
order of the parameters in the input file does not matter, they are grouped
here in logical sections.

Input related

ImageFile [no default]:
The filename of the data cube to be analysed.

flagSubsection [false]:
A flag to indicate whether one wants a subsection of the
requested image.

Subsection [[*,*,*]]:
The requested subsection – see §3.1 for details on the
subsection format. If the full range of a dimension is
required, use a * (thus the default is the full cube).

flagReconExists [false]:
A flag to indicate whether the reconstructed array has
been saved by a previous run of Duchamp. If set true,
the reconstructed array will be read from the file given
by reconFile, rather than calculated directly.

reconFile [no default]:
The FITS file that contains the reconstructed array. If
flagReconExists is true and this parameter is not de-
fined, the default file that is looked for will be deter-
mined by the à trous parameters (see §3.3).

flagSmoothExists [false]:
A flag to indicate whether the Hanning-smoothed array
has been saved by a previous run of Duchamp. If set
true, the smoothed array will be read from the file given
by smoothFile, rather than calculated directly.

smoothFile [no default]:
The FITS file that has a previously smoothed array. If
flagSmoothExists is true and this parameter is not de-
fined, the default file that is looked for will be deter-
mined by the smoothing parameters (see §3.4).

usePrevious [false]:
A flag to indicate that Duchamp should read the list of
objects from a previously-created log file, rather than
doing the searching itself. The set of outputs will be
created according to the flags in the following section.

B AVAILABLE PARAMETERS 40

objectList [no default]:
When usePrevious=true, this list is used to output in-
dividual spectral plots, as well as a postscript file for all
spectral plots as given by SpectraFile. The filenames
of the plots will be the same as SpectraFile, but with
-XX at the end, where XX is the object number (e.g.
duchamp-Spectra-07.ps). The format of the parame-
ter value should be a string listing individual objects or
object ranges: e.g. 1,2,4-7,8,14.

Output related

OutFile [duchamp-Results.txt]:
The file containing the final list of detections. This also
records the list of input parameters.

flagSeparateHeader [false]:
A flag to indicate that the header information that would
normally be printed at the start of the results file (con-
taining information on the parameters, image statistics
and number of detections) should instead be written to
a separate file.

HeaderFile [duchamp-Results.hdr]:
The file to which the header information should be writ-
ten when flagSeparateHeader=true.

SpectraFile [duchamp-Spectra.ps]:
The postscript file containing the resulting integrated
spectra and images of the detections.

flagTextSpectra [false]:
A flag to say whether the spectra should be saved in text
form in a single file. See below for a description.

spectraTextFile [duchamp-Spectra.txt]:
The file containing the spectra of each object in ascii for-
mat. This file will have a column showing the spectral
coordinates, and one column for each of the detected ob-
jects, showing the flux values as plotted in the graphical
output of spectraFile.

flagLog [false]:A flag to indicate whether the details of intermediate
detections should be logged.

LogFile [duchamp-Logfile.txt]:
The file in which intermediate detections are logged.
These are detections that have not been merged. This is
primarily for use in debugging and diagnostic purposes:
normal use of the program will probably not require it.

B AVAILABLE PARAMETERS 41

flagOutputMask [false]:
A flag to say whether or not to save a FITS file contain-
ing a mask array, with values 1 where there is a detected
object and 0 elsewhere. The filename will be derived ac-
cording to the naming scheme detailed in Section 4.3.1.

flagOutputRecon [false]:
A flag to say whether or not to save the reconstructed
cube as a FITS file. The filename will be derived ac-
cording to the naming scheme detailed in Section 3.5.

flagOutputResid [false]:
As for flagOutputRecon, but for the residual array –
the difference between the original cube and the recon-
structed cube. The filename will be derived according
to the naming scheme detailed in Section 3.5.

flagOutputSmooth [false]:
A flag to say whether or not to save the smoothed cube
as a FITS file. The filename will be derived according
to the naming scheme detailed in Section 3.4.

flagVOT [false]:A flag to say whether to create a VOTable file with the
detection information. This will be an XML file in the
Virtual Observatory VOTable format.

votFile [duchamp-Results.xml]:
The VOTable file with the list of final detections. Some
input parameters are also recorded.

flagKarma [false]:
A flag to say whether to create a Karma annotation file
corresponding to the information in outfile. This can
be used as an overlay in Karma programs such as kvis.

karmaFile [duchamp-Results.ann]:
The Karma annotation file showing the list of final de-
tections.

annotationType [borders]:
Which type of annotation plot to use. Specifying “bor-
ders” gives an outline around the detected spatial pixels,
while “circles” gives a circle centred on the centre of the
object with radius large enough to encompass all spatial
pixels.

flagMaps [true]:A flag to say whether to save postscript files showing the
0th moment map of the whole cube (parameter momentMap)
and the detection image (detectionMap).

momentMap [duchamp-MomentMap.ps]:
A postscript file containing a map of the 0th moment of

B AVAILABLE PARAMETERS 42

the detected sources, as well as pixel and WCS coordi-
nates.

detectionMap [duchamp-DetectionMap.ps]:
A postscript file with a map showing each of the detected
objects, coloured in greyscale by the number of detected
channels in each spatial pixel. Also shows pixel and
WCS coordinates.

flagXOutput [true]:
A flag to say whether to display a 0th moment map in a
PGPlot X-window. This will be in addition to any that
are saved to a file. This parameter can be overridden by
the use of the -x command-line option, which disables
the X-windows output.

newFluxUnits [no default]:
Flux units that the pixel values should be converted into.
These should be directly compatible with the existing
units, given by the BUNIT keyword.

precFlux [3]: The desired precision (i.e. number of decimal places) for
flux values given in the output files and tables.

precVel [3]: The desired precision (i.e. number of decimal places) for
velocity/frequency values given in the output files and
tables.

precSNR [2]: The desired precision (i.e. number of decimal places) for
the peak SNR value given in the output files and tables.

Modifying the cube

flagTrim [false]:
A flag to say whether to trim BLANK pixels from the
edges of the cube – these are typically pixels set to some
particular value because they fall outside the imaged
area, and trimming them can help speed up the exe-
cution.

flagMW [false]: A flag to say whether to ignore channels contaminated
by Milky Way (or other) emission – the searching algo-
rithms will not look at these channels.

maxMW [112]: The maximum channel number that contains “Milky
Way” emission.

minMW [75]: The minimum channel number that contains “Milky Way”
emission. Note that the range specified by maxMW and
minMW is inclusive.

B AVAILABLE PARAMETERS 43

flagBaseline [false]:
A flag to say whether to remove the baseline from each
spectrum in the cube for the purposes of reconstruction
and detection.

Detection related

General detection
flagStatSec [false]:

A flag indicating whether the statistics should be calcu-
lated on a subsection of the cube, rather than the full
cube. Note that this only applies to the statistics used
to determine the threshold, and not for other statistical
calculations (such as those in the reconstruction phase).

StatSec [[*,*,*]]:
The subsection of the cube used for calculating statistics
– see §3.1 for details on the subsection format. Only used
if flagStatSec=true.

flagRobustStats [true]:
A flag indicating whether to use the robust statistics
(median and MADFM) to estimate the noise parame-
ters, rather than the mean and rms. See §3.6.2 for de-
tails.

flagNegative [false]:
A flag indicating that the features of interest are nega-
tive. The cube is inverted prior to searching.

snrCut [3.]: The threshold, in multiples of σ above the mean.
threshold [no default]:

The actual value of the threshold. Normally the thresh-
old is calculated from the cube’s statistics, but the user
can manually specify a value to be used that overrides
the calculated value. If this is not specified, the calcu-
lated value is used, but this value will take precedence
over other means of calculating the threshold (i.e. via
snrCut or the FDR method).

flagGrowth [false]:
A flag indicating whether or not to grow the detected
objects to a smaller threshold.

growthCut [3.]: The smaller threshold using in growing detections. In
units of σ above the mean.

growthThreshold [no default]:
Alternatively, the threshold to which detections are grown
can be specified in flux units (in the same manner as the

B AVAILABLE PARAMETERS 44

threshold parameter). When the threshold parameter
is given, this option must be used instead of growthCut.

beamSize [10.]: The size of the beam in pixels. If the header keywords
BMAJ and BMIN are present, then these will be used
to calculate the beam size, and this parameter will be
ignored.

À trous reconstruction
flagATrous [false]:

A flag indicating whether or not to reconstruct the cube
using the à trous wavelet reconstruction. See §3.3 for
details.

reconDim [1]: The number of dimensions to use in the reconstruction.
1 means reconstruct each spectrum separately, 2 means
each channel map is done separately, and 3 means do
the whole cube in one go.

scaleMin [1]: The minimum wavelet scale to be used in the reconstruc-
tion. A value of 1 means “use all scales”.

scaleMax [0]: The maximum wavelet scale to be used in the recon-
struction. If the value is ≤ 0 then the maximum scale is
calculated from the size of the input array. Similarly, if
the value given is larger than this calculated value, the
calculated value is used instead.

snrRecon [4]: The thresholding cutoff used in the reconstruction – only
wavelet coefficients this many σ above the mean (or
greater) are included in the reconstruction.

filterCode [1]: The code number of the filter to use in the reconstruc-
tion. The options are:

•1: B3-spline filter: coefficients = (1
16 , 1

4 , 3
8 , 1

4 , 1
16)

•2: Triangle filter: coefficients = (1
4 , 1

2 , 1
4)

•3: Haar wavelet: coefficients = (0, 1
2 , 1

2)

Smoothing the cube

flagSmooth [false]:
A flag indicating whether to smooth the cube. See §3.4
for details.

smoothType [spectral]:
The smoothing method used: either “spectral” (with
a 1D Hanning filter) or “spatial” (with a 2D Gaussian
filter).

B AVAILABLE PARAMETERS 45

hanningWidth [5]:
The width of the Hanning smoothing kernel.

kernMaj [3]: The full-width-half-maximum (FWHM) of the 2D Gaus-
sian smoothing kernel’s major axis.

kernMin [3]: The FWHM of the 2D Gaussian smoothing kernel’s mi-
nor axis.

kernPA [0]: The position angle, in degrees, anticlockwise from verti-
cal (i.e. usually East of North).

FDR method

flagFDR [false]:A flag indicating whether or not to use the False Discov-
ery Rate method in thresholding the pixels.

alphaFDR [0.01]:The α parameter used in the FDR analysis. The aver-
age number of false detections, as a fraction of the total
number, will be less than α (see §3.6).

Merging detections

minPix [2]: The minimum number of spatial pixels for a single de-
tection to be counted.

minChannels [3]:At least one contiguous set of this many channels must
be present in the detection for it to be accepted.

flagAdjacent [true]:
A flag indicating whether to use the “adjacent pixel”
criterion to decide whether to merge objects. If not,
the next two parameters are used to determine whether
objects are within the necessary thresholds.

threshSpatial [3.]:
The maximum allowed minimum spatial separation (in
pixels) between two detections for them to be merged
into one. Only used if flagAdjacent = false.

threshVelocity [7.]:
The maximum allowed minimum channel separation be-
tween two detections for them to be merged into one.

Other parameters

spectralMethod [peak]:
This indicates which method is used to plot the output
spectra: peak means plot the spectrum containing the
detection’s peak pixel; sum means sum the spectra of

B AVAILABLE PARAMETERS 46

each detected spatial pixel, and correct for the beam
size. Any other choice defaults to peak.

spectralUnits [km/s]:
The user can specify the units of the spectral axis. As-
suming the WCS of the FITS file is valid, the spectral
axis is transformed into velocity, and put into these units
for all output and for calculations such as the integrated
flux of a detection.

pixelCentre [centroid]:
Which of the three ways of expressing the “centre” of
a detection (see §4.2.1 for a description of the options)
to use for the X, Y, & Z columns in the output list.
Alternatives are: centroid, peak, average.

drawBorders [true]:
A flag indicating whether to draw borders around the
detected objects in the moment maps included in the
output (see for example Fig. 1).

drawBlankEdges [true]:
A flag indicating whether to draw the dividing line be-
tween BLANK and non-BLANK pixels on the 2D images
(see for example Fig. 2).

verbose [true]: A flag indicating whether to print the progress of any
computationally intensive algorithms (e.g. reconstruc-
tion, searching or merging algorithms) to the screen.

C EXAMPLE PARAMETER FILES 47

C Example parameter files

This is what a typical parameter file would look like.

imageFile /home/mduchamp/fountain.fits
logFile logfile.txt
outFile results.txt
spectraFile spectra.ps
flagSubsection false
flagOutputRecon false
flagOutputResid 0
flagTrim 1
flagMW 1
minMW 75
maxMW 112
flagGrowth 1
growthCut 1.5
flagATrous 1
reconDim 1
scaleMin 1
snrRecon 4
flagFDR 1
alphaFDR 0.1
snrCut 3
threshSpatial 3
threshVelocity 7

Note that, as in this example, the flag parameters can be entered as
strings (true/false) or integers (1/0). Also, note that it is not necessary
to include all these parameters in the file, only those that need to be changed
from the defaults (as listed in Appendix B), which in this case would be very
few. A minimal parameter file might look like:

imageFile /home/mduchamp/fountain.fits
flagLog false
flagATrous 1
snrRecon 3
snrCut 2.5
minChannels 4

This will reconstruct the cube with a lower SNR value than the default, select
objects at a lower threshold, with a looser minimum channel requirement,
and not keep a log of the intermediate detections.

The following page demonstrates how the parameters are presented to
the user, both on the screen at execution time, and in the output and log

C EXAMPLE PARAMETER FILES 48

files. On each line, there is a description on the parameter, the relevant
parameter name that is used in the input file (if there is one that the user
can enter), and the value of the parameter being used.

---- Parameters ----

Image to be analysed.........................[imageFile] = fountain.fits

Intermediate Logfile...........................[logFile] = duchamp-Logfile.txt

Final Results file.............................[outFile] = duchamp-Results.txt

Spectrum file..............................[spectraFile] = duchamp-Spectra.ps

0th Moment Map...............................[momentMap] = duchamp-MomentMap.ps

Detection Map.............................[detectionMap] = duchamp-DetectionMap.ps

Display a map in a pgplot xwindow?.........[flagXOutput] = true

Saving reconstructed cube?.............[flagoutputrecon] = false

Saving residuals from reconstruction?..[flagoutputresid] = false

Blank Pixel Value....................................... = -8.00061

Trimming Blank Pixels?........................[flagTrim] = true

Searching for Negative features?..........[flagNegative] = false

Removing Milky Way channels?....................[flagMW] = true

Milky Way Channels.......................[minMW - maxMW] = 75-112

Beam Size (pixels)...................................... = 10.1788

Removing baselines before search?.........[flagBaseline] = false

Smoothing each spectrum first?..............[flagSmooth] = false

Using A Trous reconstruction?...............[flagATrous] = true

Number of dimensions in reconstruction........[reconDim] = 1

Minimum scale in reconstruction...............[scaleMin] = 1

SNR Threshold within reconstruction...........[snrRecon] = 4

Filter being used for reconstruction........[filterCode] = 1 (B3 spline function)

Using FDR analysis?............................[flagFDR] = false

SNR Threshold (in sigma)........................[snrCut] = 3

Minimum # Pixels in a detection.................[minPix] = 2

Minimum # Channels in a detection..........[minChannels] = 3

Growing objects after detection?............[flagGrowth] = false

Using Adjacent-pixel criterion?...........[flagAdjacent] = true

Max. velocity separation for merging....[threshVelocity] = 7

Method of spectral plotting.............[spectralMethod] = peak

Type of object centre used in results......[pixelCentre] = centroid

D EXAMPLE RESULTS FILE 49

D
E
x
a
m

p
le

re
su

lt
s

fi
le

T
hi

s
th

e
ty

pi
ca

lc
on

te
nt

of
an

ou
tp

ut
fil

e,
af

te
r

ru
nn

in
g

D
uc

ha
m

p
w

it
h

th
e

pa
ra

m
et

er
s

ill
us

tr
at

ed
on

th
e

pr
ev

io
us

pa
ge

.
T

he
ta

bl
e

is
sp

lit
ov

er
tw

o
pa

ge
s

so
th

at
it

ca
n

fit
.

R
e
s
u
l
t
s

o
f
t
h
e
D
u
c
h
a
m
p
s
o
u
r
c
e

f
i
n
d
e
r
:
T
h
u
M
a
y

3
1
2
:
1
5
:
4
4

2
0
0
7

-
-
-
-
P
a
r
a
m
e
t
e
r
s

-
-
-
-

(
.
.
.
o
m
i
t
t
e
d

f
o
r

c
l
a
r
i
t
y
-
-
s
e
e
p
r
e
v
i
o
u
s
p
a
g
e
f
o
r
e
x
a
m
p
l
e
s
.
.
.
)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
u
m
m
a
r
y

o
f
s
t
a
t
i
s
t
i
c
s
:

D
e
t
e
c
t
i
o
n
t
h
r
e
s
h
o
l
d
=

0
.
0
3
9
6
0
3
9
J
y
/
b
e
a
m

N
o
i
s
e
l
e
v
e
l

=
0
.
0
0
0
1
2
2
0
7
4
,
N
o
i
s
e
s
p
r
e
a
d

=
0
.
0
1
3
1
6
0
6

T
o
t
a
l
n
u
m
b
e
r

o
f

d
e
t
e
c
t
i
o
n
s
=
2
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

O
b
j
#

N
a
m
e

X
Y

Z
R
A

D
E
C

V
E
L

w
_
R
A

w
_
D
E
C

w
_
V
E
L

F
_
i
n
t

F
_
t
o
t

F
_
p
e
a
k

[
k
m
/
s
]

[
a
r
c
m
i
n
]
[
a
r
c
m
i
n
]

[
k
m
/
s
]
[
J
y
k
m
/
s
]

[
J
y
/
b
e
a
m
]

[
J
y
/
b
e
a
m
]

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
J
0
5
5
1
5
6
-
2
8
5
6
1
7

1
1
8
.
0

3
5
.
6

7
3
.
1

0
5
:
5
1
:
5
6
.
4
8
-
2
8
:
5
6
:
1
7
.
6
6
-
3
2
2
.
5
6
7

3
.
6
6

1
6
.
1
0

2
6
.
3
8
3

2
.
7
6
9

0
.
5
3
4

0
.
1
2
3

2
J
0
6
0
9
2
8
-
2
1
5
7
3
2

5
9
.
0
1
4
0
.
4
1
1
4
.
5

0
6
:
0
9
:
2
8
.
8
8
-
2
1
:
5
7
:
3
2
.
0
5

2
2
4
.
5
4
5

5
6
.
4
8

3
5
.
2
7

6
5
.
9
5
7

1
0
8
0
.
7
0
0

1
2
.
6
3
5

0
.
2
1
3

3
J
0
5
4
5
4
9
-
2
1
4
3
0
7

1
4
1
.
3
1
4
3
.
3
1
1
4
.
7

0
5
:
4
5
:
4
9
.
8
3
-
2
1
:
4
3
:
0
7
.
0
2

2
2
7
.
0
7
6

1
9
.
6
1

1
6
.
6
6

2
6
.
3
8
3

2
9
.
0
9
0

1
.
6
0
3

0
.
0
9
0

4
J
0
6
1
7
3
4
-
2
6
3
2
4
3

3
2
.
8

7
1
.
0
1
1
5
.
5

0
6
:
1
7
:
3
4
.
2
2
-
2
6
:
3
2
:
4
3
.
6
5

2
3
7
.
1
1
6

6
0
.
9
3

2
6
.
2
1

2
6
.
3
8
3

4
4
2
.
6
8
4

6
.
4
4
5

0
.
1
1
7

5
J
0
6
0
4
5
7
-
2
4
4
6
3
1

7
4
.
9

9
8
.
3
1
1
6
.
3

0
6
:
0
4
:
5
7
.
6
9
-
2
4
:
4
6
:
3
1
.
9
6

2
4
7
.
9
7
0

2
0
.
1
1

1
9
.
8
9

3
9
.
5
7
4

4
1
.
0
6
2

1
.
9
8
0

0
.
1
0
9

6
J
0
6
0
7
1
7
-
2
6
0
8
4
6

6
7
.
2

7
7
.
7
1
1
7
.
0

0
6
:
0
7
:
1
7
.
0
1
-
2
6
:
0
8
:
4
6
.
6
2

2
5
7
.
6
7
5

2
4
.
2
0

1
9
.
7
6

2
6
.
3
8
3

2
5
.
7
0
0

1
.
3
2
2

0
.
0
9
4

7
J
0
6
0
1
4
4
-
2
5
0
0
4
5

8
5
.
9

9
4
.
8
1
1
7
.
9

0
6
:
0
1
:
4
4
.
9
1
-
2
5
:
0
0
:
4
5
.
1
6

2
6
8
.
8
1
7

2
7
.
9
9

2
0
.
0
2

2
6
.
3
8
3

7
8
.
8
3
6

2
.
6
4
5

0
.
1
2
4

8
J
0
6
0
2
2
4
-
2
5
4
7
2
0

8
3
.
6

8
3
.
2
1
1
8
.
0

0
6
:
0
2
:
2
4
.
4
5
-
2
5
:
4
7
:
2
0
.
5
5

2
6
9
.
6
9
5

2
8
.
0
3

1
9
.
9
7

2
6
.
3
8
3

4
2
.
2
8
5

1
.
8
1
3

0
.
1
1
8

9
J
0
6
0
6
0
7
-
2
7
1
9
4
7

7
1
.
2

6
0
.
0
1
2
1
.
3

0
6
:
0
6
:
0
7
.
7
9
-
2
7
:
1
9
:
4
7
.
6
4

3
1
4
.
3
7
6

4
8
.
3
5

3
5
.
6
1

2
6
.
3
8
3

7
4
8
.
5
4
4

9
.
0
2
5

0
.
1
5
0

1
0

J
0
6
1
1
1
8
-
2
1
3
6
4
0

5
2
.
5
1
4
5
.
5

1
6
2
.
5

0
6
:
1
1
:
1
8
.
6
7

-
2
1
:
3
6
:
4
0
.
6
5

8
5
7
.
9
1
1

2
8
.
3
3

1
9
.
5
5

1
1
8
.
7
2
2

1
1
9
6
.
0
6
8

3
1
.
8
2
5

0
.
4
1
0

1
1

J
0
6
0
0
3
4
-
2
8
5
8
5
6

8
9
.
7

3
5
.
3

2
0
2
.
3

0
6
:
0
0
:
3
4
.
4
2

-
2
8
:
5
8
:
5
6
.
1
6

1
3
8
2
.
4
4
2

1
9
.
9
2

2
4
.
0
9

1
9
7
.
8
7
0

4
8
0
.
4
2
7

1
6
.
1
1
8

0
.
1
7
3

1
2

J
0
6
1
7
0
2
-
2
7
2
2
4
2

3
5
.
0

5
8
.
6

2
1
6
.
8

0
6
:
1
7
:
0
2
.
0
6

-
2
7
:
2
2
:
4
2
.
4
2

1
5
7
3
.
3
7
5

1
6
.
5
1

1
5
.
5
3

5
2
.
7
6
5

1
6
.
1
9
3

1
.
3
8
8

0
.
0
7
8

1
3

J
0
5
5
8
4
8
-
2
6
4
0
4
7

9
5
.
7

6
9
.
8

2
2
3
.
3

0
5
:
5
8
:
4
8
.
7
4

-
2
6
:
4
0
:
4
7
.
9
3

1
6
5
8
.
8
6
7

7
.
9
5

8
.
0
5

3
9
.
5
7
4

1
.
0
3
5

0
.
2
6
6

0
.
0
6
2

1
4

J
0
5
5
8
4
8
-
2
5
2
5
2
6

9
5
.
8

8
8
.
6

2
3
2
.
2

0
5
:
5
8
:
4
8
.
8
2

-
2
5
:
2
5
:
2
6
.
3
0

1
7
7
6
.
7
9
3

1
9
.
9
1

1
6
.
1
1

2
3
7
.
4
4
4

1
1
8
.
1
7
5

7
.
0
1
4

0
.
1
1
5

1
5

J
0
6
0
0
5
3
-
2
1
4
2
2
5

8
8
.
9
1
4
4
.
3

2
3
3
.
0

0
6
:
0
0
:
5
3
.
2
2

-
2
1
:
4
2
:
2
5
.
4
6

1
7
8
7
.
7
4
1

2
7
.
9
5

2
4
.
1
3

2
1
1
.
0
6
1

9
2
4
.
8
5
3

2
0
.
9
8
9

0
.
1
6
6

1
6

J
0
6
0
4
4
4
-
2
6
0
6
3
5

7
5
.
8

7
8
.
3

2
3
3
.
3

0
6
:
0
4
:
4
4
.
3
8

-
2
6
:
0
6
:
3
5
.
3
8

1
7
9
0
.
6
3
4

2
0
.
1
1

1
9
.
9
0

2
3
7
.
4
4
4

3
3
4
.
3
6
2

1
5
.
1
7
7

0
.
1
5
5

1
7

J
0
6
1
7
0
7
-
2
7
2
4
5
9

3
4
.
7

5
8
.
0

2
3
4
.
8

0
6
:
1
7
:
0
7
.
9
3

-
2
7
:
2
4
:
5
9
.
9
6

1
8
1
1
.
0
1
5

1
6
.
3
9

1
1
.
5
3

1
0
5
.
5
3
1

3
7
.
0
2
2

2
.
5
9
7

0
.
0
9
3

1
8

J
0
6
0
1
0
7
-
2
3
3
9
5
8

8
8
.
0
1
1
5
.
0

2
3
5
.
5

0
6
:
0
1
:
0
7
.
2
8

-
2
3
:
3
9
:
5
8
.
5
4

1
8
2
0
.
5
9
7

2
7
.
9
6

2
8
.
0
7

2
7
7
.
0
1
8

2
9
0
2
.
8
9
1

5
8
.
9
4
6

0
.
2
9
7

1
9

J
0
6
1
5
3
6
-
2
2
3
5
3
9

3
7
.
9
1
3
0
.
4

2
5
4
.
4

0
6
:
1
5
:
3
6
.
8
6

-
2
2
:
3
5
:
3
9
.
0
7

2
0
6
9
.
2
3
5

8
.
1
9

7
.
8
0

5
2
.
7
6
5

2
.
3
1
7

0
.
5
9
6

0
.
0
6
9

2
0

J
0
6
1
2
0
9
-
2
1
4
9
1
4

4
9
.
6
1
4
2
.
3

2
6
9
.
9

0
6
:
1
2
:
0
9
.
6
7

-
2
1
:
4
9
:
1
4
.
6
1

2
2
7
3
.
5
3
3

1
6
.
2
7

1
5
.
7
3

3
8
2
.
5
4
8

1
5
1
.
9
6
1

9
.
7
7
1

0
.
1
0
1

2
1

J
0
6
0
9
2
5
-
2
2
3
2
0
5

5
9
.
3
1
3
1
.
8

2
9
5
.
5

0
6
:
0
9
:
2
5
.
4
3

-
2
2
:
3
2
:
0
5
.
2
9

2
6
1
1
.
2
2
7

2
0
.
6
0

4
7
.
8
0

2
6
.
3
8
3

6
5
.
7
2
4

2
.
1
1
3

0
.
1
7
7

2
2

J
0
6
1
6
2
2
-
2
1
3
3
0
4

3
4
.
9
1
4
6
.
0

2
9
8
.
5

0
6
:
1
6
:
2
2
.
9
6

-
2
1
:
3
3
:
0
4
.
0
2

2
6
5
0
.
7
1
4

1
6
.
2
1

7
.
5
8

1
5
8
.
2
9
6

1
9
.
0
0
0

2
.
9
3
2

0
.
1
2
7

2
3

J
0
5
5
5
0
5
-
2
9
5
6
1
5
1
0
7
.
4

2
0
.
8

3
6
7
.
5

0
5
:
5
5
:
0
5
.
8
1

-
2
9
:
5
6
:
1
5
.
4
5

3
5
6
1
.
6
5
7

1
5
.
7
0

2
0
.
2
6

5
2
.
7
6
5

8
4
.
7
5
0

3
.
8
4
7

0
.
1
6
9

2
4

J
0
5
5
7
4
3
-
2
2
4
8
0
9

9
9
.
8
1
2
7
.
9

4
3
3
.
1

0
5
:
5
7
:
4
3
.
2
0

-
2
2
:
4
8
:
0
9
.
3
8

4
4
2
7
.
1
6
9

7
.
8
9

1
6
.
0
9

1
9
7
.
8
7
0

1
0
.
4
6
7

1
.
3
4
6

0
.
1
6
7

2
5

J
0
5
5
2
0
4
-
2
2
1
5
5
8
1
1
9
.
4
1
3
5
.
6

4
3
3
.
9

0
5
:
5
2
:
0
4
.
6
5

-
2
2
:
1
5
:
5
8
.
5
4

4
4
3
7
.
0
9
1

7
.
6
8

2
0
.
1
9

5
2
.
7
6
5

4
.
7
2
5

0
.
7
2
9

0
.
1
7
3

2
6

J
0
5
5
1
4
7
-
2
1
5
8
4
9
1
2
0
.
5
1
3
9
.
9

4
3
4
.
2

0
5
:
5
1
:
4
7
.
1
9

-
2
1
:
5
8
:
4
9
.
7
2

4
4
4
1
.
3
4
4

1
1
.
7
4

1
6
.
2
7

2
6
.
3
8
2

4
.
7
0
1

0
.
7
2
5

0
.
1
8
1

2
7

J
0
6
0
2
4
6
-
2
1
5
6
2
0

8
2
.
3
1
4
0
.
9

4
3
4
.
5

0
6
:
0
2
:
4
6
.
5
9

-
2
1
:
5
6
:
2
0
.
0
3

4
4
4
5
.
0
6
6

8
.
0
1

8
.
0
1

1
9
7
.
8
7
0

5
.
5
7
6

1
.
4
3
4

0
.
2
9
4

2
8

J
0
5
5
2
4
5
-
2
8
2
0
2
5
1
1
5
.
5

4
4
.
6

6
4
7
.
7

0
5
:
5
2
:
4
5
.
5
5

-
2
8
:
2
0
:
2
5
.
3
0

7
2
5
7
.
2
0
9

7
.
7
7

1
2
.
1
5

6
5
.
9
5
7

2
.
9
9
9

0
.
7
7
1

0
.
2
6
3

2
9

J
0
5
5
2
1
2
-
2
9
1
7
0
1
1
1
7
.
0

3
0
.
5

7
2
7
.
0

0
5
:
5
2
:
1
2
.
8
1

-
2
9
:
1
7
:
0
1
.
0
1

8
3
0
3
.
9
5
9

3
.
6
7

1
6
.
1
0

3
5
6
.
1
6
6

1
4
3
.
0
6
9

2
7
.
5
9
9

0
.
4
7
9

D EXAMPLE RESULTS FILE 50

.
.
.

c
o
n
t
i
n
u
e
d
.
.
.

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
/
N
m
a
x

X
1

X
2

Y
1

Y
2

Z
1

Z
2

N
p
i
x
F
l
a
g

X
_
a
v

Y
_
a
v

Z
_
a
v
X
_
c
e
n
t

Y
_
c
e
n
t
Z
_
c
e
n
t

X
_
p
e
a
k
Y
_
p
e
a
k

Z
_
p
e
a
k

[
p
i
x
]

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

9
.
3
7
1
1
8
1
1
8

3
4

3
7

7
2

7
4

6
1
1
8
.
0

3
5
.
7

7
3
.
0

1
1
8
.
0

3
5
.
6

7
3
.
1

1
1
8

3
6

7
3

1
6
.
1
4

5
2

6
5
1
3
6
1
4
4

1
1
3

1
1
8

1
5
1

5
9
.
1
1
4
0
.
4

1
1
4
.
6

5
9
.
0

1
4
0
.
4

1
1
4
.
5

5
9

1
4
0

1
1
4

6
.
8
2
1
3
9
1
4
3

1
4
2

1
4
5

1
1
4
1
1
6

2
4

1
4
1
.
3
1
4
3
.
3
1
1
4
.
7

1
4
1
.
3

1
4
3
.
3

1
1
4
.
7

1
4
1

1
4
4

1
1
5

8
.
9
0

2
6

4
0

6
8

7
4

1
1
5

1
1
7

8
1

E
3
2
.
8

7
1
.
1
1
1
5
.
5

3
2
.
8

7
1
.
0

1
1
5
.
5

3
5

7
0

1
1
5

8
.
2
6

7
3

7
7

9
6

1
0
0

1
1
5
1
1
8

2
7

7
4
.
9

9
8
.
4
1
1
6
.
4

7
4
.
9

9
8
.
3

1
1
6
.
3

7
4

9
8

1
1
6

7
.
1
4

6
5

7
0

7
6

8
0

1
1
6

1
1
8

2
0

6
7
.
2

7
7
.
7
1
1
7
.
0

6
7
.
2

7
7
.
7

1
1
7
.
0

6
6

7
8

1
1
7

9
.
4
1

8
3

8
9

9
3

9
7

1
1
7

1
1
9

3
6

8
5
.
9

9
4
.
8
1
1
7
.
9

8
5
.
9

9
4
.
8

1
1
7
.
9

8
5

9
5

1
1
8

8
.
9
5

8
0

8
6

8
1

8
5

1
1
7

1
1
9

2
4

8
3
.
6

8
3
.
1
1
1
7
.
9

8
3
.
6

8
3
.
2

1
1
8
.
0

8
4

8
3

1
1
8

1
1
.
3
6

6
5

7
6

5
5

6
3

1
2
0

1
2
2

1
1
5

7
1
.
2

6
0
.
0

1
2
1
.
3

7
1
.
2

6
0
.
0

1
2
1
.
3

7
2

6
1

1
2
1

3
1
.
1
7

4
9

5
5
1
4
3
1
4
7

1
5
8

1
6
7

2
2
5

E
5
2
.
5
1
4
5
.
3

1
6
2
.
5

5
2
.
5

1
4
5
.
5

1
6
2
.
5

5
3

1
4
6

1
6
4

1
3
.
1
3

8
8

9
2

3
3

3
8

1
9
5

2
1
0

2
1
8

8
9
.
7

3
5
.
3

2
0
2
.
4

8
9
.
7

3
5
.
3

2
0
2
.
3

9
0

3
6

1
9
7

5
.
9
4

3
3

3
6

5
7

6
0

2
1
5
2
1
9

2
3

3
5
.
0

5
8
.
6
2
1
6
.
9

3
5
.
0

5
8
.
6

2
1
6
.
8

3
5

5
8

2
1
5

4
.
6
8

9
5

9
6

6
9

7
0

2
2
2
2
2
5

6
9
5
.
7

6
9
.
8
2
2
3
.
3

9
5
.
7

6
9
.
8

2
2
3
.
3

9
6

6
9

2
2
3

8
.
7
7

9
3

9
7

8
7

9
0

2
2
1
2
3
9

1
1
5

9
5
.
7

8
8
.
6
2
3
1
.
8

9
5
.
8

8
8
.
6

2
3
2
.
2

9
6

8
9

2
3
7

1
2
.
5
7

8
6

9
2
1
4
2
1
4
7

2
2
3

2
3
9

2
8
0

E
8
8
.
8
1
4
4
.
3

2
3
2
.
5

8
8
.
9

1
4
4
.
3

2
3
3
.
0

8
9

1
4
4

2
3
3

1
1
.
7
3

7
4

7
8

7
6

8
0

2
2
4

2
4
2

2
1
8

7
5
.
8

7
8
.
4

2
3
3
.
2

7
5
.
8

7
8
.
3

2
3
3
.
3

7
6

7
8

2
4
0

7
.
0
5

3
3

3
6

5
7

5
9

2
2
9
2
3
7

4
4

3
4
.
7

5
8
.
1
2
3
4
.
5

3
4
.
7

5
8
.
0

2
3
4
.
8

3
5

5
8

2
3
6

2
2
.
5
4

8
5

9
1
1
1
2
1
1
8

2
2
5

2
4
6

5
3
5

8
8
.
0
1
1
5
.
0

2
3
5
.
8

8
8
.
0

1
1
5
.
0

2
3
5
.
5

8
8

1
1
5

2
3
1

5
.
2
4

3
7

3
8

1
3
0

1
3
1

2
5
2
2
5
6

1
1

3
7
.
9
1
3
0
.
5
2
5
4
.
2

3
7
.
9

1
3
0
.
4

2
5
4
.
4

3
8

1
3
1

2
5
6

7
.
6
5

4
8

5
1

1
4
1

1
4
4

2
5
7
2
8
6

1
7
5

4
9
.
6
1
4
2
.
3
2
7
0
.
3

4
9
.
6

1
4
2
.
3

2
6
9
.
9

5
0

1
4
2

2
5
9

1
3
.
4
5

5
7

6
1
1
2
7
1
3
8

2
9
5

2
9
7

2
5

5
9
.
1
1
3
2
.
0

2
9
5
.
6

5
9
.
3

1
3
1
.
8

2
9
5
.
5

6
0

1
3
2

2
9
5

9
.
6
5

3
3

3
6

1
4
5

1
4
6

2
9
3
3
0
5

4
0

E
3
4
.
9
1
4
6
.
0
2
9
8
.
8

3
4
.
9

1
4
6
.
0

2
9
8
.
5

3
4

1
4
6

2
9
7

1
2
.
8
5
1
0
6
1
0
9

1
9

2
3

3
6
6

3
7
0

4
2

1
0
7
.
5

2
0
.
9

3
6
7
.
6

1
0
7
.
4

2
0
.
8

3
6
7
.
5

1
0
8

2
1

3
6
7

1
2
.
7
1

9
9
1
0
0
1
2
7
1
3
0

4
2
3

4
3
8

1
7

N
9
9
.
7
1
2
8
.
1

4
3
3
.
3

9
9
.
8

1
2
7
.
9

4
3
3
.
1

1
0
0

1
2
7

4
3
2

1
3
.
1
7
1
1
9
1
2
0
1
3
3
1
3
7

4
3
1

4
3
5

8
1
1
9
.
5
1
3
5
.
8

4
3
3
.
6

1
1
9
.
4

1
3
5
.
6

4
3
3
.
9

1
2
0

1
3
7

4
3
4

1
3
.
7
7
1
1
9
1
2
1
1
3
9
1
4
2

4
3
3

4
3
5

8
1
2
0
.
5
1
4
0
.
0

4
3
4
.
2

1
2
0
.
5

1
3
9
.
9

4
3
4
.
2

1
2
1

1
4
0

4
3
4

2
2
.
3
5

8
2

8
3
1
4
0
1
4
1

4
2
5

4
4
0

1
3

8
2
.
5
1
4
0
.
8

4
3
4
.
2

8
2
.
3

1
4
0
.
9

4
3
4
.
5

8
2

1
4
1

4
3
6

1
9
.
9
9
1
1
5
1
1
6

4
4

4
6

6
4
5

6
5
0

8
1
1
5
.
4

4
4
.
8

6
4
7
.
4

1
1
5
.
5

4
4
.
6

6
4
7
.
7

1
1
6

4
4

6
4
8

3
6
.
3
6
1
1
7
1
1
7

2
9

3
2

7
1
4

7
4
1

1
0
4

1
1
7
.
0

3
0
.
5

7
2
7
.
3

1
1
7
.
0

3
0
.
5

7
2
7
.
0

1
1
7

3
0

7
3
3

N
ot

e
th

at
th

e
w

id
th

of
th

e
ta

bl
e

ca
n

m
ak

e
it

ha
rd

to
re

ad
.

A
go

od
tr

ic
k

fo
r

th
os

e
us

in
g

U
N

IX
/L

in
ux

is
to

m
ak

e
us

e
of

th
e
a
2
p
s

co
m

m
an

d.
T

he
fo

llo
w

in
g

w
or

ks
w

el
l,

pr
od

uc
in

g
a

po
st

sc
ri

pt
fil

e
d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
p
s
:

a
2
p
s

-
1

-
r

-
f
5

-
o

d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
p
s

d
u
c
h
a
m
p
-
R
e
s
u
l
t
s
.
t
x
t

E EXAMPLE VOTABLE OUTPUT 51

E
E
x
a
m

p
le

V
O

T
a
b
le

o
u
tp

u
t

T
hi

s
is

pa
rt

of
th

e
V

O
T
ab

le
,
in

X
M

L
fo

rm
at

,
co

rr
es

po
nd

in
g

to
a

ba
si

c
F
D

R
se

ar
ch

.

<
?
x
m
l
v
e
r
s
i
o
n
=
"
1
.
0
"
?
>

<
V
O
T
A
B
L
E
v
e
r
s
i
o
n
=
"
1
.
1
"
x
m
l
n
s
:
x
s
i
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
-
i
n
s
t
a
n
c
e
"

x
s
i
:
n
o
N
a
m
e
s
p
a
c
e
S
c
h
e
m
a
L
o
c
a
t
i
o
n
=
"
h
t
t
p
:
/
/
w
w
w
.
i
v
o
a
.
n
e
t
/
x
m
l
/
V
O
T
a
b
l
e
/
V
O
T
a
b
l
e
/
v
1
.
1
"
>

<
C
O
O
S
Y
S

I
D
=
"
J
2
0
0
0
"
e
q
u
i
n
o
x
=
"
J
2
0
0
0
.
"
e
p
o
c
h
=
"
J
2
0
0
0
.
"
s
y
s
t
e
m
=
"
e
q
_
F
K
5
"
/
>

<
R
E
S
O
U
R
C
E
n
a
m
e
=
"
D
u
c
h
a
m
p
O
u
t
p
u
t
"
>

<
T
A
B
L
E
n
a
m
e
=
"
D
e
t
e
c
t
i
o
n
s
"
>

<
D
E
S
C
R
I
P
T
I
O
N
>
D
e
t
e
c
t
e
d

s
o
u
r
c
e
s

a
n
d
p
a
r
a
m
e
t
e
r
s

f
r
o
m
r
u
n
n
i
n
g

t
h
e

D
u
c
h
a
m
p
s
o
u
r
c
e

f
i
n
d
e
r
.
<
/
D
E
S
C
R
I
P
T
I
O
N
>

<
P
A
R
A
M

n
a
m
e
=
"
F
I
T
S
f
i
l
e
"
d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

u
c
d
=
"
m
e
t
a
.
f
i
l
e
;
m
e
t
a
.
f
i
t
s
"
v
a
l
u
e
=
"
/
D
A
T
A
/
S
I
T
A
R
_
1
/
w
h
i
5
5
0
/
O
b
s
D
a
t
a
/
c
u
b
e
s
/
H
2
0
1
_
a
b
c
d
e
_
l
u
t
h
e
r
_
c
h
o
p
.
f
i
t
s
"
a
r
r
a
y
s
i
z
e
=
"
6
2
"
/
>

<
P
A
R
A
M

n
a
m
e
=
"
F
D
R

S
i
g
n
i
f
i
c
a
n
c
e
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

u
c
d
=
"
s
t
a
t
.
p
a
r
a
m
"
v
a
l
u
e
=
"
0
.
1
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
I
D
"

I
D
=
"
c
o
l
0
1
"
u
c
d
=
"
m
e
t
a
.
i
d
"
d
a
t
a
t
y
p
e
=
"
i
n
t
"
w
i
d
t
h
=
"
5
"

u
n
i
t
=
"
-
-
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
N
a
m
e
"
I
D
=
"
c
o
l
0
2
"

u
c
d
=
"
m
e
t
a
.
i
d
;
m
e
t
a
.
m
a
i
n
"

d
a
t
a
t
y
p
e
=
"
c
h
a
r
"
a
r
r
a
y
s
i
z
e
=
"
1
5
"

u
n
i
t
=
"
-
-
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
R
A
"

I
D
=
"
c
o
l
0
3
"
u
c
d
=
"
p
o
s
.
e
q
.
r
a
;
m
e
t
a
.
m
a
i
n
"

r
e
f
=
"
J
2
0
0
0
"
d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
1
3
"

p
r
e
c
i
s
i
o
n
=
"
6
"

u
n
i
t
=
"
d
e
g
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
D
E
C
"
I
D
=
"
c
o
l
0
4
"
u
c
d
=
"
p
o
s
.
g
a
l
a
c
t
i
c
.
l
o
n
;
m
e
t
a
.
m
a
i
n
"

r
e
f
=
"
J
2
0
0
0
"
d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
1
3
"
p
r
e
c
i
s
i
o
n
=
"
6
"
u
n
i
t
=
"
d
e
g
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
R
A
"
I
D
=
"
c
o
l
0
5
"

u
c
d
=
"
p
h
y
s
.
a
n
g
S
i
z
e
;
p
o
s
.
e
q
.
r
a
"

r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
9
"
p
r
e
c
i
s
i
o
n
=
"
2
"

u
n
i
t
=
"
a
r
c
m
i
n
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
D
E
C
"
I
D
=
"
c
o
l
0
6
"

u
c
d
=
"
p
h
y
s
.
a
n
g
S
i
z
e
;
p
o
s
.
e
q
.
r
a
"
r
e
f
=
"
J
2
0
0
0
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
9
"

p
r
e
c
i
s
i
o
n
=
"
2
"

u
n
i
t
=
"
a
r
c
m
i
n
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
V
e
l
"
I
D
=
"
c
o
l
0
7
"
u
c
d
=
"
p
h
y
s
.
v
e
l
o
c
;
s
r
c
.
d
o
p
p
l
e
r
V
e
l
o
c
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
9
"

p
r
e
c
i
s
i
o
n
=
"
3
"

u
n
i
t
=
"
k
m
/
s
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
w
_
V
e
l
"
I
D
=
"
c
o
l
0
8
"

u
c
d
=
"
p
h
y
s
.
v
e
l
o
c
;
s
r
c
.
d
o
p
p
l
e
r
V
e
l
o
c
;
s
p
e
c
t
.
l
i
n
e
.
w
i
d
t
h
"
d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
9
"

p
r
e
c
i
s
i
o
n
=
"
3
"

u
n
i
t
=
"
k
m
/
s
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
I
n
t
e
g
r
a
t
e
d
_
F
l
u
x
"

I
D
=
"
c
o
l
0
9
"
u
c
d
=
"
p
h
o
t
.
f
l
u
x
;
s
p
e
c
t
.
l
i
n
e
.
i
n
t
e
n
s
i
t
y
"
d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"

w
i
d
t
h
=
"
1
0
"
p
r
e
c
i
s
i
o
n
=
"
3
"
u
n
i
t
=
"
J
y
.
k
m
/
s
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
P
e
a
k
_
F
l
u
x
"
I
D
=
"
c
o
l
1
0
"

u
c
d
=
"
p
h
o
t
.
f
l
u
x
;
s
p
e
c
t
.
l
i
n
e
.
i
n
t
e
n
s
i
t
y
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
1
0
"

p
r
e
c
i
s
i
o
n
=
"
3
"
u
n
i
t
=
"
J
y
/
b
e
a
m
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
F
l
a
g
"
I
D
=
"
c
o
l
1
1
"

u
c
d
=
"
m
e
t
a
.
c
o
d
e
.
q
u
a
l
"
d
a
t
a
t
y
p
e
=
"
c
h
a
r
"

a
r
r
a
y
s
i
z
e
=
"
3
"

u
n
i
t
=
"
-
-
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
X
_
C
e
n
t
r
o
i
d
"
I
D
=
"
c
o
l
1
2
"

u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
x
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
7
"

p
r
e
c
i
s
i
o
n
=
"
1
"

u
n
i
t
=
"
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
Y
_
C
e
n
t
r
o
i
d
"
I
D
=
"
c
o
l
1
3
"

u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
y
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
7
"

p
r
e
c
i
s
i
o
n
=
"
1
"

u
n
i
t
=
"
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
Z
_
C
e
n
t
r
o
i
d
"
I
D
=
"
c
o
l
1
4
"

u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
z
"

d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
7
"

p
r
e
c
i
s
i
o
n
=
"
1
"

u
n
i
t
=
"
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
X
_
A
v
"
I
D
=
"
c
o
l
1
5
"

u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
x
"
d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
6
"
p
r
e
c
i
s
i
o
n
=
"
1
"
u
n
i
t
=
"
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
Y
_
A
v
"
I
D
=
"
c
o
l
1
6
"

u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
y
"
d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
6
"
p
r
e
c
i
s
i
o
n
=
"
1
"
u
n
i
t
=
"
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
Z
_
A
v
"
I
D
=
"
c
o
l
1
7
"

u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
z
"
d
a
t
a
t
y
p
e
=
"
f
l
o
a
t
"
w
i
d
t
h
=
"
6
"
p
r
e
c
i
s
i
o
n
=
"
1
"
u
n
i
t
=
"
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
X
_
P
e
a
k
"

I
D
=
"
c
o
l
1
8
"
u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
x
"

d
a
t
a
t
y
p
e
=
"
i
n
t
"
w
i
d
t
h
=
"
7
"
p
r
e
c
i
s
i
o
n
=
"
1
"
u
n
i
t
=
"
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
Y
_
P
e
a
k
"

I
D
=
"
c
o
l
1
9
"
u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
y
"

d
a
t
a
t
y
p
e
=
"
i
n
t
"
w
i
d
t
h
=
"
7
"
p
r
e
c
i
s
i
o
n
=
"
1
"
u
n
i
t
=
"
"
/
>

<
F
I
E
L
D

n
a
m
e
=
"
Z
_
P
e
a
k
"

I
D
=
"
c
o
l
2
0
"
u
c
d
=
"
p
o
s
.
c
a
r
t
e
s
i
a
n
.
z
"

d
a
t
a
t
y
p
e
=
"
i
n
t
"
w
i
d
t
h
=
"
7
"
p
r
e
c
i
s
i
o
n
=
"
1
"
u
n
i
t
=
"
"
/
>

<
D
A
T
A
>

<
T
A
B
L
E
D
A
T
A
>

<
T
R
>

<
T
D
>

1
<
/
T
D
>
<
T
D
>
J
0
6
0
9
2
5
-
2
1
5
7
1
2
<
/
T
D
>
<
T
D
>

9
2
.
3
5
6
6
1
3
<
/
T
D
>
<
T
D
>

-
2
1
.
9
5
3
5
4
5
<
/
T
D
>
<
T
D
>

4
4
.
5
1
<
/
T
D
>
<
T
D
>

3
9
.
4
9
<
/
T
D
>
<
T
D
>

2
2
3
.
3
5
1
<
/
T
D
>
<
T
D
>

5
2
.
7
6
5
<
/
T
D
>
<
T
D
>

1
4
.
5
6
4
<
/
T
D
>

<
T
D
>

0
.
2
1
3
<
/
T
D
>
<
T
D
>

<
/
T
D
>
<
T
D
>
5
9
.
1
7
5
<
/
T
D
>
<
T
D
>
1
4
0
.
4
6
3
<
/
T
D
>
<
T
D
>
1
1
4
.
4
3
9
<
/
T
D
>
<
T
D
>
5
9
.
5
5
4
<
/
T
D
>
<
T
D
>
1
4
0
.
5
8
0
<
/
T
D
>
<
T
D
>
1
1
4
.
5
3
6
<
/
T
D
>
<
T
D
>

5
9
<
/
T
D
>
<
T
D
>

1
4
0
<
/
T
D
>
<
T
D
>

1
1
4
<
/
T
D
>

<
/
T
R
>

.
.
.

t
r
u
n
c
a
t
e
d
.
.
.

<
/
T
A
B
L
E
D
A
T
A
>

<
/
D
A
T
A
>

<
/
T
A
B
L
E
>

<
/
R
E
S
O
U
R
C
E
>

<
/
V
O
T
A
B
L
E
>

F EXAMPLE KARMA ANNOTATION FILE OUTPUT 52

F Example Karma Annotation file output

This is the format of the Karma Annotation file, showing the locations of
the detected objects. This can be loaded by the plotting tools of the Karma
package (for instance, kvis) as an overlay on the FITS file.

Duchamp Source Finder results for FITS file:
/home/mduchamp/fountain.fits
Threshold = 4
No ATrous reconstruction done.
#
COLOR RED
COORD W
CIRCLE 92.3376 -21.9475 0.403992
TEXT 92.3376 -21.9475 1
CIRCLE 91.9676 -26.0193 0.37034
TEXT 91.9676 -26.0193 2
CIRCLE 91.5621 -27.3459 0.437109
TEXT 91.5621 -27.3459 3
CIRCLE 92.8285 -21.6344 0.269914
TEXT 92.8285 -21.6344 4
CIRCLE 90.1381 -28.9838 0.234179
TEXT 90.1381 -28.9838 5
CIRCLE 89.72 -26.6513 0.132743
TEXT 89.72 -26.6513 6
CIRCLE 94.2743 -27.4003 0.195175
TEXT 94.2743 -27.4003 7
CIRCLE 92.2739 -21.6941 0.134538
TEXT 92.2739 -21.6941 8
CIRCLE 89.7133 -25.4259 0.232252
TEXT 89.7133 -25.4259 9
CIRCLE 90.2206 -21.6993 0.266247
TEXT 90.2206 -21.6993 10
CIRCLE 93.8581 -26.5766 0.163153
TEXT 93.8581 -26.5766 11
CIRCLE 91.176 -26.1064 0.234356
TEXT 91.176 -26.1064 12

G ROBUST STATISTICS FOR A NORMAL DISTRIBUTION 53

G Robust statistics for a Normal distribution

The Normal, or Gaussian, distribution for mean µ and standard deviation
σ can be written as

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

When one has a purely Gaussian signal, it is straightforward to estimate
σ by calculating the standard deviation (or rms) of the data. However, if
there is a small amount of signal present on top of Gaussian noise, and one
wants to estimate the σ for the noise, the presence of the large values from
the signal can bias the estimator to higher values.

An alternative way is to use the median (m) and median absolute devi-
ation from the median (s) to estimate µ and σ. The median is the middle
of the distribution, defined for a continuous distribution by∫ m

−∞
f(x)dx =

∫ ∞

m
f(x)dx.

From symmetry, we quickly see that for the continuous Normal distribution,
m = µ. We consider the case henceforth of µ = 0, without loss of generality.

To find s, we find the distribution of the absolute deviation from the
median, and then find the median of that distribution. This distribution is
given by

g(x) = distribution of |x|
= f(x) + f(−x), x ≥ 0

=

√
2

πσ2
e−x2/2σ2

, x ≥ 0.

So, the median absolute deviation from the median, s, is given by∫ s

0
g(x)dx =

∫ ∞

s
g(x)dx.

If we use the identity ∫ ∞

0
e−x2/2σ2

dx =
√

πσ2/2

we find that ∫ ∞

s
e−x2/2σ2

dx =
√

πσ2/2−
∫ s

0
e−x2/2σ2

dx.

Hence, to find s we simply solve the following equation (setting σ = 1 for

G ROBUST STATISTICS FOR A NORMAL DISTRIBUTION 54

simplicity – equivalent to stating x and s in units of σ):∫ s

0
e−x2/2dx−

√
π/8 = 0.

This is hard to solve analytically (no nice analytic solution exists for the
finite integral that I’m aware of), but straightforward to solve numerically,
yielding the value of s = 0.6744888. Thus, to estimate σ for a Normally dis-
tributed data set, one can calculate s, then divide by 0.6744888 (or multiply
by 1.4826042) to obtain the correct estimator.

Note that this is different to solutions quoted elsewhere, specifically in
Meyer et al. (2004), where the same robust estimator is used but with an
incorrect conversion to standard deviation – they assume σ = s

√
π/2. This,

in fact, is the conversion used to convert the mean absolute deviation from
the mean to the standard deviation. This means that the cube noise in
the hipass catalogue (their parameter Rmscube) should be 18% larger than
quoted.

H HOW GAUSSIAN NOISE CHANGES WITH WAVELET SCALE 55

H How Gaussian noise changes with wavelet scale

The key element in the wavelet reconstruction of an array is the thresholding
of the individual wavelet coefficient arrays. This is usually done by choosing
a level to be some number of standard deviations above the mean value.

However, since the wavelet arrays are produced by convolving the input
array by an increasingly large filter, the pixels in the coefficient arrays be-
come increasingly correlated as the scale of the filter increases. This results
in the measured standard deviation from a given coefficient array decreasing
with increasing scale. To calculate this, we need to take into account how
many other pixels each pixel in the convolved array depends on.

To demonstrate, suppose we have a 1-D array with N pixel values given
by Fi, i = 1, ..., N , and we convolve it with the B3-spline filter, defined by
the set of coefficients {1/16, 1/4, 3/8, 1/4, 1/16}. The flux of the ith pixel in
the convolved array will be

F ′
i =

1
16

Fi−2 +
1
4
Fi−1 +

3
8
Fi +

1
4
Fi+1 +

1
16

Fi+2

and the flux of the corresponding pixel in the wavelet array will be

W ′
i = Fi − F ′

i =
−1
16

Fi−2 −
1
4
Fi−1 +

5
8
Fi −

1
4
Fi+1 −

1
16

Fi+2

Now, assuming each pixel has the same standard deviation σi = σ, we can
work out the standard deviation for the wavelet array:

σ′i = σ

√(
1
16

)2

+
(

1
4

)2

+
(

5
8

)2

+
(

1
4

)2

+
(

1
16

)2

= 0.72349 σ

Thus, the first scale wavelet coefficient array will have a standard deviation
of 72.3% of the input array. This procedure can be followed to calculate the
necessary values for all scales, dimensions and filters used by Duchamp.

Calculating these values is clearly a critical step in performing the recon-
struction. The method used by Starck and Murtagh (2002) was to simulate
data sets with Gaussian noise, take the wavelet transform, and measure
the value of σ for each scale. We take a different approach, by calculating
the scaling factors directly from the filter coefficients by taking the wavelet
transform of an array made up of a 1 in the central pixel and 0s everywhere
else. The scaling value is then derived by taking the square root of the sum
(in quadrature) of all the wavelet coefficient values at each scale. We give
the scaling factors for the three filters available to Duchamp below. These
values are hard-coded into Duchamp, so no on-the-fly calculation of them is
necessary.

Memory limitations prevent us from calculating factors for large scales,
particularly for the three-dimensional case (hence the – symbols in the ta-

H HOW GAUSSIAN NOISE CHANGES WITH WAVELET SCALE 56

bles). To calculate factors for higher scales than those available, we divide
the previous scale’s factor by either

√
2, 2, or

√
8 for 1D, 2D and 3D respec-

tively.

• B3-Spline Function: {1/16, 1/4, 3/8, 1/4, 1/16}
Scale 1 dimension 2 dimension 3 dimension
1 0.723489806 0.890796310 0.956543592
2 0.285450405 0.200663851 0.120336499
3 0.177947535 0.0855075048 0.0349500154
4 0.122223156 0.0412474444 0.0118164242
5 0.0858113122 0.0204249666 0.00413233507
6 0.0605703043 0.0101897592 0.00145703714
7 0.0428107206 0.00509204670 0.000514791120
8 0.0302684024 0.00254566946 –
9 0.0214024008 0.00127279050 –
10 0.0151336781 0.000636389722 –
11 0.0107011079 0.000318194170 –
12 0.00756682272 – –
13 0.00535055108 – –

• Triangle Function: {1/4, 1/2, 1/4}
Scale 1 dimension 2 dimension 3 dimension
1 0.612372436 0.800390530 0.895954449
2 0.330718914 0.272878894 0.192033014
3 0.211947812 0.119779282 0.0576484078
4 0.145740298 0.0577664785 0.0194912393
5 0.102310944 0.0286163283 0.00681278387
6 0.0722128185 0.0142747506 0.00240175885
7 0.0510388224 0.00713319703 0.000848538128
8 0.0360857673 0.00356607618 0.000299949455
9 0.0255157615 0.00178297280 –
10 0.0180422389 0.000891478237 –
11 0.0127577667 0.000445738098 –
12 0.00902109930 0.000222868922 –
13 0.00637887978 – –

• Haar Wavelet: {0, 1/2, 1/2}
Scale 1 dimension 2 dimension 3 dimension
1 0.707167810 0.433012702 0.935414347
2 0.500000000 0.216506351 0.330718914
3 0.353553391 0.108253175 0.116926793
4 0.250000000 0.0541265877 0.0413398642
5 0.176776695 0.0270632939 0.0146158492
6 0.125000000 0.0135316469 0.00516748303

	Title Page
	Contents
	Introduction and getting going quickly
	About Duchamp
	What to do
	Guide to terminology and conventions
	A summary of the execution steps

	User Inputs
	What Duchamp is doing
	Image input
	Image modification
	BLANK pixel removal
	Baseline removal
	Ignoring bright Milky Way emission

	Image reconstruction
	Algorithm
	Note on Statistics
	User control of reconstruction parameters

	Smoothing the cube
	Spectral smoothing
	Spatial smoothing

	Input/Output of reconstructed/smoothed arrays
	Searching the image
	Technique
	Calculating statistics
	Determining the threshold

	Merging and growing detected objects

	Outputs
	During execution
	Text-based output files
	Table of results
	Other results lists

	Graphical output
	Mask image
	Spectral plots
	Output for 2-dimensional images
	Spatial maps

	Re-using previous detections

	Notes and hints on the use of Duchamp
	Future developments
	Why ``Duchamp''?
	References
	Obtaining and installing Duchamp
	Installing
	Basic installation
	Tweaking the installation process
	Making sure it all works

	Running Duchamp
	Feedback
	Beta Versions

	Available parameters
	Example parameter files
	Example results file
	Example VOTable output
	Example Karma Annotation file output
	Robust statistics for a Normal distribution
	How Gaussian noise changes with wavelet scale

