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1 Introduction and getting going quickly

1.1 About Duchamp

This document provides a user’s guide to Duchamp, an object-finder for use
on spectral-line data cubes. The basic execution of Duchamp is to read in a
FITS data cube, find sources in the cube, and produce a text file of positions,
velocities and fluxes of the detections, as well as a postscript file of the spectra
of each detection.

Duchamp has been designed to search for objects in particular sorts of data:
those with relatively small, isolated objects in a large amount of background or
noise. Examples of such data are extragalactic Hi surveys, or maser surveys.
Duchamp searches for groups of connected voxels (or pixels) that are all above
some flux threshold. No assumption is made as to the shape of detections, and
the only size constraints applied are those specified by the user.

Duchamp has been written as a three-dimensional finder, but it is possible
to run it on a two-dimensional image (i.e. one with no frequency or velocity
information), or indeed a one-dimensional array, and many of the features of
the program will work fine. The focus, however, is on object detection in three
dimensions, one of which is a spectral dimension. Note, in particular, that it
does not do any fitting of source profiles, a feature common (and desirable)
for many two-dimensional source finders. This is beyond the current scope of
Duchamp, whose aim is reliable detection of spectral-line objects.

Duchamp provides the ability to pre-process the data prior to searching.
Spectral baselines can be removed, and either smoothing or multi-resolution
wavelet reconstruction can be performed to enhance the completeness and reli-
ability of the resulting catalogue.

1.2 Acknowledging the use of Duchamp

Duchamp is provided in the hope that it will be useful for your research. If you
find that it is, I would ask that you acknowledge it in your publication by using
the following: ”This research made use of the Duchamp source finder, produced
at the Australia Telescope National Facility, CSIRO, by M. Whiting.”

Additionally, Duchamp has been described in a journal paper (Whiting
2012). This paper covers the key algorithms implemented in the software,
and provides some simple completeness and reliability comparisons of differ-
ent modes of operation. Users of Duchamp are encouraged to read the paper
in conjunction with this user guide, as while some things are repeated herein,
not everything is. Whiting (2012) should be cited when describing the use of
Duchamp in your research.

1.3 What to do

So, you have a FITS cube, and you want to find the sources in it. What do you
do? First, you need to get Duchamp: there are instructions in Appendix A for
obtaining and installing it. Once you have it running, the first step is to make
an input file that contains the list of parameters. Brief and detailed examples
are shown in Appendix C. This file provides the input file name, the various
output files, and defines various parameters that control the execution.



1 INTRODUCTION AND GETTING GOING QUICKLY 6

The standard way to run Duchamp is by the command

> Duchamp -p [parameter file]

replacing [parameter file] with the name of the file listing the parameters.
An even easier way is to use the default values for all parameters (these are

given in Appendix B and in the file InputComplete included in the distribution
directory) and use the syntax

> Duchamp -f [FITS file]

where [FITS file] is the file you wish to search.
The default action includes displaying a map of detected objects in a PG-

PLOT X-window. This can be disabled by setting the parameter flagXOutput
= false or using the -x command-line option, as in

> Duchamp -x -p [parameter file]

and similarly for the -f case.
Once a FITS file and parameters have been set, the program will then work

away and give you the list of detections and their spectra. The program execu-
tion is summarised below, and detailed in §3. Information on inputs is in §2.1
and Appendix B, and descriptions of the output is in §5.

1.4 Guide to terminology and conventions

First, a brief note on the use of terminology in this guide. Duchamp is designed
to work on FITS “cubes”. These are FITS1 image arrays with (at least) three
dimensions. They are assumed to have the following form: the first two di-
mensions (referred to as x and y) are spatial directions (that is, relating to the
position on the sky – often, but not necessarily, corresponding to Equatorial or
Galactic coordinates), while the third dimension, z, is the spectral direction,
which can correspond to frequency, wavelength, or velocity. The three dimen-
sional analogue of pixels are “voxels”, or volume cells – a voxel is defined by a
unique (x, y, z) location and has a single value of flux, intensity or brightness
(or something equivalent) associated with it.

Sometimes, some pixels in a FITS file are labelled as BLANK – that is,
they are given a nominal value, defined by FITS header keywords blank (and
potentially bscale and bzero), that marks them as not having a flux value.
These are often used to pad a cube out so that it has a rectangular spatial
shape. Duchamp has the ability to avoid these: see §3.3.1.

Note that it is possible for the FITS file to have more than three dimensions
(for instance, there could be a fourth dimension representing a Stokes parame-
ter). Only the two spatial dimensions and the spectral dimension are read into
the array of pixel values that is searched for objects. All other dimensions are
ignored2. Herein, we discuss the data in terms of the three basic dimensions,
but you should be aware it is possible for the FITS file to have more than three.
Note that the order of the dimensions in the FITS file does not matter.

1FITS is the Flexible Image Transport System – see Hanisch et al. (2001) or websites such
as http://fits.cv.nrao.edu/FITS.html for details.

2This actually means that the first pixel only of that axis is used, and the array is read by
the fits read subsetnull command from the cfitsio library.

http://fits.cv.nrao.edu/FITS.html
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With this setup, each spatial pixel (a given (x, y) coordinate) can be said
to be a single spectrum, while a slice through the cube perpendicular to the
spectral direction at a given z-value is a single channel, with the 2-D image in
that channel called a channel map.

Detection involves locating contiguous groups of voxels with fluxes above a
certain threshold. Duchamp makes no assumptions as to the size or shape of
the detected features, other than allowing user-selected minimum size criteria.
Features that are detected are assumed to be positive. The user can choose to
search for negative features by setting an input parameter – which will invert
the cube prior to the search (see §3.7.2 for details).

1.5 A summary of the execution steps

The basic flow of the program is summarised here – all steps are discussed in
more detail in the following sections.

1. The necessary parameters are recorded.

How this is done depends on the way the program is run from the command
line. If the -p option is used, the parameter file given on the command
line is read in, and the parameters therein are read. All other parameters
are given their default values (listed in Appendix B).

If the -f option is used, all parameters are assigned their default values,
with the flux threshold able to be set with the -t option.

2. The FITS image is located and read in to memory.

The file given is assumed to be a valid FITS file. As discussed above, it
can have any number of dimensions, but Duchamp only reads in the two
spatial and the one spectral dimensions. A subset of the FITS array can
be given (see §3.1 for details).

3. If requested, a FITS file containing a previously reconstructed or smoothed
array is read in.

When a cube is either smoothed or reconstructed with the à trous wavelet
method, the result can be saved to a FITS file, so that subsequent runs of
Duchamp can read it in to save having to re-do the calculations.

4. If requested, BLANK pixels are trimmed from the edges, and the baseline
of each spectrum is removed.

BLANK pixels, while they are ignored by all calculations in Duchamp, do
increase the size in memory of the array above that absolutely needed.
This step trims them from the spatial edges, keeping a record of the
amount trimmed so that they can be added back in later.

A spectral baseline (or bandpass) may optionally be removed at this point
as well. This may be necessary if there is a ripple or other large-scale
feature present that will hinder detection of faint sources.

5. If the reconstruction method is requested, and the reconstructed array has
not been read in at Step 3 above, the cube is reconstructed using the à
trous wavelet method.
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This step uses the multi-resolution à trous method to determine the amount
of structure present at various scales. A simple thresholding technique
then removes random noise from the cube, leaving the significant signal.
This process can greatly reduce the noise level in the cube, enhancing the
reliability of the resulting catalogue.

6. Alternatively (and if requested), the cube is smoothed, either spectrally
or spatially.

This step presents two options. The first considers each spectrum indi-
vidually, and convolves it with a Hanning filter (with width chosen by the
user). The second considers each channel map separately, and smoothes
it with a Gaussian kernel of size and shape chosen by the user. This step
can help to reduce the amount of noise visible in the cube and enhance
fainter sources, increasing the completeness and reliability of the output
catalogue.

7. A threshold for the cube is then calculated, based on the pixel statistics
(unless a threshold is manually specified by the user).

The threshold can either be chosen as a simple nσ threshold (i.e. a cer-
tain number of standard deviations above the mean), or calculated via the
“False Discovery Rate” method. Alternatively, the threshold can be spec-
ified as a simple flux value, without care as to the statistical significance
(e.g. “I want every source brighter than 10mJy”).

By default, the full cube is used for the statistics calculation, although the
user can nominate a subsection of the cube to be used instead.

8. Searching for objects then takes place, using the requested thresholding
method.

The cube is searched either one channel-map at a time (“spatial” search)
or one spectrum at a time (“spectral” search). Detections are compared
to already detected objects and either combined with a neighbouring one
or added to the end of the list.

9. The list of objects is condensed by merging neighbouring objects and
removing those deemed unacceptable.

While some merging has been done in the previous step, this process is a
much more rigorous comparison of each object with every other one. If a
pair of objects lie within requested limits, they are combined.

After the merging is done, the list is culled (although see comment for
the next step). There are certain criteria the user can specify that objects
must meet: minimum numbers of spatial pixels and spectral channels, and
minimum separations between neighbouring objects. Those that do not
meet these criteria are deleted from the list.

10. If requested, the objects are “grown” down to a lower threshold, and then
the merging step is done a second time.

In this case, each object has pixels in its neighbourhood examined, and if
they are above a secondary threshold, they are added to the object. The
merging process is done a second time in case two objects have grown over
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the top of one another. Note that the rejection part of the previous step
is not done until the end of the second merging process.

11. The baselines and trimmed pixels are replaced prior to output.

This is just the inverse of step #4.

12. The details of the detections are written to screen and to the requested
output file.

Crucial properties of each detection are provided, showing its location,
extent, and flux. These are presented in both pixel coordinates and world
coordinates (e.g. sky position and velocity). Any warning flags are also
printed, showing detections to be wary of. Alternative output options are
available, such as a VOTable or annotation files for image viewers such as
kvis, ds9 or casaviewer.

13. Maps showing the spatial location of the detections are written.

These are 2-dimensional maps, showing where each detection lies on the
spatial coverage of the cube. This is provided as an aid to the user so that
a quick idea of the distribution of object positions can be gained e.g. are
all the detections on the edge?

Two maps are provided: one is a 0th moment map, showing the 0th mo-
ment (i.e. a map of the integrated flux) of each detection in its appropriate
position, while the second is a “detection map”, showing the number of
times each spatial pixel was detected in the searching routines (including
those pixels rejected at step 9 and so not in any of the final detections).

These maps are written to postscript files, and the 0th moment map can
also be displayed in a PGPLOT X-window.

14. A pixel mask is written to a FITS file.

A FITS file of the same size as the input file can be written. Here, each
pixel has a value indicating whether or note it was detected and falls in
one of the catalogue sources. Different objects can be traced by different
non-zero pixel values.

15. The integrated or peak spectra of each detection are written to a postscript
file.

The spectral equivalent of the maps – what is the spectral profile of each
detection? Also provided here are basic information for each object (a
summary of the information in the results file), as well as a 0th moment
map of the detection.

16. If requested, a text file containing all spectra is written.

This file will contain the peak or integrated spectra for each source, as a
function of the appropriate spectral coordinate. The file is a multi-column
ascii text file, suitable for import into other software packages.

17. If requested, FITS files are written containing the reconstructed, smoothed,
baseline or mask arrays.

If one of the preprocessing methods was used, the resulting array can be
saved as a FITS file for later examination or use (for instance, reading in
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as described at step #3). The FITS header will be the same as the input
file, with a few additional keywords to identify the file.

1.6 Why “Duchamp”?

Well, it’s important for a program to have a name, and the initial working title of
cubefind was somewhat uninspiring. I wanted to avoid the classic astronomical
approach of designing a cute acronym, and since it is designed to work on cubes,
I looked at naming it after a cubist. Picasso, sadly, was already taken (Minchin
1999), so I settled on naming it after Marcel Duchamp, another cubist, but also
one of the first artists to work with “found objects”.
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2 User Inputs

2.1 Parameter file input

Duchamp allows a large degree of control over the way the different algorithms
work. This is done by means of input parameters, specified through a parameter
file. The parameter file is provided at runtime, via

> Duchamp -p [parameter file]

The parameter file simply contains a list of parameter names followed by the
value that should be assigned to them. The syntax used is

parameterName value.

Parameter names are not case-sensitive, and lines in the input file that start
with # are ignored. If a parameter is listed more than once, the latter value is
used, but otherwise the order in which the parameters are listed in the input
file is arbitrary. Example input files can be seen in Appendix C.

If a parameter is not listed, the default value is assumed. The defaults are
chosen to provide a good result (a simple 5σ search with no pre-processing), so
the user doesn’t need to specify many new parameters in the input file. Note
that the image file must be specified! The parameters that can be set are listed
in Appendix B, with their default values in parentheses.

The parameters with names starting with flag are stored as bool variables,
and so are either true = 1 or false = 0. They can be entered in the file either
in text or integer format – Duchamp will read them correctly in either case.

An example input file is included in the distribution tar file. It is as follows:

imageFile your-file-here
logFile logfile.txt
outFile results.txt
spectraFile spectra.ps
minPix 2
flagATrous 1
snrRecon 5.
snrCut 3.
minChannels 3
flagBaseline 1

You would, of course, replace the “your-file-here” with the FITS file you
wanted to search. Further examples are given in Appendix C.

2.2 Command-line control

Duchamp provides the ability to run without constructing a parameter file first.
Using the -f command-line flag to specify an image will make use of the default
values for all parameters:

> Duchamp -f [FITS image]

It is possible to specify a flux threshold as well on the command line, using
the -t flag. This allows the user to quickly search a given image to a given
depth (i.e. give me all sources in this image above 1mJy.
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> Duchamp -f [FITS image] -t [THRESHOLD]

The -t flag can also be used with the -p option – it sets the threshold param-
eter, and overrides the value provided in the parameter file specified. The flux
threshold should be in the same brightness units as specified in the FITS image.

The other command-line flag that can be used is -x. This turns off the X-
window output (that graphically shows where the detected objects are). This
makes scripted use of Duchamp somewhat easier.
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3 What Duchamp is doing

Each of the steps that Duchamp goes through in the course of its execution are
discussed here in more detail. This should provide enough background informa-
tion to fully understand what Duchamp is doing and what all the output infor-
mation is. For those interested in the programming side of things, Duchamp is
written in C/C++ and makes use of the cfitsio, wcslib and pgplot libraries.

3.1 Image input

The cube is read in using basic cfitsio commands, and stored as an array
in a special C++ class. This class keeps track of the list of detected objects,
as well as any reconstructed arrays that are made (see §3.4). The World Co-
ordinate System (WCS)3 information for the cube is also obtained from the
FITS header by wcslib functions (Calabretta and Greisen 2002; Greisen and
Calabretta 2002; Greisen et al. 2006), and this information, in the form of a
wcsprm structure, is also stored in the same class. See §3.2 for more details.

A sub-section of a cube can be requested by defining the subsection with
the subsection parameter and setting flagSubsection = true – this can be
a good idea if the cube has very noisy edges, which may produce many spurious
detections.

There are two ways of specifying the subsection string. The first is the
generalised form [x1:x2:dx,y1:y2:dy,z1:z2:dz,...], as used by the cfit-
sio library. This has one set of colon-separated numbers for each axis in the
FITS file. In this manner, the x-coordinates run from x1 to x2 (inclusive),
with steps of dx. The step value can be omitted, so a subsection of the form
[2:50,2:50,10:1000] is still valid. In fact, Duchamp does not make use of
any step value present in the subsection string, and any that are present are
removed before the file is opened.

If the entire range of a coordinate is required, one can replace the range with
a single asterisk, e.g. [2:50,2:50,*]. Thus, the subsection string [*,*,*] is
simply the entire cube. Note that the pixel ranges for each axis start at 1, so
the full pixel range of a 100-pixel axis would be expressed as 1:100. A complete
description of this section syntax can be found at the fitsio web site4.

Making full use of the subsection requires knowledge of the size of each of
the dimensions. If one wants to, for instance, trim a certain number of pixels
off the edges of the cube, without examining the cube to obtain the actual size,
one can use the second form of the subsection string. This just gives a number
for each axis, e.g. [5,5,5] (which would trim 5 pixels from the start and end
of each axis).

All types of subsections can be combined e.g. [5,2:98,*].
Typically, the units of pixel brightness are given by the FITS file’s BUNIT

keyword. However, this may often be unwieldy (for instance, the units are
Jy/beam, but the values are around a few mJy/beam). It is therefore possible
to nominate new units, to which the pixel values will be converted, by using the
newFluxUnits input parameter. The units must be directly translatable from
the existing ones – for instance, if BUNIT is Jy/beam, you cannot specify mJy,

3This is the information necessary for translating the pixel locations to quantities such as
position on the sky, frequency, velocity, and so on.

4http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c user/node91.html

http://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node91.html
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it must be mJy/beam. If an incompatible unit is given, the BUNIT value is
used instead.

3.2 World Coordinate System

Duchamp uses the wcslib package to handle the conversions between pixel and
world coordinates. This package uses the transformations described in the WCS
papers (Calabretta and Greisen 2002; Greisen and Calabretta 2002; Greisen
et al. 2006). The same package handles the WCS axes in the spatial plots. The
conversions used are governed by the information in the FITS header – this is
parsed by wcslib to create the appropriate transformations.

For the spectral axis, however, Duchamp provides the ability to change the
type of transformation used, so that different spectral quantities can be calcu-
lated. By using the parameter spectralType, the user can change from the
type given in the FITS header. This should be done in line with the conven-
tions outlined in Greisen et al. (2006). The spectral type can be either a full
8-character string (e.g. ’VELO-F2V’), or simply the 4-character “S-type” (e.g.
’VELO’), in which case wcslib will handle the conversion.

The rest frequency can be provided as well. This may be necessary, if the
FITS header does not specify one and you wish to transform to velocity. Alter-
natively, you may want to make your measurements based on a different spectral
line (e.g. OH1665 instead of Hi-21cm). The input parameter restFrequency is
used, and this will override the FITS header value.

Finally, the user may also request different spectral units from those in the
FITS file, or from the defaults arising from the wcslib transformation. The
input parameter spectralUnits should be used, and Greisen and Calabretta
(2002) should be consulted to ensure the syntax is appropriate.

3.3 Image modification

Several modifications to the cube can be made that improve the execution and
efficiency of Duchamp (their use is optional, governed by the relevant flags in
the parameter file).

3.3.1 BLANK pixel removal

If the imaged area of a cube is non-rectangular (see the example in Fig. 3, a cube
from the HIPASS survey), BLANK pixels are used to pad it out to a rectangular
shape. The value of these pixels is given by the FITS header keywords BLANK,
BSCALE and BZERO. While these pixels make the image a nice shape, they
will take up unnecessary space in memory, and so to potentially speed up the
processing we can trim them from the edge. This is done when the parameter
flagTrim = true. If the above keywords are not present, the trimming will not
be done (in this case, a similar effect can be accomplished, if one knows where
the “blank” pixels are, by using the subsection option).

The amount of trimming is recorded, and these pixels are added back in once
the source-detection is completed (so that quoted pixel positions are applicable
to the original cube). Rows and columns are trimmed one at a time until the first
non-BLANK pixel is reached, so that the image remains rectangular. In practice,
this means that there will be some BLANK pixels left in the trimmed image (if
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the non-BLANK region is non-rectangular). However, these are ignored in all
further calculations done on the cube.

3.3.2 Baseline removal

Second, the user may request the removal of baselines from the spectra, via the
parameter flagBaseline. This may be necessary if there is a strong baseline
ripple present, which can result in spurious detections at the high points of the
ripple. The baseline is calculated from a wavelet reconstruction procedure (see
§3.4) that keeps only the two largest scales. This is done separately for each
spatial pixel (i.e. for each spectrum in the cube), and the baselines are stored
and added back in before any output is done. In this way the quoted fluxes and
displayed spectra are as one would see from the input cube itself – even though
the detection (and reconstruction if applicable) is done on the baseline-removed
cube.

The presence of very strong signals (for instance, masers at several hundred
Jy) could affect the determination of the baseline, and would lead to a large dip
centred on the signal in the baseline-subtracted spectrum. To prevent this, the
signal is trimmed prior to the reconstruction process at some standard threshold
(at 8σ above the mean). The baseline determined should thus be representative
of the true, signal-free baseline. Note that this trimming is only a temporary
measure which does not affect the source-detection.

The baseline values can be saved to a FITS file for later examination. See
§5.4.4 for details.

3.3.3 Ignoring bright Milky Way emission

Finally, a single set of contiguous channels can be ignored – these may exhibit
very strong emission, such as that from the Milky Way as seen in extragalactic Hi
cubes (hence the references to “Milky Way” in relation to this task – apologies to
Galactic astronomers!). Such dominant channels will produce many detections
that are unnecessary, uninteresting (if one is interested in extragalactic Hi) and
large (in size and hence in memory usage), and so will slow the program down
and detract from the interesting detections.

The use of this feature is controlled by the flagMW parameter, and the exact
channels concerned are able to be set by the user (using maxMW and minMW –
these give an inclusive range of channels). These channels refer to the channel
numbers of the full cube, before any subsection is applied.

The effect is to ignore detections that lie within these channels. If a spatial
search is being conducted (i.e. one channel map at a time), these channels are
simply not searched. If a spectral search is being conducted, those channels will
be flagged so that no detection is made within them. The spectral output (see
Fig. 2) will ignore them as far as scaling the plot goes, and the channel range
will be indicated by a green hatched box.

Note that these channels will be included in any smoothing or reconstruction
that is done on the array, and so will be included in any saved FITS file (see
§3.6).
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3.4 Image reconstruction

The user can direct Duchamp to reconstruct the data cube using the multi-
resolution à trous wavelet algorithm. A good description of the procedure can
be found in Starck and Murtagh (2002). The reconstruction is an effective way of
removing a lot of the noise in the image, allowing one to search reliably to fainter
levels, and reducing the number of spurious detections. This is an optional step,
but one that greatly enhances the reliability of the resulting catalogue, at the
cost of additional CPU and memory usage (see §6 for discussion).

3.4.1 Algorithm

The steps in the à trous reconstruction are as follows:

1. The reconstructed array is set to 0 everywhere.

2. The input array is discretely convolved with a given filter function. This
is determined from the parameter file via the filterCode parameter – see
Appendix B for details on the filters available. Edges are dealt with by
assuming reflection at the boundary.

3. The wavelet coefficients are calculated by taking the difference between
the convolved array and the input array.

4. If the wavelet coefficients at a given point are above the requested re-
construction threshold (given by snrRecon as the number of σ above the
mean and adjusted to the current scale – see Appendix J), add these to
the reconstructed array.

5. The separation between the filter coefficients is doubled. (Note that this
step provides the name of the procedure5, as gaps or holes are created in
the filter coverage.)

6. The procedure is repeated from step 2, using the convolved array as the
input array.

7. Continue until the required maximum number of scales is reached.

8. Add the final smoothed (i.e. convolved) array to the reconstructed array.
This provides the “DC offset”, as each of the wavelet coefficient arrays
will have zero mean.

The range of scales at which the selection of wavelet coefficients is made
is governed by the scaleMin and scaleMax parameters. The minimum scale
used is given by scaleMin, where the default value is 1 (the first scale). This
parameter is useful if you want to ignore the highest-frequency features (e.g.
high-frequency noise that might be present). Normally the maximum scale is
calculated from the size of the input array, but it can be specified by using
scaleMax. A value ≤ 0 will result in the use of the calculated value, as will
a value of scaleMax greater than the calculated value. Use of these two pa-
rameters can allow searching for features of a particular scale size, for instance
searching for narrow absorption features.

5à trous means “with holes” in French.
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The reconstruction has at least two iterations. The first iteration makes a
first pass at the wavelet reconstruction (the process outlined in the 8 stages
above), but the residual array will likely have some structure still in it, so the
wavelet filtering is done on the residual, and any significant wavelet terms are
added to the final reconstruction. This step is repeated until the relative change
in the measured standard deviation of the residual (see note below on the evalu-
ation of this quantity) is less than some value, given by the reconConvergence
parameter.

It is important to note that the à trous decomposition is an example of a
“redundant” transformation. If no thresholding is performed, the sum of all the
wavelet coefficient arrays and the final smoothed array is identical to the input
array. The thresholding thus removes only the unwanted structure in the array.

Note that any BLANK pixels that are still in the cube will not be altered by
the reconstruction – they will be left as BLANK so that the shape of the valid
part of the cube is preserved.

3.4.2 Note on Statistics

The correct calculation of the reconstructed array needs good estimators of
the underlying mean and standard deviation (or rms) of the background noise
distribution. The methods used to estimate these quantities are detailed in
§3.7.3 – the default behaviour is to use robust estimators, to avoid biasing due
to bright pixels.

When thresholding the different wavelet scales, the value of the rms as mea-
sured from the wavelet array needs to be scaled to account for the increased
amount of correlation between neighbouring pixels (due to the convolution).
See Appendix J for details on this scaling.

3.4.3 User control of reconstruction parameters

The most important parameter for the user to select in relation to the recon-
struction is the threshold for each wavelet array. This is set using the snrRecon
parameter, and is given as a multiple of the rms (estimated by the MADFM)
above the mean (which for the wavelet arrays should be approximately zero).
There are several other parameters that can be altered as well that affect the
outcome of the reconstruction.

By default, the cube is reconstructed in three dimensions, using a three-
dimensional filter and three-dimensional convolution. This can be altered, how-
ever, using the parameter reconDim. If set to 1, this means the cube is re-
constructed by considering each spectrum separately, whereas reconDim=2 will
mean the cube is reconstructed by doing each channel map separately. The
merits of these choices are discussed in §6, but it should be noted that a 2-
dimensional reconstruction can be susceptible to edge effects if the spatial shape
of the pixel array is not rectangular.

The user can also select the minimum and maximum scales to be used in the
reconstruction. The first scale exhibits the highest frequency variations, and
so ignoring this one can sometimes be beneficial in removing excess noise. The
default is to use all scales (minscale = 1).

The convergence of the à trous iterations is governed by the reconConvergence
parameter, which is the fractional decrease in the standard deviation of the resid-
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uals from one iteration to the next. Duchamp will do at least two iterations,
and then continue until the decrease is less than the value of this parameter.

Finally, the filter that is used for the convolution can be selected by us-
ing filterCode and the relevant code number – the choices are listed in Ap-
pendix B. A larger filter will give a better reconstruction, but take longer and
use more memory when executing. When multi-dimensional reconstruction is
selected, this filter is used to construct a 2- or 3-dimensional equivalent.

3.5 Smoothing the cube

An alternative to doing the wavelet reconstruction is to smooth the cube. This
technique can be useful in reducing the noise level (at the cost of making neigh-
bouring pixels correlated and blurring any signal present), and is particularly
well suited to the case where a particular signal size (i.e. a certain channel width
or spatial size) is believed to be present in the data.

There are two alternative methods that can be used: spectral smoothing,
using the Hanning filter; or spatial smoothing, using a 2D Gaussian kernel.
These alternatives are outlined below. To utilise the smoothing option, set
the parameter flagSmooth=true and set smoothType to either spectral or
spatial.

3.5.1 Spectral smoothing

When smoothType = spectral is selected, the cube is smoothed only in the
spectral domain. Each spectrum is independently smoothed by a Hanning filter,
and then put back together to form the smoothed cube, which is then used
by the searching algorithm (see below). Note that in the case of both the
reconstruction and the smoothing options being requested, the reconstruction
will take precedence and the smoothing will not be done.

There is only one parameter necessary to define the degree of smoothing – the
Hanning width a (given by the user parameter hanningWidth). The coefficients
c(x) of the Hanning filter are defined by

c(x) =

{
1
2

(
1 + cos(πxa )

)
|x| < (a+ 1)/2

0 |x| ≥ (a+ 1)/2.
, a, x ∈ Z

Note that the width specified must be an odd integer (if the parameter provided
is even, it is incremented by one).

3.5.2 Spatial smoothing

When smoothType = spatial is selected, the cube is smoothed only in the spa-
tial domain. Each channel map is independently smoothed by a two-dimensional
Gaussian kernel, put back together to form the smoothed cube, and used in the
searching algorithm (see below). Again, reconstruction is always done by pref-
erence if both techniques are requested.

The two-dimensional Gaussian has three parameters to define it, governed by
the elliptical cross-sectional shape of the Gaussian function: the FWHM (full-
width at half-maximum) of the major and minor axes, and the position angle
of the major axis. These are given by the user parameters kernMaj, kernMin
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& kernPA. If a circular Gaussian is required, the user need only provide the
kernMaj parameter. The kernMin parameter will then be set to the same value,
and kernPA to zero. If we define these parameters as a, b, θ respectively, we can
define the kernel by the function

k(x, y) =
1

2πσXσY
exp

[
−0.5

(
X2

σ2
X

+
Y 2

σ2
Y

)]
where (x, y) are the offsets from the central pixel of the gaussian function, and

X = x sin θ − y cos θ Y = x cos θ + y sin θ

σ2
X =

(a/2)2

2 ln 2
σ2
Y =

(b/2)2

2 ln 2

3.6 Input/Output of reconstructed/smoothed arrays

The smoothing and reconstruction stages can be relatively time-consuming, par-
ticularly for large cubes and reconstructions in 3-D (or even spatial smooth-
ing). To get around this, Duchamp provides a shortcut to allow users to per-
form multiple searches (e.g. with different thresholds) on the same reconstruc-
tion/smoothing setup without re-doing the calculations each time.

To save the reconstructed array as a FITS file, set flagOutputRecon =
true. The file will be saved in the same directory as the input image, so the
user needs to have write permissions for that directory.

The name of the file can given by the fileOutputRecon parameter, but
this can be ignored and Duchamp will present a name based on the recon-
struction parameters. The filename will be derived from the input filename,
with extra information detailing the reconstruction that has been done. For
example, suppose image.fits has been reconstructed using a 3-dimensional
reconstruction with filter #2, thresholded at 4σ using all scales from 1 to
5, with a convergence criterion of 0.005. The output filename will then be
image.RECON-3-2-4-1-5-0.005.fits (i.e. it uses the six parameters relevant
for the à trous reconstruction as listed in Appendix B). The new FITS file
will also have these parameters as header keywords. If a subsection of the in-
put image has been used (see §3.1), the format of the output filename will be
image.sub.RECON-3-2-4-1-5-0.005.fits, and the subsection that has been
used is also stored in the FITS header.

Likewise, the residual image, defined as the difference between the input
and reconstructed arrays, can also be saved in the same manner by setting
flagOutputResid = true. Its filename will be the same as above, with RESID
replacing RECON.

If a reconstructed image has been saved, it can be read in and used instead
of redoing the reconstruction. To do so, the user should set the parameter
flagReconExists = true. The user can indicate the name of the reconstructed
FITS file using the reconFile parameter, or, if this is not specified, Duchamp
searches for the file with the name as defined above. If the file is not found, the
reconstruction is performed as normal. Note that to do this, the user needs to
set flagAtrous = true (obviously, if this is false, the reconstruction is not
needed).
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Figure 1: An example of the run-length encoding method of storing pixel infor-
mation. The scans used to encode the image are listed alongside the relevant
row. The pixels are colour-coded by nominal pixel values, but note that the
pixel values themselves do not form part of the encoding and are not kept as
part of the object class.

To save the smoothed array, set flagOutputSmooth = true. As for the re-
constructed/residual arrays, the name of the file can given by the parameter
fileOutputSmooth, but this can be ignored and Duchamp will present a name
that indicates the both the type and the details of the smoothing method used.
It will be either image.SMOOTH-1D-a.fits, where a is replaced by the Hanning
width used, or image.SMOOTH-2D-a-b-c.fits, where the Gaussian kernel pa-
rameters are a,b,c. Similarly to the reconstruction case, a saved file can be read
in by setting flagSmoothExists = true and either specifying a file to be read
with the smoothFile parameter or relying on Duchamp to find the file with the
name as given above.

3.7 Searching the image

3.7.1 Representation of detected objects

The principle aim of Duchamp is to provide a catalogue of sources located in
the image. While running, Duchamp needs to maintain for each source several
data structures that will contribute to the memory footprint: a record of which
pixels contribute to the source; a set of measured parameters that will go into
the catalogue; and a separate two-dimensional map showing the spatial location
of detected pixels (carrying this around makes the computation of detection
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maps easier – see §5.3.2).
To keep track of the set of detected pixels, Duchamp employs specialised

techniques that keep the memory usage manageable. A naive method could
be to store each single pixel, but this results in a lot of redundant information
being stored in memory.

To reduce the storage requirements, the run-length encoding method is used
for storing the spatial information. In this fashion, an object in 2D is stored as
a series of “runs”, encoded by a row number (the y-value), the starting column
(the minimum x-value) and the run length (`x: the number of contiguous pixels
in that row connected to the starting pixel). A single set of (y, x, `x) values is
called a “scan”. A two-dimensional image is therefore made up of a set of scans.
An example can be seen in Fig. 1. Note that the object shown has fourteen
pixels, and so would require 28 integers to record the positions of all pixels.
The run-length encoding uses just 18 integers to record the same information.
The longer the runs are in each scan, the greater the saving of storage over the
naive method.

A 3D object is stored as a set of channel maps, with a channel map being
a 2D plane with constant z-value. Each channel map is itself a set of scans
showing the (x, y) position of the pixels. The additional detection map is stored
as a separate channel map, also made up of scans.

Note that these pixel map representations do not carry the flux information
with them. They store just the pixel locations and need to be combined with
an array of flux values to provide parameters such as integrated flux. The
advantage of this approach is that the pixel locations can be easily applied to
different flux arrays as the need permits (for instance, defining them using the
reconstructed array, yet evaluating parameters on the original array).

This scan-based run-length encoding is how the individual detections are
stored in the binary catalogue described in §5.5.1.

3.7.2 Technique

The basic idea behind detection in Duchamp is to locate sets of contiguous voxels
that lie above some threshold. No size or shape requirement is imposed upon
the detections, and no fitting (for instance, fitting Gaussian profiles) is done on
the sources. All Duchamp does is find connected groups of bright voxels and
report their locations and basic parameters.

One threshold is calculated for the entire cube, enabling calculation of signal-
to-noise ratios for each source (see §5 for details). The user can manually specify
a value (using the parameter threshold) for the threshold, which will override
the calculated value. Note that this option overrides any settings of snrCut or
FDR options (see below).

The cube can be searched in one of two ways, governed by the input parame-
ter searchType. If searchType=spatial, the cube is searched one channel map
at a time, using the 2-dimensional raster-scanning algorithm of Lutz (1980) that
connects groups of neighbouring pixels. Such an algorithm cannot be applied
directly to a 3-dimensional case, as it requires that objects are completely nested
in a row (when scanning along a row, if an object finishes and other starts, you
won’t get back to the first until the second is completely finished for the row).
Three-dimensional data does not have this property, hence the need to treat the
data on a 2-dimensional basis at most.
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Alternatively, if searchType=spectral, the searching is done in one dimen-
sion on each individual spatial pixel’s spectrum. This is a simpler search, but
there are potentially many more of them.

Although there are parameters that govern the minimum number of pix-
els in a spatial, spectral and total senses that an object must have (minPix,
minChannels and minVoxels respectively), these criteria are not applied at this
point - see §3.8.4 for details.

Finally, the search only looks for positive features. If one is interested instead
in negative features (such as absorption lines), set the parameter flagNegative
= true. This will invert the cube (i.e. multiply all pixels by −1) prior to the
search, and then re-invert the cube (and the fluxes of any detections) after
searching is complete. If the reconstructed or smoothed array has been read in
from disk, this will also be inverted at the same time. All outputs are done in
the same manner as normal, so that fluxes of detections will be negative.

3.7.3 Calculating statistics

A crucial part of the detection process (as well as the wavelet reconstruction:
§3.4) is estimating the statistics that define the detection threshold. To deter-
mine a threshold, we need to estimate from the data two parameters: the middle
of the noise distribution (the “noise level”), and the width of the distribution
(the “noise spread”). The noise level is estimated by either the mean or the
median, and the noise spread by the rms (or the standard deviation) or the me-
dian absolute deviation from the median (MADFM). The median and MADFM
are robust statistics, in that they are not biased by the presence of a few pixels
much brighter than the noise.

All four statistics are calculated automatically, but the choice of parameters
that will be used is governed by the input parameter flagRobustStats. This
has the default value true, meaning the underlying mean of the noise distri-
bution is estimated by the median, and the underlying standard deviation is
estimated by the MADFM. In the latter case, the value is corrected, under the
assumption that the underlying distribution is Normal (Gaussian), by dividing
by 0.6744888 – see Appendix I for details. If flagRobustStats=false, the
mean and rms are used instead.

The choice of pixels to be used depend on the analysis method. If the wavelet
reconstruction has been done, the residuals (defined in the sense of original −
reconstruction) are used to estimate the noise spread of the cube, since the
reconstruction should pick out all significant structure. The noise level (the
middle of the distribution) is taken from the original array.

If smoothing of the cube has been done instead, all noise parameters are
measured from the smoothed array, and detections are made with these param-
eters. When the signal-to-noise level is quoted for each detection (see §5), the
noise parameters of the original array are used, since the smoothing process
correlates neighbouring pixels, reducing the noise level.

If neither reconstruction nor smoothing has been done, then the statistics
are calculated from the original, input array.

The parameters that are estimated should be representative of the noise
in the cube. For the case of small objects embedded in many noise pixels
(e.g. the case of Hi surveys), using the full cube will provide good estimators.
It is possible, however, to use only a subsection of the cube by setting the
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parameter flagStatSec = true and providing the desired subsection to the
StatSec parameter. This subsection works in exactly the same way as the pixel
subsection discussed in §3.1. The StatSec will be trimmed if necessary so that
it lies wholly within the image subsection being used (i.e. that given by the
subsection parameter - this governs what pixels are read in and so are able to
be used in the calculations).

Note that StatSec applies only to the statistics used to determine the thresh-
old. It does not affect the calculation of statistics in the case of the wavelet re-
construction. Note also that pixels flagged as BLANK or as part of the “Milky
Way” range of channels are ignored in the statistics calculations.

3.7.4 Determining the threshold

Once the statistics have been calculated, the threshold is determined in one of
two ways. The first way is a simple sigma-clipping, where a threshold is set
at a fixed number n of standard deviations above the mean, and pixels above
this threshold are flagged as detected. The value of n is set with the parameter
snrCut. The “mean” and “standard deviation” here are estimated according
to flagRobustStats, as discussed in §3.7.3. In this first case only, if the user
specifies a threshold, using the threshold parameter, the sigma-clipped value
is ignored.

The second method uses the False Discovery Rate (FDR) technique (Hop-
kins et al. 2002; Miller et al. 2001), whose basis we briefly detail here. The false
discovery rate (given by the number of false detections divided by the total
number of detections) is fixed at a certain value α (e.g. α = 0.05 implies 5% of
detections are false positives). In practice, an α value is chosen, and the ensem-
ble average FDR (i.e. 〈FDR〉) when the method is used will be less than α. One
calculates p – the probability, assuming the null hypothesis is true, of obtaining
a test statistic as extreme as the pixel value (the observed test statistic) – for
each pixel, and sorts them in increasing order. One then calculates d where

d = max
j

{
j : Pj <

jα

cNN

}
,

and then rejects all hypotheses whose p-values are less than or equal to Pd. (So
a Pi < Pd will be rejected even if Pi ≥ jα/cNN .) Note that “reject hypothesis”
here means “accept the pixel as an object pixel” (i.e. we are rejecting the null
hypothesis that the pixel belongs to the background).

The cN value here is a normalisation constant that depends on the correlated
nature of the pixel values. If all the pixels are uncorrelated, then cN = 1. If
N pixels are correlated, then their tests will be dependent on each other, and
so cN =

∑N
i=1 i

−1. Hopkins et al. (2002) consider real radio data, where the
pixels are correlated over the beam. For the calculations done in Duchamp,
N = B × C, where B is the beam area in pixels, calculated from the FITS
header (if the correct keywords – BMAJ, BMIN – are not present, the size of
the beam is taken from the input parameters - see discussion in §5.2.1, and if
these parameters are not given, B = 1), and C is the number of neighbouring
channels that can be considered to be correlated.

The use of the FDR method is governed by the flagFDR flag, which is false
by default. To set the relevant parameters, use alphaFDR to set the α value, and
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FDRnumCorChan to set the C value discussed above. These have default values
of 0.01 and 2 respectively.

The theory behind the FDR method implies a direct connection between
the choice of α and the fraction of detections that will be false positives. These
detections, however, are individual pixels, which undergo a process of merging
and rejection (§3.8), and so the fraction of the final list of detected objects that
are false positives will be much smaller than α. See the discussion in §6.

3.8 Merging, growing and rejecting detected objects

3.8.1 Merging

The searches described above are either 1- or 2-dimensional only. They do
not know anything about the third dimension that is likely to be present. To
build up 3D sources, merging of detections must be done. This is done via an
algorithm that matches objects judged to be “close”, according to one of two
criteria.

One criterion is to define two thresholds – one spatial and one in velocity –
and say that two objects should be merged if there is at least one pair of pixels
that lie within these threshold distances of each other. These thresholds are
specified by the parameters threshSpatial and threshVelocity (in units of
pixels and channels respectively).

Alternatively, the spatial requirement can be changed to say that there must
be a pair of pixels that are adjacent – a stricter, but perhaps more realistic
requirement, particularly when the spatial pixels have a large angular size (as is
the case for Hi surveys). This method can be selected by setting the parameter
flagAdjacent=true in the parameter file. The velocity thresholding is always
done with the threshVelocity test.

3.8.2 Stages of merging

This merging can be done in two stages. The default behaviour is for each new
detection to be compared with those sources already detected, and for it to be
merged with the first one judged to be close. No other examination of the list
is done at this point.

This step can be turned off by setting flagTwoStageMerging=false, so that
new detections are simply added to the end of the list, leaving all merging to
be done in the second stage.

The second, main stage of merging is more thorough, Once the searching is
completed, the list is iterated through, looking at each pair of objects, and merg-
ing appropriately. The merged objects are then included in the examination, to
see if a merged pair is suitably close to a third.

3.8.3 Growing

Once the detections have been merged, they may be “grown” (this is essentially
the process known elsewhere as “floodfill”). This is a process of increasing the
size of the detection by adding nearby pixels (according to the threshSpatial
and threshVelocity parameters) that are above some secondary threshold and
not already part of a detected object. This threshold should be lower than
the one used for the initial detection, but above the noise level, so that faint
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pixels are only detected when they are close to a bright pixel. This threshold
is specified via one of two input parameters. It can be given in terms of the
noise statistics via growthCut (which has a default value of 3σ), or it can be
directly given via growthThreshold. Note that if you have given the detection
threshold with the threshold parameter, the growth threshold must be given
with growthThreshold. If growthThreshold is not provided in this situation,
the growing will not be done.

The use of the growth algorithm is controlled by the flagGrowth parameter
– the default value of which is false. If the detections are grown, they are sent
through the merging algorithm a second time, to pick up any detections that
should be merged at the new lower threshold (i.e. they have grown into each
other).

3.8.4 Rejecting

Finally, to be accepted, the detections must satisfy minimum size criteria, re-
lating to the number of channels, spatial pixels and voxels occupied by the
object. These criteria are set using the minChannels, minPix and minVoxels
parameters respectively. The channel requirement means a source must have at
least one set of minChannels consecutive channels to be accepted. The spatial
pixels (minPix) requirement refers to distinct spatial pixels (which are possibly
in different channels), while the voxels requirement refers to the total number
of voxels detected. If the minVoxels parameter is not provided, it defaults to
minPix+minChannels-1.

It is possible to do this rejection stage before the main merging and grow-
ing stage. This could be done to remove narrow (hopefully spurious) sources
from the list before growing them, to reduce the number of false positives
in the final list. This mode can be selected by setting the input parameter
flagRejectBeforeMerge=true – caution is urged if you use this in conjunction
with flagTwoStageMerging=false, as you can throw away parts of objects that
you may otherwise wish to keep.
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4 Source Parameterisation

Once sources have been located, numerous measurements are made so that they
can be placed in a catalogue. This section details each of the source parame-
ters, explaining what they are and how they are calculated. Each parameter is
referred to by the heading of the relevant column(s) in the output source list
(see §5).

4.1 Object ID, Obj#

The ID of the detection is an integer, simply the sequential count for the list.
The default is ordering by increasing spectral coordinate, or channel number, if
the WCS is not good enough to determine the spectral world coordinate, but
this can be changed by the sortingParam input parameter. See Sec 5.2.1 for
details.

4.2 Object Name, Name

This is the “IAU”-format name of the detection, derived from the WCS position
if available. For instance, a source that is centred on the RA,Dec position
12h53m45s, -36◦24′12′′ will be given the name J125345−362412, if the epoch is
J2000, or the name B125345−362412 if it is B1950. The precision of the RA
and Dec values is determined by the pixel size, such that sufficient precision is
used to uniquely define a position. The RA value will have one figure greater
precision than Dec.

An alternative form is used for Galactic coordinates: a source centred on
the position (l,b) = (323.1245, 5.4567) will be called G323.124+05.457.

If the WCS is not valid (i.e. is not present or does not have all the necessary
information), the name will instead be of the form “ObjXXX”, where XXX is
replaced with the objectID, padded sufficiently with zeros.

4.3 Pixel locations

There are three ways in which the pixel location of the detection is calculated:

• Peak: the pixel value in which the detection has its peak flux. Appears in
the results file under columns X peak, Y peak, Z peak.

• Average: the average over all detected pixels. Specifically, xav =
∑
xi/N

and similarly for yav and zav. Appears in the results file under columns
X av, Y av, Z av.

• Centroid: the flux-weighted average over all detected pixels. Specifically,
xcent =

∑
Fixi/

∑
Fi and similarly for ycent and zcent. Appears in the

results file under columns X cent, Y cent, Z cent.

All three alternatives are calculated, and written to the results file, but the
choice of the pixelCentre input parameter will determine which option is used
for the reference values X, Y, Z.
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4.4 Spatial world location, RA/GLON, DEC/GLAT

These are the conversion of the X and Y pixel positions to world coordinates
(that is, the pixel position determined by pixelCentre). These will typically
be Right Ascension and Declination, or Galactic Longitude and Galactic Lati-
tude, but the actual names used in the output file will be taken from the WCS
specification.

If there is no useful WCS, these are not calculated.

4.5 Spectral world location, VEL

The conversion of the Z pixel position to the spectral world coordinates. This is
dictated by the WCS of the FITS file plus the input parameter spectralType.
The name of the output column will come from the CTYPE of the spectral axis
(or spectralType – see §3.2), specifically , the 4-character S-type code) (i.e.
not necessarily “VEL”)

The spectral units can be specified by the user, using the input parameter
spectralUnits (enter it as a single string with no spaces). The default value
comes from the FITS header.

4.6 Spatial size, MAJ, MIN, PA

The spatial size of the detection is measured from the moment-0 map (in the case
of three-dimensional data) or the two-dimensional image, and is parameterised
by the FWHM of the major and minor axes, plus the position angle of the major
axis.

The position angle will be measured in the usual astronomical sense, in
degrees East of North. The major and minor axes will be specified in angular
units (assuming the WCS allows this), with the units chosen such that the
numbers are not too small.

The method for calculating these parameters is to form the moment-0 map
(if necessary), select all pixels greater than half the maximum 6, then calculate
the parameters a (major FWHM), b (minor FWHM) and θ (position angle)
according to

1
2
a2 = Sxx + Syy +

√
(Sxx − Syy)2 + 4(Sxy)2

1
2
b2 = Sxx + Syy −

√
(Sxx − Syy)2 + 4(Sxy)2

tan 2θ =
2Sxy

Sxx − Syy

where the sums Sxx, Syy and Sxy are calculated in one of two ways. First, the

6In the event of a negative search (see §3.7.2), the moment map is inverted prior to this
selection.
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algorithm tries to weight each pixel by its flux:

Sxx =
∑

Fix
2
i /
∑

Fi

Syy =
∑

Fiy
2
i /
∑

Fi

Sxy =
∑

Fixiyi/
∑

Fi

Mostly, this will work. But there can be situations where the calculated value
of b2 is negative (that is, Sxx+Syy <

√
(Sxx − Syy)2 + 4S2

xy, or SxxSyy < S2
xy).

These situations are often where the moment-0 map is very disordered with no
clear primary axis.

In this case, the calculation of the sums is redone without the flux weighting
(Sxx =

∑
x2
i etc), and the shape parameters recalculated. A W flag will be

recorded for the detection to indicate that the weighting failed: see §4.14 below.
It is possible that this second calculation will fail, particuarly for sources

with only a small number of spatial pixels. In this case, we revert to using the
method of principle axes.

We first calculate the angle of minimum moment and assign this as the
position angle. This is defined by calculating the net moments:

Mxx =
∑

x2
i −

1
N

(∑
xi

)2

Myy =
∑

y2
i −

1
N

(∑
yi

)2

Mxy =
∑

xiyi −
1
N

∑
xi
∑

yi

then

tan θ =
(Mxx −Myy +

√
(Mxx −Myy)2 + 4Mxy)
2Mxy

.

To find the sizes of the principle axes (the major axis aligning with the angle just
calculated, and the minor being perpendicular to it), we calculate the projection
along these two axes of each pixel above half the peak in the moment-0 map, and
take the range between the maximum and minimum, requiring it to be at least
one pixel. Note this is not sensitive to the flux distribution. If this calculation
is used, a w flag will be recorded for the detection: see §4.14 below.

4.7 Spatial extent, w RA/w GLON, w DEC

The extent of the detection in each of the spatial directions is also calculated.
This is simply the angular width of the detection (in arcmin), converting the
minimum and maximum values of x (usually RA) and y (Dec) to the world
coordinates.

4.8 Spectral width, w 50, w 20, w VEL

Several measures of the spectral extent of a detection are provided. The simplest
is the full spectral width, calculated as for the spatial extents above. This is
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referred to as w VEL, but need not be velocity. It is obtained by taking the
difference in world coordinates of the minimum and maximum values of z. The
units are as described in §4.5.

Two other measures of the spectral width are provided, w 50 and w 20,
being the width at 50% and 20% of the peak flux. These are measured on
the integrated spectrum (i.e. the spectra of all detected spatial pixels summed
together), and are defined by starting at the outer spectral extent of the object
(the highest and lowest spectral values) and moving in or out until the required
flux threshold is reached. The widths are then just the difference between the
two values obtained. If the detection threshold is greater than 20% or 50% of
the peak, then these values will be the same as w VEL.

4.9 Source flux, F tot, F int, F peak

There are two measurements of the total flux of the detection. The simplest,
F tot, is just the sum of all detected pixels in the image: Ftot =

∑
Fi. The

alternative, F int, is the flux integrated over the detected pixels, taking into
account the spectral range. For the case of velocity, the expression is Fint =∑
Fi∆vi, where ∆vi is the velocity width of the channel containing pixel i. The

actual units of the spectral range are as described in §4.5.
When the cube brightness units are quoted per beam (e.g. Jy/beam), then

the integrated flux F int includes a correction for this. This involves dividing by
the integral over the beam. This is calculated using the BMAJ, BMIN & BPA
header keywords from the FITS file. BMAJ and BMIN are assumed to be the
full-width at half maximum (FWHM) in the major and minor axis directions of
a Gaussian beam. The integral is calculated as follows: the functional form of a
2D elliptical Gaussian can be written as exp(−((x2/2σ2

x) + (y2/2σ2
y))), and the

FWHM in a given direction is then f = 2
√

2 ln 2σ. Then, Fint = C
∑
Fi∆vi,

where

C =
∫

exp
(
−
(
x2

2σ2
x

+
y2

2σ2
y

))
= 2πσxσy =

πfxfy
4 ln 2

provides the correction factor to go from units of Jy/beam to Jy.
If the FITS file does not have the beam information, the user can either:

1. Specify the FWHM of the beam in pixels (assuming a circular beam) via
the parameter beamFWHM.

2. Specify the area of the beam, again in pixels, via the parameter beamArea7.
This should be the value given by the equation above.

If both are given, beamFWHM takes precendence. If neither are given, and there
is no beam information in the header, then no correction to the integrated flux
is made (and so it will stay in units of Jy/beam or equivalent).

Note that these parameters are measured using only the detected pixels. The
summing of the flux will not include voxels that fall below the detection (or
growth) threshold – which is in accord with the definition of the threshold as
dividing source and non-source voxels. If the threshold is not low enough, this
will bias the measurement of the fluxes. This applies to all parameters (with the

7Note that this is equivalent to the old parameter beamSize, which was highlighted as being
ambiguous.
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exception of the w 50 and w 20 widths, which are measured from the integrated
spectrum, including channels not necessarily forming part of the detection).

Finally, the peak flux F peak is simply the maximum value of the flux over
all the detected pixels.

4.10 Error on total/integrated flux, eF tot, eF int

Both F tot and F int can also have their associated error calculated (eF tot
and eF int respectively). This is the random error due to the noise in the image,
and is simply the sum in quadrature of the noise on each of the voxels, and, in
the case of F int multiplied by the spectral width and corrected for the beam
if necessary. Since we assume a constant noise level in the image (σi = σ ∀i),
we have:

eFint =
√∑

σ2
i

= σ
√
N

eFtot =
√∑

C2σ2
i∆v2

i

= Cσ
√
N∆v (for the case of ∆vi = ∆v)

In the case that a flux threshold is provided, these quantities are not calculated,
since we don’t measure the image noise statistics. Likewise, when the array is
smoothed we measure the noise only in the smoothed image, and this value is
not applicable to the flux measured from the original image, so the errors are
not reported.

4.11 Peak signal-to-noise, S/Nmax

This parameter converts the peak flux to a signal-to-noise value, based on the
measured noise level in the image. As for the error quantities above, if no
noise is measured (i.e. a flux threshold is provided by the user), then this is not
calculated.

When the array is pre-processed (via smoothing or wavelet reconstruction),
we take the peak flux here to be the peak in the smoothed or reconstructed
array. This is because this is where the detection is made, and so the S/Nmax
value can be directly compared to the requested signal-to-noise threshold. Note
that the peak flux discussed in §4.9 is always measured from the original image
array.

4.12 Pixel ranges, X1, X2, Y1, Y2, Z1, Z2

These quantities give the range of pixel values spanned by the detection in each
of the three axes. X1, Y1, Z1 give the minimum pixel in each direction, while
X2, Y2, Z2 give the maximum pixel.

4.13 Size, Npix

The number of detected pixels that make up the detection
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4.14 Warning Flags, Flag

The detection can have warning flags recorded, to highlight potential issues:

• E – The detection is next to the spatial edge of the image, meaning either
the limit of the pixels, or the limit of the non-BLANK pixel region.

• S – The detection lies at the edge of the spectral region.

• M – The detection is adjacent to, or overlaps the “Milky Way” range of
channels (see §3.3.3).

• N – The total flux, summed over all the (non-BLANK) pixels in the
smallest box that completely encloses the detection, is negative. Note that
this sum is likely to include non-detected pixels. It is of use in pointing
out detections that lie next to strongly negative pixels, such as might
arise due to interference – the detected pixels might then also be due to
the interference, so caution is advised.

• W – The weighting of fluxes in the shape calculation (Sec 4.6) failed,
so the unweighted calculation was used. This likely indicates some very
disordered shape for the moment-0 map.

• w – The unweighted calculation also failed, most likely because there are
too few pixels. In this case, we use the alternate method of principle axes
to estimate the shape.

In the absence of any of these flags, a - will be recorded.
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5 Outputs

5.1 During execution

Duchamp provides the user with feedback whilst it is running, to keep the
user informed on the progress of the analysis. Most of this consists of self-
explanatory messages about the particular stage the program is up to. The
relevant parameters are printed to the screen at the start (once the file has been
successfully read in), so the user is able to make a quick check that the setup is
correct (see Appendix C for an example).

The extent of memory allocation made at the start is indicated. This will
include the arrays needed for the pixel array, the reconstruction or smoothed
array, and the 2D detection map, but not additional space needed for working
within individual algorithms, nor storage needed for the detected objects.

Duchamp will report the amount of memory that is allocated when the image
is read in. This includes the storage for the array as well as additional storage
for the reconstructed/smoothed array and/or the baseline arrays (if these are
needed).

If the cube is being trimmed (§3.3), the resulting dimensions are printed
to indicate how much has been trimmed. If a reconstruction is being done,
a continually updating message shows either the current iteration and scale,
compared to the maximum scale (when reconDim = 3), or a progress bar show-
ing the amount of the cube that has been reconstructed (for smaller values of
reconDim).

During the searching algorithms, the progress through the search is shown.
When completed, the number of objects found is reported (this is the total
number found, before any merging is done).

In the merging process (where multiple detections of the same object are
combined – see §3.8), two stages of output occur. The first is when each object
in the list is compared with all others. The output shows two numbers: the first
being how far through the list the current object is, and the second being the
length of the list. As the algorithm proceeds, the first number should increase
and the second should decrease (as objects are combined). When the numbers
meet, the whole list has been compared. If the objects are being grown, a similar
output is shown, indicating the progress through the list. In the rejection stage,
in which objects not meeting the minimum pixels/channels requirements are
removed, the total number of objects remaining in the list is shown, which
should steadily decrease with each rejection until all have been examined. Note
that these steps can be very quick for small numbers of detections.

Since this continual printing to screen has some overhead of time and CPU
involved, the user can elect to not print this information by setting the parameter
verbose = false. In this case, the user is still informed as to the steps being
undertaken, but the details of the progress are not shown.

There may also be Warning or Error messages printed to screen. The Warn-
ing messages occur when something happens that is unexpected (for instance,
a desired keyword is not present in the FITS header), but not detrimental to
the execution. An Error message is something more serious, and indicates some
part of the program was not able to complete its task. This is not necessary
fatal, but it may mean the full functionality requested will not be achieved.
The message will also indicate which function or subroutine generated it – this
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is primarily a tool for debugging, but can be useful in determining what went
wrong.

5.2 Text-based output files

5.2.1 Table of results

Finally, we get to the results – the reason for running Duchamp in the first
place. Once the detection list is finalised and parameterised according to §4, it
is sorted according to the value of the sortingParam. This can take the value
“xvalue”, “yvalue”, “zvalue”, “ra”, “dec”, “vel”, “w50”, “iflux” (for integrated
flux), or “pflux” (for peak flux), or “snr”. The default value is “vel” (which
means the spectral WCS value – this could be frequency or wavelength depend-
ing on the nature of the FITS file). If no good WCS exists, the mean pixel
position equivalent is used (“ra” is replaced by “xvalue”, “dec” by “yvalue”,
“vel” and “w50” by “zvalue”). The sense of the sorting will be increasing value
with position in the list. To sort in the opposite sense, prepend the parameter
name with a ’-’ (e.g. “-vel” instead of “vel”). The object ID number (§4.1) is
determined by the order of the list after this sorting, so sorting by a different
parameter will result in a different object ID for the same object.

The results are then printed to the screen and to the output file, given by
the OutFile parameter. The output file will contain all calculated parameters,
as described in §4. The results list printed to the screen, however, will leave out
certain columns:

• The spatial extent columns w RA & w DEC.

• The w 20 and w VEL spectral width columns.

• The total flux F tot (unless there is no good WCS, in which case it is
printed instead of F int), and the errors on the total and integrated fluxes
eF tot, eF int.

• The explicit columns for the average, centroid and peak pixel locations.
The only pixel location columns printed are X, Y, Z, which are deter-
mined via the pixelCentre input parameter.

• If the WCS is no good, the world-coordinate columns RA, DEC, VEL,
F int will not be printed either.

The output file consists of two sections. The first section contains the meta-
data for the search. First, a list of the parameters are printed to the output
file, for future reference. Next, the detection threshold that was used is given,
so comparison can be made with other searches. The statistics estimating the
noise parameters are given (see §3.7.3). Thirdly, the number of detections are
reported.

All this information, known as the “header”, can either be written to the
start of the output file (denoted by the parameter OutFile), or written to a
separate file from the list of detections. This second option is activated by the
parameter flagSeparateHeader, and the information is written to the file given
by HeaderFile.
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The second part of the file, however, contains the most interesting part –
the list of detected objects. This is written as an ASCII table, properly spaced
so that it is readable. An example is shown in Appendix D.

The user can specify the precision used to display the flux, spectral lo-
cation/width and S/Nmax values, by using the input parameters precFlux,
precVel and precSNR respectively. These values apply to the tables written to
the screen and to the output file, as well as for the VOTable (see below).

5.2.2 VOTable catalogue

Three additional results files can also be requested. One option is a VOTable-
format XML file, containing just the RA, Dec, spectral location and the cor-
responding widths of the detections, as well as the fluxes. The user should set
flagVOT = true, and put the desired filename in the parameter votFile – note
that the default is for it not to be produced. An example of VOTable output
can be found in Appendix E. This file should be compatible with all Virtual
Observatory tools (such as Aladin8 or TOPCAT9).

5.2.3 Annotation and region files

A second option are annotation files for use with several visualisation tools,
including the Karma toolkit (in particular, with kvis), SAOImage DS9, and
casaviewer (and casapy itself).

There are three options on how objects are represented, governed by the
annotationType parameter. These are:

• borders – a border is drawn around the spatial pixels of the object, in a
manner similar to that seen in Fig. 2. Note that Karma/kvis does not
always do this perfectly, particularly as you change the zoom, so the lines
may not be directly lined up with pixel borders.

• circles – draws a circle at the position of each detection, scaled by the
spatial size of the detection.

• ellipses – draws an ellipse of size given by the MAJ, MIN, PA source
parameters (§4.6).

In each case, the object is numbered according to the object ID (§4.1. To make
use of this option, the user should set flagKarma, flagDS9 or flagCasa to
true, and put the desired filename in the parameter karmaFile, ds9File or
casaFile – again, the default is for these not to be produced. Examples of
these annotation files are in Appendices F,G,H.

5.2.4 Spectral text file

The final optional results file produced is a simple text file that contains the
spectra for each detected object. The format of the file is as follows: the first
column has the spectral coordinate, over the full range of values; the remaining
columns represent the flux values for each object at the corresponding spectral
position. The flux value used is the same as that plotted in the spectral plot

8http://aladin.u-strasbg.fr/
9http://www.star.bristol.ac.uk/ mbt/topcat/

http://aladin.u-strasbg.fr/
http://www.star.bristol.ac.uk/~mbt/topcat/
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detailed below, and governed by the spectralMethod parameter. An example
of what a spectral text file might look like is given below:

1405.00219727 0.01323344 0.23648241 0.04202826 -0.00506790
1405.06469727 0.01302835 0.27393046 0.04686056 -0.00471084
1405.12719727 0.01583361 0.27760920 0.04114933 -0.01168737
1405.18969727 0.01271889 0.31489247 0.03307962 -0.00300790
1405.25219727 0.01597644 0.30401203 0.05356426 -0.00551653
1405.31469727 0.00773827 0.30031312 0.04074831 -0.00570147
1405.37719727 0.00738304 0.27921870 0.05272378 -0.00504959
1405.43969727 0.01353923 0.26132512 0.03667958 -0.00151006
1405.50219727 0.01119724 0.28987029 0.03497849 -0.00645589
1405.56469727 0.00813379 0.29839963 0.04711142 0.00536576
1405.62719727 0.00774377 0.26530230 0.04620502 0.00724631
1405.68969727 0.00576067 0.23215000 0.04995513 0.00290841
1405.75219727 0.00452834 0.16484940 0.04261605 -0.00612812
1405.81469727 0.01406293 0.15989439 0.03817926 -0.00758385
1405.87719727 0.01116611 0.11890682 0.05499069 -0.00626362
1405.93969727 0.00687582 0.10620256 0.04743370 0.00055177
...

...
...

...
...

5.2.5 Log file

In addition to these three files, a log file can also be produced. As the program
is running, it also (optionally) records the detections made in each individual
spectrum or channel (see §3.7 for details on this process). This is recorded in
the file given by the parameter LogFile. This file does not include the columns
Name, RA, DEC, w RA, w DEC, VEL, w VEL. This file is designed primarily for
diagnostic purposes: e.g. to see if a given set of pixels is detected in, say, one
channel image, but does not survive the merging process. The list of pixels
(and their fluxes) in the final detection list are also printed to this file, again
for diagnostic purposes. The file also records the execution time, as well as the
command-line statement used to run Duchamp. The creation of this log file can
be prevented by setting flagLog = false (which is the default).

5.3 Graphical output

5.3.1 Spectral plots

As well as the output data file, a postscript file (with the filename given by the
spectralFile parameter) is created that shows the spectrum for each detec-
tion, together with a small cutout image (the 0th moment) and basic information
about the detection (note that any flags are printed after the name of the de-
tection, in the format [E]). If the cube was reconstructed, the spectrum from
the reconstruction is shown in red, over the top of the original spectrum. The
spectral extent of the detected object is indicated by two dashed blue lines, and
the region covered by the “Milky Way” channels is shown by a green hashed
box. An example detection can be seen in Fig. 2.

The spectrum that is plotted is governed by the spectralMethod parameter.
It can be either peak (the default), where the spectrum is from the spatial pixel
containing the detection’s peak flux; or sum, where the spectrum is summed
over all spatial pixels, and then corrected for the beam size. If the peak method
is used, the detection threshold (and growth threshold, if used) are indicated by
dashed (and dotted) lines. These cannot be plotted on the integrated spectrum.
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Figure 2: An example of the spectral output. Note several of the features discussed in the
text: the red solid lines indicating the reconstructed spectrum; the blue dashed and dotted
horizontal lines indicating the detection and growth thresholds respectively; the blue dashed
lines indicating the spectral extent of the detection; the green hashed area indicating the
Milky Way channels that are ignored by the searching algorithm; the blue border showing its
spatial extent on the 0th moment map; the ellipses indicating the size of the object and the
beam; and the 15 arcmin-long scale bar.

The spectral extent of the detection is indicated with blue lines, and a zoom is
shown in a separate window.

The cutout image shows a red ellipse indicating the spatial size of the de-
tection (using MAJ, MIN, PA - §4.6). Also drawn in green in the corner of the
image is an ellipse indicating the beam size (assuming the beam is defined).

The cutout image can optionally include a border around the spatial pixels
that are in the detection (turned on and off by the drawBorders parameter –
the default is true). It includes a scale bar in the bottom left corner to indicate
size – its length is indicated next to it (the choice of length depends on the size
of the image).

There may also be one or two extra lines on the image. A yellow line shows
the limits of the cube’s spatial region: when this is shown, the detected object
will lie close to the edge, and the image box will extend outside the region
covered by the data. A purple line, however, shows the dividing line between
BLANK and non-BLANK pixels. The BLANK pixels will always be shown in
black. The first type of line is always drawn, while the second is governed by
the parameter drawBlankEdges (whose default is true), and obviously whether
there are any BLANK pixel present.

Note that the creation of the spectral plots can be prevented by setting
flagPlotSpectra = false.

When the input image is two-dimensional, with no spectral dimension, this
spectral plot would not make much sense. Instead, Duchamp creates a similar
postscript file that simply includes the text headers as well as the 0th-moment
map of the detection. As for the normal spectral case, this file will be written
to the filename given by the spectralFile parameter.

When the input image is one-dimensional, the spectral plot is identical save
for the absence of the cutout image.

In addition to the spectral plot, it is possible to produce plots for each spec-
trum individually. Set flagPlotIndividualSpectra=true, and a postscript
plot will be produced for each object. If the normal spectral output file (deter-
mined by the spectralFile input parameter) is called duchamp-Spectra.ps,
then the individual files will be called duchamp-Spectra-01.ps etc.
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Figure 3: An example of the moment map created by Duchamp. The full extent of the cube
is covered, and the 0th moment of each object is shown (integrated individually over all the
detected channels). The purple line indicates the limit of the non-BLANK pixels.

5.3.2 Spatial maps

Additionally, two types of spatial images are optionally produced: a combined
0th-moment map of the cube, combining just the detected channels in each
object, showing the integrated flux in grey-scale; and a “detection image”, a
grey-scale image where the pixel values are the number of channels in which that
spatial pixel is detected. These detections include pixels that are subsequently
discarded (due to the minimum-size criteria). In both cases, if drawBorders
= true, a border is drawn around the spatial extent of each detection, and if
drawBlankEdges = true, the purple line dividing BLANK and non-BLANK
pixels (as described above) is drawn. An example moment map is shown in
Fig. 3. The production or otherwise of these images is governed by the flagMaps
parameter.

The moment map is also displayed in a PGPlot XWindow (with the /xs
display option). This feature can be turned off by setting flagXOutput = false
– this might be useful if running Duchamp on a terminal with no window display
capability, or if you have set up a script to run it in a batch mode.

If the input image is one-dimensional, such a spatial map is not possible.
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Figure 4: An example of the one-dimensional detection spectrum plot, indicating detected
sources and detected pixels, including those subsquently discarded due to the minimum-size
criteria. The detection threshold is low to show the effect of detecting lots of single-pixel
channels, which are then discarded, leaving just the two detections delimited by the blue
lines.

Instead, the detection map becomes a detection spectrum. This shows the full
spectral range, indicating (as for the spectral plots above) the detection and
growth thresholds, as well as the ‘Milky Way’ range and every detection that
appears in the final catalogue. It also indicates all pixels that were detected,
including those subsequently discarded, by thick black lines above the spectrum.
An example can be see in Fig. 4. Again, this plot is also displayed in a PGPlot
XWindow.

The purpose of these images is to provide a visual guide to where the de-
tections have been made, and, particularly in the case of the moment map, to
provide an indication of the strength of the source. In both cases, the detections
are numbered (in the same sense as the output list and as the spectral plots),
and the spatial borders are marked out as for the cutout images in the spectra
file. Both these images are saved as postscript files (given by the parameters
momentMap and detectionMap respectively), with the latter also displayed in a
pgplot window (regardless of the state of flagMaps).

5.4 FITS output

5.4.1 Moment map

The moment map described above can also be written to a FITS file, so that it
can be examined more closely, and have annotation files overlaid. This works
in the same way as for the mask image. To create the FITS file, set the input
parameter flagOutputMomentMap=true. The file will be named according to
the fileOutputMomentMap parameter, or, if this is not given, image.MOM0.fits
(where the input image is called image.fits).

5.4.2 Mask images

It is also possible to write the mask array to a FITS file, for use in other
forms of post-processing. This array is designed to indicate the location of
detected objects. The value of the detected pixels is determined by the input
parameter flagMaskWithObjectNum: if true, the value of the pixels is given
by the corresponding object ID number; if false, they take the value 1 for
all objects. Pixels not in a detected object have the value 0. To create this
FITS file, set the input parameter flagOutputMask=true. The file will be
named according to the fileOutputMask parameter, or, if this is not given,
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image.MASK.fits (where the input image is called image.fits).
A spatial mask, or moment-0 mask, can also be written. This is simply a

two-dimensional image that shows which spatial pixels are detected in one or
more channels. Unlike the full mask file above, detected pixels can only be
recorded as 1 (as a given spatial pixel may appear in multiple objects) – that
is, the parameter flagMaskWithObjectNum does not affect the moment-0 mask.
To create this FITS file, set the input parameter flagOutputMomentMask=true.
The file will be named according to the fileOutputMomentMask parameter, or,
if this is not given, image.MOM0MASK.fits (where the input image is called
image.fits).

5.4.3 Smoothed or Reconstructed image

As discussed in §3.6, the reconstructed array, its residual, or the smoothed array
can be saved to a FITS file. This allows examination of them offline, as well as
their re-use by Duchamp to save the expense of re-calculating. This behaviour
is controlled by flagOutputRecon, flagOutputResid and flagOutputSmooth.
Consult §3.6 for further details.

5.4.4 Baseline image

As mentioned in §3.3.2, the spectral baseline values can be saved to a FITS file,
allowing examination of them offline. There is no scope at present for reloading
previously-calculated baselines (although the overheads in calculating these are
not too prohibitive). Saving to a FITS file is controlled by the input parameters
flagOutputBaseline and fileOutputBaseline. If fileOutputBaseline is
not provided, the file will be named image.BASE.fits (for an input image
called image.fits).

5.5 Re-examining previous Duchamp results

5.5.1 Binary Catalogue

It is often the case that the bulk of the work in a Duchamp run is in the searching
for sources. If you are interested in re-doing some of the spectral plots, or re-
parameterising with different spectralType settings, then having to re-run the
searching can be a bit off-putting.

A solution to this problem exists in the ability to save a binary catalogue,
containing the information on the individual pixels detected in each object. This
is sufficient to recreate a set of detections and re-do the parameterisation. To en-
able this mode, set flagWriteBinaryCatalogue=true, and provide a filename
with binaryCatalogue (or use the default of duchamp-Catalogue.dpc). The
following will be written to the catalogue:

• Version of Duchamp. If it is not the same version, a warning is raised.

• Current date and time.

• The parameter set. Only the parameters affecting the pre-processing and
searching are stored. Those related to, say, graphical output are not.

• The measured statistics.
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• The pixels of each detected object, written using the run-length encoding
described in §3.7.1.

These are written in binary format to conserve disk space, and are sufficient to
recreate the state of Duchamp after the searching has taken place.

To re-use this catalogue, set the flag usePrevious=true and provide the
binary catalogue filename via binaryCatalogue. The catalogue will be loaded,
and (provided it loads correctly) the preprocessing and searching steps will be
skipped. The post-processing (i.e. plotting and catalogue output) steps will
occur as normal, using the settings provided in the input parameter file.

Note that while at this stage this is the only use for the binary catalogues, it
is anticipated that other functionality will be provided in future - for instance,
to allow conversion into mask images. The binary catalogues are seen as a
compact way of storing the results of a Duchamp run.

5.5.2 Selection of objects

When re-running Duchamp on a previously-generated catalogue, it is possible
to produce the plots for only a selection of objects. Use the objectList pa-
rameter to specify a set of objects, listing individual object numbers or ranges,
for example “1,3-6,9,11” means objects 1,3,4,5,6,9,11. The output plots will be
appropriately modified: the spectral plots will only show these objects; the mo-
ment map plot will only show the contribution from these objects; the detection
map will show the outlines of only these objects, although all detected pixels
are still shown in greyscale.

Note that the object numbers here are valid for the catalogue as sorted
according to the sortingParam specification in the parameter file. If you change
this, the order of the catalogue may change and the specific objects selected by
objectList will differ.

This option is designed for the case of re-using a catalogue, but can be used
for a blind search as well. Of course, you may not know what numbers the
sources will turn out to be.
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6 Notes and hints on the use of Duchamp

In using Duchamp, the user has to make a number of decisions about the way
the program runs. This section is designed to give the user some idea about
what to choose.

6.1 Memory usage

A lot of attention has been paid to the memory usage in Duchamp, recognising
that data cubes are going to be increasing in size with new generation correlators
and wider fields of view. However, users with large cubes should be aware of the
likely usage for different modes of operation and plan their Duchamp execution
carefully.

At the start of the program, memory is allocated sufficient for:

• The entire pixel array (as requested, subject to any subsection).

• The spatial extent, which holds the map of detected pixels (for output
into the detection map).

• If smoothing or reconstruction has been selected, another array of the
same size as the pixel array. This will hold the smoothed/reconstructed
array (the original needs to be kept to do the correct parameterisation of
detected sources).

• If baseline-subtraction has been selected, a further array of the same size
as the pixel array. This holds the baseline values, which need to be added
back in prior to parameterisation.

All of these will be float type, except for the detection map, which is short.
There will, of course, be additional allocation during the course of the pro-

gram. The detection list will progressively grow, with each detection having a
memory footprint as described in §3.7.1. But perhaps more important and with
a larger impact will be the temporary space allocated for various algorithms.

The largest of these will be the wavelet reconstruction. This will require an
additional allocation of twice the size of the array being reconstructed, one for
the coefficients and one for the wavelets - each scale will overwrite the previous
one. So, for the 1D case, this means an additional allocation of twice the
spectral dimension (since we only reconstruct one spectrum at a time), but the
3D case will require an additional allocation of twice the cube size (this means
there needs to be available at least four times the size of the input cube for 3D
reconstruction, plus the additional overheads of detections and so forth).

The smoothing has less of an impact, since it only operates on the lower
dimensions, but it will make an additional allocation of twice the relevant size
(spectral dimension for spectral smoothing, or spatial image size for the spatial
Gaussian smoothing).

The other large allocation of temporary space will be for calculating robust
statistics. The median-based calculations require at least partial sorting of the
data, and so cannot be done on the original image cube. This is done for the
entire cube and so the temporary memory increase can be large.



6 NOTES AND HINTS ON THE USE OF DUCHAMP 42

6.2 Timing considerations

Another intersting question from a user’s perspective is how long you can expect
Duchamp to take. This is a difficult question to answer in general, as differ-
ent users will have different sized data sets, as well as machines with different
capabilities (in terms of the CPU speed and I/O & memory bandwidths). Addi-
tionally, the time required will depend slightly on the number of sources found
and their size (very large sources can take a while to fully parameterise).

Having said that, in Whiting (2012) a brief analysis was done looking at
different modes of execution applied to a single HIPASS cube (#201) using a
MacBook Pro (2.66GHz, 8MB RAM). Two sets of thresholds were used, either
108 Jy beam−1 (no sources will be found, so that the time taken is dominated
by preprocessing), or 35 mJy beam−1 (or ∼ 2.58σ, chosen so that the time
taken will include that required to process sources). The basic searches, with
no pre-processing done, took less than a second for the high-threshold search,
but between 1 and 3 min for the low-threshold case – the numbers of sources
detected ranged from 3000 (rejecting sources with less than 3 channels and 2
spatial pixels) to 42000 (keeping all sources).

When smoothing, the raw time for the spectral smoothing was only a few
seconds, with a small dependence on the width of the smoothing filter. And
because the number of spurious sources is markedly decreased (the final cata-
logues ranged from 17 to 174 sources, depending on the width of the smoothing),
searching with the low threshold did not add much more than a second to the
time. The spatial smoothing was more computationally intensive, taking about
4 minutes to complete the high-threshold search.

The wavelet reconstruction time primarily depended on the dimensionality
of the reconstruction, with the 1D taking 20 s, the 2D taking 30 - 40 s and the
3D taking 2 - 4 min. The spread in times for a given dimensionality was caused
by different reconstruction thresholds, with lower thresholds taking longer (since
more pixels are above the threshold and so need to be added to the final spec-
trum). In all cases the reconstruction time dominated the total time for the
low-threshold search, since the number of sources found was again smaller than
the basic searches.

6.3 Why do preprocessing?

The preprocessing options provided by Duchamp, particularly the ability to
smooth or reconstruct via multi-resolution wavelet decomposition, provide an
opportunity to beat the effects of the random noise that will be present in the
data. This noise will ultimately limit ones ability to detect objects and form
a complete and reliable catalogue. Two effects are important here. First, the
noise reduces the completeness of the final catalogue by suppressing the flux
of real sources such that they fall below the detection threshold. Secondly, the
noise provides false positive detections through noise peaks that fall above the
threshold, thereby reducing the reliability of the catalogue.

Whiting (2012) examined the effect on completeness and reliability for the
reconstruction and smoothing (1D cases only) when applied to a simple simu-
lated dataset. Both had the effect of reducing the number of spurious sources,
which means the searches can be done to fainter thresholds. This led to com-
pleteness levels of about one flux unit (equal to one standard-deviation of the
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noise) fainter than searches without pre-processing, with > 95% reliability. The
smoothing did slightly better, with the completeness level nearly half a flux unit
fainter than the reconstruction, although this was helped by the sources in the
simulation all having the same spectral size.

6.4 Reconstruction considerations

The à trous wavelet reconstruction approach is designed to remove a large
amount of random noise while preserving as much structure as possible on
the full range of spatial and/or spectral scales present in the data. While it
is relatively more expensive in terms of memory and CPU usage (see previous
sections), its effect on, in particular, the reliability of the final catalogue makes
it worth investigating.

There are, however, a number of subtleties to it that need to be considered
by potential users. Whiting (2012) shows a set of examples of reconstruction
applied to simulated and real data. The real data, in this case a HIPASS
cube, shows differences in the quality of the reconstructed spectrum depending
on the dimensionality of the reconstruction. The two-dimensional reconstruc-
tion (where the cube is reconstructed one channel map at a time) shows much
larger channel-to-channel noise, with a number of narrow peaks surviving the
reconstruction process. The problem here is that there are spatial correlations
between pixels due to the beam, which allow beam-sized noise fluctuations to
rise above the threshold more frequently in one-dimension. The other effect is
that when compared to a spectrum from the 1D reconstruction, each channel
is independently reconstructed, and does not depend on its neighbouring chan-
nels. This is also why the 3D reconstruction (which also suffers from the beam
effects) has improved noise in the output spectrum, since the information on
neighbouring channels is taken into account.

Caution is also advised when looking at subsections of a cube. Due to the
multi-scale nature of the algorithm, the wavelet coefficients at a given pixel are
influenced by pixels at very large separations, particularly given that edges are
dealt with by assuming reflection (so the whole array is visible to all pixels).
Also, if one decreases the dimensions of the array being reconstructed, there
may be fewer scales used in the reconstruction. These points mean that the
reconstruction of a subsection of a cube will differ from the same subsection of
the reconstructed cube. The difference may be small (depending on the relative
size difference and the amount of structure at large scales), but there will be
differences at some level.

Note also that BLANK pixels have no effect on the reconstruction: they re-
main as BLANK in the output, and do not contribute to the discrete convolution
when they otherwise would. The use of the Milky Way channel range, however,
has no effect on the reconstruction – these are applied after the preprocessing,
either in the searching or the rejection stage.

6.5 Smoothing considerations

The smoothing approach differs from the wavelet reconstruction in that it has
a single scale associated with it. The user has two choices to make - which
dimension to smooth in (spatially or spectrally), and what size kernel to smooth
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with. Whiting (2012) show examples of how different smoothing widths (in one-
dimension in this case) can highlight sources of different sizes. If one has some a
priori idea of the typical size scale of objects one wishes to detect, then choosing
a single smoothing scale can be quite beneficial.

Note also that beam effects can be important here too, when smoothing
spatial data on scales close to that of the beam. This can enhance beam-
sized noise fluctuations and potentially introduce spurious sources. As always,
examining the smoothed array (after saving via flagOutputSmooth) is a good
idea.

6.6 Threshold method

When it comes to searching, the FDR method produces more reliable results
than simple sigma-clipping, particularly in the absence of reconstruction. How-
ever, it does not work in exactly the way one would expect for a given value of
alpha. For instance, setting fairly liberal values of alpha (say, 0.1) will often
lead to a much smaller fraction of false detections (i.e. much less than 10%).
This is the effect of the merging algorithms, that combine the sources after the
detection stage, and reject detections not meeting the minimum pixel or channel
requirements. It is thus better to aim for larger alpha values than those derived
from a straight conversion of the desired false detection rate.

If the FDR method is not used, caution is required when choosing the S/N
cutoff. Typical cubes have very large numbers of pixels, so even an apparently
large cutoff will still result in a not-insignificant number of detections simply due
to random fluctuations of the noise background. For instance, a 4σ threshold
on a cube of Gaussian noise of size 100× 100× 1024 will result in ∼ 340 single-
pixel detections. This is where the minimum channel and pixel requirements
are important in rejecting spurious detections.



7 FUTURE DEVELOPMENTS 45

7 Future developments

Here are lists of planned improvements and a wish-list of features that would be
nice to include (but are not planned in the immediate future). Let me know if
there are items not on these lists, or items on the list you would like prioritised.

Planned developments:

• Parallelisation of the code, to improve speed particularly on multi-core
machines.

• Better determination of the noise characteristics of spectral-line cubes, in-
cluding understanding how the noise is generated and developing a model
for it.

• Include more source analysis. Examples could be: shape information;
measurements of HI mass; more variety of measurements of velocity width
and profile.

• Improved ability to reject interference, possibly on the spectral shape of
features.

• Ability to separate (de-blend) distinct sources that have been merged.

Wish-list:

• Incorporation of Swinburne’s S2PLOT 10 code for improved visualisation.

• Link to lists of possible counterparts (e.g. via NED/SIMBAD/other VO
tools?).

• On-line web service interface, so a user can upload a cube and get back a
source-list.

• Embed Duchamp in a GUI, to move away from the text-based interaction.

10http://astronomy.swin.edu.au/s2plot/

http://astronomy.swin.edu.au/s2plot/
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A Obtaining and installing Duchamp

A.1 Installing

The Duchamp web page can be found at the following location:
http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
Here you can find a gzipped tar archive of the source code that can be down-
loaded and extracted, as well as this User’s Guide in postscript and hyperlinked
PDF formats.

To build Duchamp, you will need three main external libraries: pgplot,
cfitsio (this needs to be version 2.5 or greater – version 3+ is better) and
wcslib. If these are not present on your system, you can download them from
the following locations:

• pgplot: http://www.astro.caltech.edu/ tjp/pgplot/

• cfitsio: http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

• wcslib: http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/index.html

A.1.1 Basic installation

Duchamp can be built on Unix/Linux systems by typing (assuming that the
prompt your terminal provides is a > – don’t type this character!):

> ./configure

> make

> make lib (optional -- to create libraries for development purposes)

> make clean (optional -- to remove the object files)

> make install

This default setup will search in standard locations for the necessary li-
braries, and install the executable (Duchamp-1.4) in /usr/local/bin, along
with a Duchamp symbolic link (a copy will also be in the current directory). The
full set of header files will be installed in /usr/local/include/duchamp and
subdirectories thereof.

If you have made the libraries, both static (libduchamp.1.4.a) and shared
(libduchamp.1.4.so or libduchamp.1.4.dylib depending on your system)
libraries will be created and installed in /usr/local/lib. Symbolic links will
also be created that don’t have the version number.

If you want these to go somewhere else, e.g. if you don’t have write-access
to that directory, or you need to tweak the location of the libraries, see the next
section. Otherwise, jump to the testing section.

A.1.2 Tweaking the installation process

The configure script allows the user to tailor the installation according to the
particular requirements of their system.

To install Duchamp in a directory other than /usr/local/bin, use the
--prefix option with configure, specifying the directory above the bin/ di-
rectory e.g.

> ./configure --prefix=/home/mduchamp

http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
http://www.astro.caltech.edu/~tjp/pgplot/
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/index.html
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and then run make, (make lib if you like), and make install as stated above.
This will put the binary in the directory /home/mduchamp/bin. The library, if
made, will be put in /home/mduchamp/lib and the header files will be put in
/home/mduchamp/include/duchamp and subdirectories.

If the above-mentioned libraries have been installed in non-standard loca-
tions, or you have more than one version installed on your system, you can
specify specific locations by using the configure flags --with-cfitsio=<dir>,
--with-wcslib=<dir> or --with-pgplot=<dir>. For example:

> ./configure --with-wcslib=/home/mduchamp/wcslib-4.2

Duchamp can be compiled without pgplot if it is not installed on your
system – the searching and text-based output remains the same, but you will
not have any graphical output. To manually specify this option, you can either
give --without-pgplot or --with-pgplot=no as arguments to configure:

> ./configure --without-pgplot

(Note that CFITSIO and WCSLIB are essential, however, so flags such as
--without-wcslib or --without-cfitsio will not work.). Even if you do
not give the --without-pgplot option, and the pgplot library is not found,
Duchamp will still compile (albeit without graphical capabilities).

An additional option that is useful is the ability to specify which compiler
to use. This is very important for the Fortran compiler (used for linking due to
the use of pgplot), particularly on Mac OS X, where gfortran is often used
instead of gcc. To specify a particular Fortran compiler, use the F77 flag:

> ./configure F77=gfortran

Of course, all desired flags should be combined in one configure call. For
a full list of the options with configure, run:

> ./configure --help

Once configure has run correctly, simply run make and make install to build
Duchamp and put it in the correct place (either /usr/local/bin or the location
given by the --prefix option discussed above).

A.1.3 Problems building Duchamp

While the configure script tries to get everything right, it can exhibit some
quirks. For instance, in getting the X11 library configuration right, it will
sometimes provide a -R/path/to/X11 argument for the linking string. This is
accepted by ld, but not by all versions of gfortran. This can cause the final
linking step to fail (and for the -lpgplot argument to be left off).

To fix this, a shell script is provided to quickly patch the Makefile if necessary.
If you run make and it fails, due to this error:

gfortran: error: unrecognized command line option -R

or similar, run

> ./fixMakefile.sh

and try again. If it still fails, you may have to manually edit the Makefile.
Please log a bug report to let me know!
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A.1.4 Making sure it all works

Running make will create the executable Duchamp-1.4. You can verify that it
is running correctly by running the verification shell script:

> ./VerifyDuchamp.sh

This will use a dummy FITS image in the verification/ directory – this image
has some Gaussian random noise, with five Gaussian sources present, plus a
dummy WCS. The script runs Duchamp on this image with nine different sets
of inputs, and compares to known results, looking for differences and reporting
any. There should be none reported if everything is working correctly.

The script performs basic checks on the output files (results, log, VOTable,
and annotation files), but ignores most of the actual values of source parameters
(to avoid picking up just differences due to precision errors). For complete checks
of the files, run

> ./VerifyDuchamp.sh -f

Be warned that on some systems this could provide a large number of apparent
errors which may only be due to precision differences.

If everything worked, you can then install Duchamp on your system via:

> make install

(this may need to be run as sudo depending on your system setup and your
prefix directory).

A.2 Running Duchamp

You can then run Duchamp on your own data. This can be done in one of two
ways. The first is:

> Duchamp -f [FITS file]

where [FITS file] is the file you wish to search. This method simply uses the
default values of all parameters. The flux threshold can be specified using the
-t [THRESHOLD] option:

> Duchamp -f [FITS file] -t [THRESHOLD]

The second method allows some determination of the parameter values by
the user. Type:

> Duchamp -p [parameter file]

where [parameterFile] is a file with the input parameters, including the name
of the cube you want to search. The -t flag can also be specified - its threshold
value will override anything given in the parameter file.

There are two example input files included with the distribution. The smaller
one, InputExample, shows the typical parameters one might want to set. The
large one, InputComplete, lists all possible parameters that can be entered,
along with their default values, and a brief description of them. To get going
quickly, just replace the "your-file-here" in the InputExample file with your
image name, and type
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> Duchamp -p InputExample

To disable the use of X-window plotting (in displaying the map of detections),
one can either set the parameter flagXOutput = false or use the -x command-
line option:

> Duchamp -x -p [parameter file] , or
> Duchamp -x -f [FITS file]

Note that the postscript outputs will still be produced (if required) – this just
affects the runtime display.

The following appendices provide details on the individual parameters, and
show examples of the output files that Duchamp produces.

A.3 Feedback

It may happen that you discover bugs or problems with Duchamp, or you have
suggestions for improvements or additional features to be included in future
releases. You can submit a “ticket” (a trackable bug report) at the Duchamp
Trac wiki at the following location:
http://svn.atnf.csiro.au/trac/duchamp/newticket
(there is a link to this page from the Duchamp website).

There is also an email exploder, duchamp-user[at]atnf.csiro.au, that users
can subscribe to keep up to date with changes, updates, and other news about
Duchamp. To subscribe, send an email (from the account you wish to subscribe
to the list) to duchamp-user-request[at]atnf.csiro.au with the single word “sub-
scribe” in the body of the message. To be removed from this list, send a message
with “unsubscribe” in its body to the same address.

A.4 Beta Versions

On the Duchamp website there may be a beta version listed in the downloads
section. As Duchamp is still under development, there will be times when there
has been new functionality added to the code, but the time has not yet come
to release a new minor (or indeed major) version.

Sometimes I will post the updated version of the code on the website as a
“beta” version, particularly if I’m interested in people testing it. It will not
have been tested as rigorously as the proper releases, but it will certainly work
in the basic cases that I use to test it during development. So feel free to give it
a try – the CHANGES file will usually detail what is different to the last numbered
release.

http://svn.atnf.csiro.au/trac/duchamp/newticket
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B Available parameters

The full list of parameters that can be listed in the input file are given here.
If not listed, they take the default value given in parentheses. Since the order
of the parameters in the input file does not matter, they are grouped here in
logical sections.

Input related

ImageFile [no default]:
The filename of the data cube to be analysed.

flagSubsection [false]:
A flag to indicate whether one wants a subsection of the
requested image.

Subsection [ [*,*,*] ]:
The requested subsection – see §3.1 for details on the sub-
section format. If the full range of a dimension is required,
use a * (thus the default is the full cube).

flagReconExists [false]:
A flag to indicate whether the reconstructed array has
been saved by a previous run of Duchamp. If set true,
the reconstructed array will be read from the file given by
reconFile, rather than calculated directly.

reconFile [no default]:
The FITS file that contains the reconstructed array. If
flagReconExists is true and this parameter is not de-
fined, the default file that is looked for will be determined
by the à trous parameters (see §3.4).

flagSmoothExists [false]:
A flag to indicate whether the Hanning-smoothed array
has been saved by a previous run of Duchamp. If set true,
the smoothed array will be read from the file given by
smoothFile, rather than calculated directly.

smoothFile [no default]:
The FITS file that has a previously smoothed array. If
flagSmoothExists is true and this parameter is not de-
fined, the default file that is looked for will be determined
by the smoothing parameters (see §3.5).

usePrevious [false]:
A flag to indicate that Duchamp should read the list of
objects from a previously-created log file, rather than do-
ing the searching itself. The set of outputs will be created
according to the flags in the following section.

objectList [no default]:
When usePrevious=true, this list is used to output in-
dividual spectral plots, as well as a postscript file for all
spectral plots as given by SpectraFile. The filenames
of the plots will be the same as SpectraFile, but with
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-XX at the end, where XX is the object number (e.g.
duchamp-Spectra-07.ps). The format of the parameter
value should be a string listing individual objects or object
ranges: e.g. 1,2,4-7,8,14.

Output related

OutFile [duchamp-Results.txt]:
The file containing the final list of detections. This also
records the list of input parameters.

flagSeparateHeader [false]:
A flag to indicate that the header information that would
normally be printed at the start of the results file (con-
taining information on the parameters, image statistics
and number of detections) should instead be written to a
separate file.

HeaderFile [duchamp-Results.hdr]:
The file to which the header information should be written
when flagSeparateHeader=true.

flagWriteBinaryCatalogue [true]:
Whether to write a binary catalogue of the detections, for
later re-use (see §5.5 for details).

binaryCatalogue [duchamp-Catalogue.dpc]:
The filename for the binary catalogue.

flagPlotSpectra [true]:
Whether to produce a postscript file containing spectra of
all detected objects. If PGPlot has not been enabled, this
parameter defaults to false.

SpectraFile [duchamp-Spectra.ps]:
The postscript file that contains the resulting integrated
spectra and images of the detections.

flagPlotIndividualSpectra [false]:
Whether to produce individual spectral plots for listed
sources.

flagTextSpectra [false]:
A flag to say whether the spectra should be saved in text
form in a single file. See below for a description.

spectraTextFile [duchamp-Spectra.txt]:
The file containing the spectra of each object in ascii for-
mat. This file will have a column showing the spectral
coordinates, and one column for each of the detected ob-
jects, showing the flux values as plotted in the graphical
output of spectraFile.

flagLog [false]: A flag to indicate whether the details of intermediate de-
tections should be logged.

LogFile [duchamp-Logfile.txt]:
The file in which intermediate detections and the pixel
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content of the final list of detections are logged. These are
detections that have not been merged. This is primarily
for use in debugging and diagnostic purposes: normal use
of the program will probably not require it.

flagOutputMomentMap [false]:
A flag to say whether or not to save a FITS file containing
the moment-0 map.

fileOutputMomentMap [see text]:
The file to which the moment-0 array is written. If left
blank (the default), the naming scheme detailed in §5.4.1
is used.

flagOutputMomentMask [false]:
A flag to say whether or not to save a FITS file containing
the moment-0 mask (a mask showing which spatial pixels
are detected in one or more channels).

fileOutputMomentMask [see text]:
The file to which the moment-0 mask is written. If left
blank (the default), the naming scheme detailed in §5.4.2
is used.

flagOutputMask [false]:
A flag to say whether or not to save a FITS file containing
a mask array, with values 1 where there is a detected object
and 0 elsewhere.

fileOutputMask [see text]:
The file to which the mask array is written. If left blank
(the default), the naming scheme detailed in §5.4.2 is used.

flagMaskWithObjectNum [false]:
If this flag is true, the detected pixels in the mask image
have the corresponding object ID as their value. If false,
they have the value 1. All non-detected pixels have the
value 0.

flagOutputRecon [false]:
A flag to say whether or not to save the reconstructed
cube as a FITS file.

fileOutputRecon [see text]:
The file to which the reconstructed array is written. If left
blank (the default), the naming scheme detailed in §3.6 is
used.

flagOutputResid [false]:
As for flagOutputRecon, but for the residual array – the
difference between the original cube and the reconstructed
cube.

fileOutputResid [see text]:
The file to which the residual array is written. If left blank
(the default), the naming scheme detailed in §3.6 is used.

flagOutputSmooth [false]:
A flag to say whether or not to save the smoothed cube as
a FITS file.
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fileOutputSmooth [see text]:
The file to which the smoothed array is written. If left
blank (the default), the naming scheme detailed in §3.6 is
used.

flagOutputBaseline [false]:
A flag to say whether or not to save the cube of spectral
baseline values as a FITS file.

fileOutputBaseline [see text]:
The file to which the baseline values are written. If left
blank (the default), the naming scheme detailed in §5.4.4
is used.

flagVOT [false]: A flag to say whether to create a VOTable file with the
detection information. This will be an XML file in the
Virtual Observatory VOTable format.

votFile [duchamp-Results.xml]:
The VOTable file with the list of final detections. Some
input parameters are also recorded.

flagKarma [false]:
A flag to say whether to create a Karma annotation file
corresponding to the information in outfile. This can be
used as an overlay in Karma programs such as kvis.

karmaFile [duchamp-Results.ann]:
The Karma annotation file showing the list of final detec-
tions.

flagDS9 [false]: A flag to say whether to create a DS9 region file corre-
sponding to the information in outfile. This can be used
as an overlay in SAOImage DS9 or casaviewer.

ds9File [duchamp-Results.ann]:
The DS9 region file showing the list of final detections.

flagCasa [false]: A flag to say whether to create a CASA region file cor-
responding to the information in outfile. This can be
used as an overlay in casaviewer (when this functionality
is available) or import into casapy.

casaFile [duchamp-Results.crf]:
The CASA region file showing the list of final detections.

annotationType [borders]:
Which type of annotation plot to use. Specifying “bor-
ders” gives an outline around the detected spatial pixels,
“circles” gives a circle centred on the centre of the object
with radius large enough to encompass all spatial pixels,
and “ellipses” gives an ellipse centred on the centre of the
object of size given by the MAJ, MIN & PA values.

flagMaps [true]: A flag to say whether to save postscript files showing the
0th moment map of the whole cube (momentMap) and the
detection image (detectionMap). If PGPlot has not been
enabled, this parameter defaults to false.
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momentMap [duchamp-MomentMap.ps]:
A postscript file containing a map of the 0th moment of the
detected sources, as well as pixel and WCS coordinates.

detectionMap [duchamp-DetectionMap.ps]:
A postscript file with a map showing each of the detected
objects, coloured in greyscale by the number of detected
channels in each spatial pixel. Also shows pixel and WCS
coordinates.

flagXOutput [true]:
A flag to say whether to display a 0th moment map in a
PGPlot X-window. This will be in addition to any that
are saved to a file. This parameter can be overridden by
the use of the -x command-line option, which disables the
X-windows output. If PGPlot has not been enabled, this
parameter defaults to false.

newFluxUnits [no default]:
Flux units that the pixel values should be converted into.
These should be directly compatible with the units in the
FITS header, given by the BUNIT keyword.

precFlux [3]: The desired precision (i.e. number of decimal places) for
flux values given in the output files and tables.

precVel [3]: The desired precision (i.e. number of decimal places) for
velocity/frequency values given in the output files and ta-
bles.

precSNR [2]: The desired precision (i.e. number of decimal places) for
the peak SNR value given in the output files and tables.

Modifying the cube

flagTrim [false]: A flag to say whether to trim BLANK pixels from the
edges of the cube – these are typically pixels set to some
particular value because they fall outside the imaged area,
and trimming them can help speed up the execution.

flagMW [false]: A flag to say whether to ignore channels contaminated by
Milky Way (or other) emission – the searching algorithms
will not look at these channels.

maxMW [112]: The maximum channel number that contains “Milky Way”
emission. This is the channel number in the original cube,
before any subsection is applied.

minMW [75]: The minimum channel number that contains “Milky Way”
emission. This is the channel number in the original cube,
before any subsection is applied. Note that the range spec-
ified by maxMW and minMW is inclusive.

flagBaseline [false]:
A flag to say whether to remove the baseline from each
spectrum in the cube for the purposes of reconstruction
and detection.
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Detection related

General detection
searchType [spatial]:

How the searches are done. Only “spatial” and “spectral”
are accepted. A value of “spatial” means each 2D chan-
nel map is searched, whereas “spectral” means each 1D
spectrum is searched.

flagStatSec [false]:
A flag indicating whether the statistics should be calcu-
lated on a subsection of the cube, rather than the full
cube. Note that this only applies to the statistics used
to determine the threshold, and not for other statistical
calculations (such as those in the reconstruction phase).

StatSec [ [*,*,*] ]:
The subsection of the cube used for calculating statistics
– see §3.1 for details on the subsection format. Only used
if flagStatSec=true.

flagRobustStats [true]:
A flag indicating whether to use the robust statistics (me-
dian and MADFM) to estimate the noise parameters of
the cube, rather than the mean and rms. See §3.7.3 for
details.

flagNegative [false]:
A flag indicating that the features of interest are negative.
The cube is inverted prior to searching.

snrCut [5.]: The threshold, in multiples of σ above the mean.
threshold [no default]:

The actual value of the threshold. Normally the threshold
is calculated from the cube’s statistics, but the user can
manually specify a value to be used that overrides the
calculated value. If this is not specified, the calculated
value is used, but this value will take precedence over other
means of calculating the threshold (i.e. via snrCut or the
FDR method).

flagGrowth [false]:
A flag indicating whether or not to grow the detected ob-
jects to a smaller threshold.

growthCut [3.]: The smaller threshold using in growing detections. In
units of σ above the mean.

growthThreshold [no default]:
Alternatively, the threshold to which detections are grown
can be specified in flux units (in the same manner as the
threshold parameter). When the threshold parameter
is given, this option must be used instead of growthCut.

beamFWHM [0.]: The full-width at half maximum of the beam, in pixels. If
the header keywords BMAJ and BMIN are present, then
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these will be used to calculate the beam area, and this
parameter will be ignored. This will take precedence over
beamArea (but is ignored if not specified).

beamArea [0.]: The area of the beam in pixels (i.e. how many pixel does
the beam cover?). As above, if the header keywords BMAJ
and BMIN are present, then these will be used to calculate
the beam area, and this parameter will be ignored.

À trous reconstruction
flagATrous [false]:

A flag indicating whether or not to reconstruct the cube
using the à trous wavelet reconstruction. See §3.4 for de-
tails.

reconDim [1]: The number of dimensions to use in the reconstruction.
1 means reconstruct each spectrum separately, 2 means
each channel map is done separately, and 3 means do the
whole cube in one go.

scaleMin [1]: The minimum wavelet scale to be used in the reconstruc-
tion. A value of 1 means “use all scales”.

scaleMax [0]: The maximum wavelet scale to be used in the reconstruc-
tion. If the value is ≤ 0 then the maximum scale is cal-
culated from the size of the input array. Similarly, if the
value given is larger than this calculated value, the calcu-
lated value is used instead.

snrRecon [4]: The thresholding cutoff used in the reconstruction – only
wavelet coefficients at least this many σ above the mean
are included in the reconstruction.

reconConvergence [0.005]:
The convergence criterion used in the reconstruction. The
à trous algorithm iterates until the relative change in the
standard deviation of the residuals is less than this amount.

filterCode [1]: The code number of the filter to use in the reconstruction.
The options are:

•1: B3-spline filter: coefficients = ( 1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16 )

•2: Triangle filter: coefficients = ( 1
4 ,

1
2 ,

1
4 )

•3: Haar wavelet: coefficients = (0, 1
2 ,

1
2 )

Smoothing the cube

flagSmooth [false]:
A flag indicating whether to smooth the cube. See §3.5
for details.

smoothType [spectral]:
The smoothing method used: either “spectral” (with a 1D
Hanning filter) or “spatial” (with a 2D Gaussian filter).

hanningWidth [5]: The width of the Hanning smoothing kernel.
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kernMaj [3]: The full-width-half-maximum (FWHM) of the 2D Gaus-
sian smoothing kernel’s major axis.

kernMin [3]: The FWHM of the 2D Gaussian smoothing kernel’s minor
axis.

kernPA [0]: The position angle, in degrees, anticlockwise from vertical
(i.e. usually East of North).

FDR method

flagFDR [false]: A flag indicating whether or not to use the False Discovery
Rate method in thresholding the pixels.

alphaFDR [0.01]: The α parameter used in the FDR analysis. The aver-
age number of false detections, as a fraction of the total
number, will be less than α (see §3.7).

FDRnumCorChan [2]:
The number of neighbouring spectral channels that are
assumed to be correlated. This is needed by the FDR
algorithm to calculate the normalisation constant cN (see
§3.7).

Merging detections

minPix [2]: The minimum number of spatial pixels for a single detec-
tion to be counted.

minChannels [3]: At least one contiguous set of this many channels must be
present in the detection for it to be accepted.

minVoxels [minPix + minChannels - 1]:
The minimum size of the object, in terms of the total
number of voxels, for it to be accepted. This will be at
least minPix+minChannels−1, but can be set higher.

flagRejectBeforeMerge [false]:
A flag indicating whether to reject sources that fail to meet
the minPix or minChannels criteria before the merging
stage. Default behaviour is to do the rejection last.

flagTwoStageMerging [true]:
A flag indicating whether to do an initial merge of newly-
detected sources into the source list as they are found. If
false, new sources are simply added to the end of the list
for later merging.

flagAdjacent [true]:
A flag indicating whether to use the “adjacent pixel” cri-
terion to decide whether to merge objects. If not, the next
two parameters are used to determine whether objects are
within the necessary thresholds.

threshSpatial [3.]:
The maximum allowed minimum spatial separation (in
pixels) between two detections for them to be merged into
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one. Only used if flagAdjacent = false.
threshVelocity [7.]:

The maximum allowed minimum channel separation be-
tween two detections for them to be merged into one.

WCS parameters

spectralType []: The user can specify an alternative WCS spectral type
that the spectral axis can be expressed in. This specifica-
tion should conform to the standards described in Greisen
et al. (2006), although it is possible to provide just the
first four letters (the “S-type”, e.g. ’VELO’).

restFrequency [-1]:
If provided, this will be used in preference to the rest fre-
quency given in the FITS header to calculate velocities and
related quantities. A negative value (such as the default)
will mean this is not used and the FITS header value, if
present, is used instead.

spectralUnits []: The user can specify the units of the spectral axis, overrid-
ing those given in the FITS header. If the spectral type is
being changed, these units should be appropriate for that
quantity. If not provided, the FITS header information is
used.

Other parameters

spectralMethod [peak]:
This indicates which method is used to plot the output
spectra: peak means plot the spectrum containing the de-
tection’s peak pixel; sum means sum the spectra of each
detected spatial pixel, and correct for the beam size. Any
other choice defaults to peak.

pixelCentre [centroid]:
Which of the three ways of expressing the “centre” of a
detection (see §5.2.1 for a description of the options) to use
for the X, Y, & Z columns in the output list. Alternatives
are: centroid, peak, average.

sortingParam [vel]:
The parameter on which to sort the output list of detected
objects. Options are: xvalue, yvalue, zvalue, ra, dec, vel,
w50, iflux, pflux (integrated and peak flux respectively),
or snr. If the parameter begins with a ’-’ (e.g. ’-vel’), the
order of the sort is reversed.

drawBorders [true]:
A flag indicating whether to draw borders around the de-
tected objects in the moment maps included in the output
(see for example Fig. 2).

drawBlankEdges [true]:
A flag indicating whether to draw the dividing line be-
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tween BLANK and non-BLANK pixels on the 2D images
(see for example Fig. 3).

verbose [true]: A flag indicating whether to print the progress of any
computationally intensive algorithms (e.g. reconstruction,
searching or merging algorithms) to the screen.
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C Example parameter files

This is what a typical parameter file would look like.

imageFile /home/mduchamp/fountain.fits
logFile logfile.txt
outFile results.txt
spectraFile spectra.ps
flagSubsection false
flagOutputRecon false
flagOutputResid 0
flagTrim 1
flagMW 1
minMW 75
maxMW 112
flagGrowth 1
growthCut 1.5
flagATrous 1
reconDim 1
scaleMin 1
snrRecon 4
flagFDR 1
alphaFDR 0.1
snrCut 3
threshSpatial 3
threshVelocity 7

Note that, as in this example, the flag parameters can be entered as strings
(true/false) or integers (1/0). Also, note that it is not necessary to include
all these parameters in the file, only those that need to be changed from the
defaults (as listed in Appendix B), which in this case would be very few. A
minimal parameter file might look like:

imageFile /home/mduchamp/fountain.fits
flagLog false
flagATrous 1
snrRecon 3
snrCut 2.5
minChannels 4

This will reconstruct the cube with a lower SNR value than the default, select
objects at a lower threshold, with a looser minimum channel requirement, and
not keep a log of the intermediate detections.

The following page demonstrates how the parameters are presented to the
user, both on the screen at execution time, and in the output and log files. On
each line, there is a description on the parameter, the relevant parameter name
that is used in the input file (if there is one that the user can enter), and the
value of the parameter being used.
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---- Parameters ----
Image to be analysed.........................[imageFile] = fountain.fits
Intermediate Logfile...........................[logFile] = duchamp-Logfile.txt
Final Results file.............................[outFile] = duchamp-Results.txt
Header for results file.....................[headerFile] = duchamp-Results.hdr
Spectrum file..............................[spectraFile] = duchamp-Spectra.ps
Text file with ascii spectral data.....[spectraTextFile] = duchamp-Spectra.txt
VOTable file...................................[votFile] = duchamp-Results.xml
Karma annotation file........................[karmaFile] = duchamp-Results.ann
DS9 annotation file............................[ds9File] = duchamp-Results.reg
0th Moment Map...............................[momentMap] = duchamp-MomentMap.ps
Detection Map.............................[detectionMap] = duchamp-DetectionMap.ps
Display a map in a pgplot xwindow?.........[flagXOutput] = true
Saving reconstructed cube?.............[flagOutputRecon] = false
Saving residuals from reconstruction?..[flagOutputResid] = false
Saving mask cube?.......................[flagOutputMask] = false
Saving 0th moment to FITS file?.........[flagOutputMask] = false
------
Type of searching performed.................[searchType] = spectral
Blank Pixel Value....................................... = -8.00061
Trimming Blank Pixels?........................[flagTrim] = false
Searching for Negative features?..........[flagNegative] = false
Removing Milky Way channels?....................[flagMW] = true
Milky Way Channels.......................[minMW - maxMW] = 75-113
Area of Beam (pixels)................................... = 14.6848 (beam: 3.6 x 3.6 pixels)
Removing baselines before search?.........[flagBaseline] = false
Smoothing data prior to searching?..........[flagSmooth] = false
Using A Trous reconstruction?...............[flagATrous] = true
Number of dimensions in reconstruction........[reconDim] = 1
Minimum scale in reconstruction...............[scaleMin] = 1
SNR Threshold within reconstruction...........[snrRecon] = 3
Filter being used for reconstruction........[filterCode] = 1 (B3 spline function)
Using Robust statistics?...............[flagRobustStats] = true
Using FDR analysis?............................[flagFDR] = false
SNR Threshold (in sigma)........................[snrCut] = 3
Minimum # Pixels in a detection.................[minPix] = 5
Minimum # Channels in a detection..........[minChannels] = 3
Minimum # Voxels in a detection..............[minVoxels] = 7
Growing objects after detection?............[flagGrowth] = false
Using Adjacent-pixel criterion?...........[flagAdjacent] = true
Max. velocity separation for merging....[threshVelocity] = 7
Reject objects before merging?...[flagRejectBeforeMerge] = false
Merge objects in two stages?.......[flagTwoStageMerging] = false
Method of spectral plotting.............[spectralMethod] = sum
Type of object centre used in results......[pixelCentre] = centroid
--------------------
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D Example results file

This the typical content of an output file, after running Duchamp with the
parameters illustrated on the previous page. The table is wide, and has been
split into four sections to make it easier to read.

# ---------------------------------------------------------------------

# ObjID Name X Y Z RA DEC VRAD

# [km/s]

# ---------------------------------------------------------------------

1 J060930-215738 58.9 140.4 114.5 06:09:30.9 -21:57:38 223.964

2 J060143-250033 86.0 94.9 117.9 06:01:43.0 -25:00:33 269.253

3 J060217-254714 84.0 83.2 118.0 06:02:17.6 -25:47:14 270.507

4 J060605-271848 71.4 60.2 121.3 06:06:05.8 -27:18:48 313.411

5 J061118-213635 52.5 145.5 162.6 06:11:18.6 -21:36:35 858.050

6 J060034-285857 89.7 35.3 202.5 06:00:34.0 -28:58:57 1384.415

7 J061700-272250 35.0 58.6 216.5 06:17:00.9 -27:22:50 1570.316

8 J055847-252517 95.9 88.6 232.9 05:58:47.5 -25:25:17 1786.082

9 J060053-214223 88.9 144.3 233.2 06:00:53.3 -21:42:23 1789.639

10 J060444-260644 75.8 78.3 233.2 06:04:44.7 -26:06:44 1790.501

11 J061706-272510 34.7 58.0 235.2 06:17:06.8 -27:25:10 1816.205

12 J060106-233956 88.0 115.0 235.5 06:01:06.8 -23:39:56 1820.251

13 J061209-214921 49.6 142.3 269.4 06:12:09.6 -21:49:21 2267.524

14 J060924-223303 59.4 131.5 295.3 06:09:24.2 -22:33:03 2609.616

15 J055505-295651 107.4 20.7 367.5 05:55:05.4 -29:56:51 3561.487

---------------------------------------------------------------------------------

MAJ MIN PA w_RA w_DEC w_50 w_20 w_VRAD F_int eF_int

[deg] [deg] [deg] [arcmin] [arcmin] [km/s] [km/s] [km/s] [Jy km/s] [Jy km/s]

---------------------------------------------------------------------------------

0.43 0.28 113.19 52.43 31.33 25.752 40.905 65.957 9.767 0.127

0.32 0.17 91.63 28.00 16.02 23.753 42.244 26.383 1.687 0.055

0.22 0.01 179.43 20.01 15.99 28.934 40.975 26.383 1.232 0.049

0.52 0.38 87.97 48.26 27.61 28.263 42.272 26.383 5.916 0.104

0.27 0.24 140.56 24.32 19.63 87.851 111.107 118.722 27.796 0.169

0.22 0.19 133.22 15.93 24.07 175.885 194.031 197.870 12.535 0.155

0.15 0.10 138.15 12.26 7.65 65.960 329.015 52.765 0.647 0.039

0.20 0.18 90.68 19.91 16.11 232.786 279.536 211.061 4.453 0.102

0.32 0.20 117.37 27.95 24.13 93.004 226.209 197.870 16.373 0.175

0.25 0.20 134.05 16.11 19.91 211.882 228.161 211.061 12.293 0.161

0.18 0.11 176.19 16.39 11.53 60.490 327.217 52.765 1.243 0.054

0.27 0.23 90.44 27.96 28.07 199.616 248.932 263.826 50.402 0.256

0.14 0.09 128.55 16.21 11.72 403.215 436.588 382.548 5.813 0.122

0.46 0.14 9.67 20.56 43.79 13.748 25.718 26.383 1.688 0.053

0.24 0.19 155.90 15.76 16.25 30.543 45.907 39.574 3.131 0.071

------------------------------------------------------------------------

F_tot eF_tot F_peak S/Nmax X1 X2 Y1 Y2 Z1 Z2 Npix Flag

[Jy/beam] [Jy/beam] [Jy/beam] [pix]

------------------------------------------------------------------------

10.873 0.142 0.213 16.17 53 65 136 143 113 118 116 M

1.878 0.062 0.124 8.99 83 89 93 96 117 119 22 -

1.372 0.054 0.118 8.60 82 86 82 85 117 119 17 -

6.586 0.115 0.150 11.29 65 76 57 63 120 122 77 -

30.943 0.188 0.410 31.17 50 55 143 147 158 167 205 E

13.954 0.173 0.173 13.03 88 91 33 38 195 210 172 -

0.720 0.044 0.078 4.92 34 36 58 59 215 219 11 -

4.957 0.113 0.115 7.88 93 97 87 90 222 238 74 -

18.227 0.195 0.166 11.99 86 92 142 147 224 239 219 E

13.685 0.179 0.155 9.18 74 77 76 80 225 241 185 -

1.384 0.060 0.093 5.73 33 36 57 59 233 237 21 -

56.108 0.285 0.297 21.00 85 91 112 118 226 246 469 -

6.471 0.135 0.101 6.10 48 51 141 143 257 286 106 -

1.879 0.059 0.177 12.81 57 61 127 137 295 297 20 -

3.485 0.079 0.169 12.66 106 109 19 22 366 369 36 -
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------------------------------------------------------------

X_av Y_av Z_av X_cent Y_cent Z_cent X_peak Y_peak Z_peak

------------------------------------------------------------

59.1 140.4 114.6 58.9 140.4 114.5 59 140 114

86.0 94.9 117.9 86.0 94.9 117.9 85 95 118

84.1 83.2 118.0 84.0 83.2 118.0 84 83 118

71.2 60.2 121.2 71.4 60.2 121.3 72 61 121

52.5 145.4 162.5 52.5 145.5 162.6 53 146 164

89.7 35.3 202.7 89.7 35.3 202.5 90 36 197

35.0 58.5 216.6 35.0 58.6 216.5 35 59 215

95.9 88.6 232.6 95.9 88.6 232.9 96 89 237

88.8 144.3 232.7 88.9 144.3 233.2 89 144 233

75.8 78.3 233.2 75.8 78.3 233.2 76 78 240

34.7 58.0 235.0 34.7 58.0 235.2 35 58 236

88.1 115.0 235.8 88.0 115.0 235.5 88 115 231

49.6 142.3 270.0 49.6 142.3 269.4 50 142 259

59.2 131.6 295.5 59.4 131.5 295.3 60 132 295

107.5 20.7 367.5 107.4 20.7 367.5 108 21 367

A good trick for those using UNIX/Linux is to make use of the a2ps com-
mand. The following works well:

> a2ps -1 -r -f5 -o duchamp-Results.ps duchamp-Results.txt

and produces a postscript file duchamp-Results.ps.
The table is preceded by information on the parameters used (see the previ-

ous section), the statistics and threshold values, and the number of detections.
If flagSeparateHeader is set to true, this information is put in a separate file.
This information looks like the following:

Results of the Duchamp source finder: Thu May 3 12:15:44 2007

---- Parameters ----

(... omitted for clarity -- see previous page for examples...)

--------------------

--------------------

Summary of statistics:

Detection threshold = 0.0389443 Jy/beam

Noise level = 0.000122074, Noise spread = 0.0129408

Full stats:

Mean = 0.000421491 Std.Dev. = 0.0129756

Median = 0.000122074 MADFM = 0.0087284 (= 0.0129408 as std.dev.)

--------------------

Total number of detections = 14

--------------------
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E Example VOTable output

This is part of the VOTable, in XML format, corresponding to a search with
wavelet reconstruction.

<?xml version="1.0"?>

<VOTABLE version="1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.ivoa.net/xml/VOTable/VOTable/v1.1">

<COOSYS ID="J2000" equinox="J2000" system="eq_FK5"/>

<RESOURCE name="Duchamp Output">

<TABLE name="Detections">

<DESCRIPTION>Detected sources and parameters from running the Duchamp source finder.</DESCRIPTION>

<PARAM name="imageFile" ucd="meta.file;meta.fits" datatype="char" arraysize="63" value="/home/mduchamp/fountain.fits"/>

<PARAM name="flagSubsection" ucd="meta.code" datatype="boolean" value="0"/>

<PARAM name="flagStatSec" ucd="meta.code" datatype="boolean" value="0"/>

<PARAM name="searchType" ucd="meta.note" datatype="char" arraysize="8" value="spectral"/>

<PARAM name="flagNegative" ucd="meta.code" datatype="boolean" value="0"/>

<PARAM name="flagBaseline" ucd="meta.code" datatype="boolean" value="0"/>

<PARAM name="flagRobustStats" ucd="meta.code" datatype="boolean" value="1"/>

<PARAM name="flagFDR" ucd="meta.code" datatype="boolean" value="0"/>

<PARAM name="snrCut" ucd="stat.snr;phot;stat.min" datatype="float" value="4"/>

<PARAM name="flagGrowth" ucd="meta.code" datatype="boolean" value="0"/>

<PARAM name="minVoxels" ucd="" datatype="int" value="7"/>

<PARAM name="minPix" ucd="" datatype="int" value="5"/>

<PARAM name="minChannels" ucd="" datatype="int" value="3"/>

<PARAM name="flagAdjacent" ucd="meta.code" datatype="boolean" value="1"/>

<PARAM name="threshVelocity" ucd="" datatype="float" value="3"/>

<PARAM name="flagRejectBeforeMerge" ucd="" datatype="boolean" value="0"/>

<PARAM name="flagTwoStageMerging" ucd="" datatype="boolean" value="0"/>

<PARAM name="pixelCentre" ucd="" datatype="char" arraysize="8" value="centroid"/>

<PARAM name="flagSmooth" ucd="meta.code" datatype="boolean" value="0"/>

<PARAM name="flagATrous" ucd="meta.code" datatype="boolean" value="1"/>

<PARAM name="reconDim" ucd="" datatype="int" value="1"/>

<PARAM name="scaleMin" ucd="" datatype="int" value="1"/>

<PARAM name="snrRecon" ucd="" datatype="float" value="3"/>

<PARAM name="filterCode" ucd="" datatype="int" value="1"/>

<PARAM name="thresholdActual" ucd="" datatype="float" units="Jy/beam" value="4.05187"/>

<PARAM name="noiseMeanActual" ucd="" datatype="float" units="Jy/beam" value="0.0148019"/>

<PARAM name="noiseSpreadActual" ucd="" datatype="float" units="Jy/beam" value="1.00927"/>

<FIELD name="Obj#" ID="col_objnum" ucd="meta.id" datatype="int" unit="" width="5"/>

<FIELD name="Name" ID="col_name" ucd="meta.id;meta.main" datatype="char" unit="" arraysize="15"/>

<FIELD name="RA" ID="col_rajd" ucd="pos.eq.ra;meta.main" ref="J2000" datatype="float" unit="deg" width="11" precision="6"/>

<FIELD name="DEC" ID="col_decjd" ucd="pos.eq.dec;meta.main" ref="J2000" datatype="float" unit="deg" width="11" precision="6"/>

<FIELD name="VRAD" ID="col_vel" ucd="phys.veloc;spect.dopplerVeloc.rad;meta.main" datatype="float" unit="m/s" width="12" precision="3"/>

<FIELD name="w_RA" ID="col_wra" ucd="phys.angSize;pos.eq.ra" ref="J2000" datatype="float" unit="arcmin" width="9" precision="2"/>

<FIELD name="w_DEC" ID="col_wdec" ucd="phys.angSize;pos.eq.dec" ref="J2000" datatype="float" unit="arcmin" width="9" precision="2"/>

<FIELD name="w_50" ID="col_w50" ucd="spect.line.width.50;phys.veloc;spect.dopplerVeloc.rad" datatype="float" unit="m/s" width="11" precision="3"/>

<FIELD name="w_20" ID="col_w20" ucd="spect.line.width.20;phys.veloc;spect.dopplerVeloc.rad" datatype="float" unit="m/s" width="11" precision="3"/>

<FIELD name="w_VRAD" ID="col_wvel" ucd="spect.line.width.full;phys.veloc;spect.dopplerVeloc.rad" datatype="float" unit="m/s" width="11" precision="3"/>

<FIELD name="Integrated_Flux" ID="col_fint" ucd="phot.flux.density.integratedspect.line.intensity" datatype="float" unit="Jy.m/s" width="10" precision="3"/>

<FIELD name="Integrated_Flux_Error" ID="col_efint" ucd="phot.flux.density.integrated;stat.err" datatype="float" unit="Jy.km/s" width="10" precision="3"/>

<FIELD name="Peak_Flux" ID="col_fpeak" ucd="phot.flux;stat.maxspect.line.intensity" datatype="float" unit="Jy/beam" width="10" precision="3"/>

<FIELD name="S/Nmax" ID="col_snrmax" ucd="stat.snr;phot.flux" datatype="float" unit="" width="7" precision="2"/>

<FIELD name="Flag" ID="col_flag" ucd="meta.code.qual" datatype="char" unit="" arraysize="5"/>

<FIELD name="X_av" ID="col_xav" ucd="pos.cartesian.x;stat.mean" datatype="float" unit="" width="6" precision="1"/>

<FIELD name="Y_av" ID="col_yav" ucd="pos.cartesian.y;stat.mean" datatype="float" unit="" width="6" precision="1"/>

<FIELD name="Z_av" ID="col_zav" ucd="pos.cartesian.z;stat.mean" datatype="float" unit="" width="6" precision="1"/>

<FIELD name="X_Centroid" ID="col_xcent" ucd="pos.cartesian.x;stat.centroid" datatype="float" unit="" width="7" precision="1"/>

<FIELD name="Y_Centroid" ID="col_ycent" ucd="pos.cartesian.y;stat.centroid" datatype="float" unit="" width="7" precision="1"/>

<FIELD name="Z_Centroid" ID="col_zcent" ucd="pos.cartesian.z;stat.centroid" datatype="float" unit="" width="7" precision="1"/>

<FIELD name="X_peak" ID="col_xpeak" ucd="pos.cartesian.x;phot.flux;stat.max" datatype="int" unit="" width="7"/>

<FIELD name="Y_peak" ID="col_ypeak" ucd="pos.cartesian.y;phot.flux;stat.max" datatype="int" unit="" width="7"/>

<FIELD name="Z_peak" ID="col_zpeak" ucd="pos.cartesian.z;phot.flux;stat.max" datatype="int" unit="" width="7"/>

<DATA>

<TABLEDATA>

<TR>

<TD> 1</TD><TD> J060946-215932</TD><TD> 92.444503</TD><TD> -21.992234</TD><TD> 225.640</TD><TD> 20.32</TD>

<TD> 23.76</TD><TD> 25.442</TD><TD> 41.038</TD><TD> 26.403</TD><TD> 4.621</TD><TD> 0.213</TD><TD> 16.41</TD>

<TD> M</TD><TD> 57.9</TD><TD> 139.8</TD><TD> 115.0</TD><TD> 58.0</TD><TD> 139.9</TD><TD> 114.6</TD><TD> 59</TD>

<TD> 140</TD><TD> 114</TD>

</TR>

... truncated ...

</TABLEDATA>

</DATA>

</TABLE>

</RESOURCE>

</VOTABLE>
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F Example Karma Annotation file output

This is the format of the Karma Annotation file, showing the locations of the
detected objects. This can be loaded by the plotting tools of the Karma package
(for instance, kvis) as an overlay on the FITS file.

# Duchamp Source Finder v.1.3.2
# Results for FITS file: /home/mduchamp/fountain.fits
# imageFile /home/mduchamp/fountain.fits
# flagSubsection 0
# flagStatSec 0
# searchType spatial
# flagNegative 0
# flagBaseline 0
# flagRobustStats 1
# flagFDR 0
# snrCut 4
# flagGrowth 0
# minVoxels 4
# minPix 2
# minChannels 2
# flagAdjacent 1
# threshVelocity 3
# flagRejectBeforeMerge 0
# flagTwoStageMerging 1
# pixelCentre centroid
# flagSmooth 0
# flagATrous 0
# Detection threshold used = 4.05187
# Mean of noise background = 0.0148019
# Std. Deviation of noise background = 1.00927
# [Using robust methods]
COLOR RED
COORD W
LINE 92.796776 -27.682375 92.721457 -27.683528
LINE 92.795375 -27.615691 92.720102 -27.616844
LINE 92.722816 -27.750214 92.647453 -27.751330
LINE 92.714730 -27.350128 92.639640 -27.351239
...
TEXT 92.301572 -27.583707 1
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G Example DS9 Region file output

This is the format of the DS9 region file, showing the locations of the detected
objects. This can be loaded by the visualisation tool SAOImage DS9 as an
overlay on the FITS file, and should be compatible with CASA’s casaviewer.

# Duchamp Source Finder v.1.3.2
# Results for FITS file: /home/mduchamp/fountain.fits
# imageFile /home/mduchamp/fountain.fits
# flagSubsection 0
# flagStatSec 0
# searchType spatial
# flagNegative 0
# flagBaseline 0
# flagRobustStats 1
# flagFDR 0
# snrCut 4
# flagGrowth 0
# minVoxels 4
# minPix 2
# minChannels 2
# flagAdjacent 1
# threshVelocity 3
# flagRejectBeforeMerge 0
# flagTwoStageMerging 1
# pixelCentre centroid
# flagSmooth 0
# flagATrous 0
# Detection threshold used = 4.05187
# Mean of noise background = 0.0148019
# Std. Deviation of noise background = 1.00927
# [Using robust methods]
global color=red
fk5
line 92.796776 -27.682375 92.721457 -27.683528
line 92.795375 -27.615691 92.720102 -27.616844
line 92.722816 -27.750214 92.647453 -27.751330
line 92.714730 -27.350128 92.639640 -27.351239
...
text 92.301572 -27.583707 {1}
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H Example CASA Region file output

This is the format of the CASA region file, showing the locations of the detected
objects. This can be loaded in casapy, and should be able to be used in the
casaviewer image viewer (once that functionality is made available)

#CRTFv0
# Duchamp Source Finder v.1.3.2
# Results for FITS file: /home/mduchamp/fountain.fits
# imageFile /home/mduchamp/fountain.fits
# flagSubsection 0
# flagStatSec 0
# searchType spectral
# flagNegative 0
# flagBaseline 0
# flagRobustStats 0
# flagFDR 0
# snrCut 5
# flagGrowth 1
# growthCut 3
# minVoxels 7
# minPix 5
# minChannels 3
# flagAdjacent 1
# threshVelocity 7
# flagRejectBeforeMerge 0
# flagTwoStageMerging 0
# pixelCentre centroid
# flagSmooth 0
# flagATrous 0
# Detection threshold used = 0.0693069
# Mean of noise background = 0.000421091
# Std. Deviation of noise background = 0.0137772
global color=red, coord=J2000
#
box[[88.086891deg,-29.482756deg], [87.945344deg,-29.012892deg]], label=’1’
ann ellipse[[88.053118deg,-29.283458deg], [0.272748deg,0.013333deg], 179.999776deg]
text[[88.053118deg,-29.283458deg], ’1’]

box[[93.194880deg,-21.870648deg], [92.542252deg,-21.480469deg]], label=’2’
ann ellipse[[92.828794deg,-21.613361deg], [0.273816deg,0.235305deg], 141.808738deg]
text[[92.828794deg,-21.613361deg], ’2’]

box[[90.609492deg,-24.032905deg], [89.955329deg,-23.364696deg]], label=’3’
ann ellipse[[90.281318deg,-23.666887deg], [0.269583deg,0.229524deg], 91.375033deg]
text[[90.281318deg,-23.666887deg], ’3’]
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I Robust statistics for a Normal distribution

The Normal, or Gaussian, distribution for mean µ and standard deviation σ can
be written as

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

When one has a purely Gaussian signal, it is straightforward to estimate σ
by calculating the standard deviation (or rms) of the data. However, if there
is a small amount of signal present on top of Gaussian noise, and one wants to
estimate the σ for the noise, the presence of the large values from the signal can
bias the estimator to higher values.

An alternative way is to use the median (m) and median absolute deviation
from the median (s) to estimate µ and σ. The median is the middle of the
distribution, defined for a continuous distribution by∫ m

−∞
f(x)dx =

∫ ∞
m

f(x)dx.

From symmetry, we quickly see that for the continuous Normal distribution,
m = µ. We consider the case henceforth of µ = 0, without loss of generality.

To find s, we find the distribution of the absolute deviation from the median,
and then find the median of that distribution. This distribution is given by

g(x) = distribution of |x|
= f(x) + f(−x), x ≥ 0

=

√
2
πσ2

e−x
2/2σ2

, x ≥ 0.

So, the median absolute deviation from the median, s, is given by∫ s

0

g(x)dx =
∫ ∞
s

g(x)dx.

If we use the identity ∫ ∞
0

e−x
2/2σ2

dx =
√
πσ2/2

we find that ∫ ∞
s

e−x
2/2σ2

dx =
√
πσ2/2−

∫ s

0

e−x
2/2σ2

dx.

Hence, to find s we simply solve the following equation (setting σ = 1 for
simplicity – equivalent to stating x and s in units of σ):∫ s

0

e−x
2/2dx−

√
π/8 = 0.

This is hard to solve analytically (no nice analytic solution exists for the finite
integral that I’m aware of), but straightforward to solve numerically, yielding
the value of s = 0.6744888. Thus, to estimate σ for a Normally distributed data
set, one can calculate s, then divide by 0.6744888 (or multiply by 1.4826042) to
obtain the correct estimator.
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Note that this is different to solutions quoted elsewhere, specifically in Meyer
et al. (2004), where the same robust estimator is used but with an incorrect
conversion to standard deviation – they assume σ = s

√
π/2. This, in fact, is

the conversion used to convert the mean absolute deviation from the mean to
the standard deviation. This means that the cube noise in the hipass catalogue
(their parameter Rmscube) should be 18% larger than quoted.
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J Gaussian noise and the wavelet scale

The key element in the wavelet reconstruction of an array is the thresholding
of the individual wavelet coefficient arrays. This is usually done by choosing a
level to be some number of standard deviations above the mean value.

However, since the wavelet arrays are produced by convolving the input ar-
ray by an increasingly large filter, the pixels in the coefficient arrays become
increasingly correlated as the scale of the filter increases. This results in the
measured standard deviation from a given coefficient array decreasing with in-
creasing scale. To calculate this, we need to take into account how many other
pixels each pixel in the convolved array depends on.

To demonstrate, suppose we have a 1-D array with N pixel values given by
Fi, i = 1, ..., N , and we convolve it with the B3-spline filter, defined by the
set of coefficients {1/16, 1/4, 3/8, 1/4, 1/16}. The flux of the ith pixel in the
convolved array will be

F ′i =
1
16
Fi−2 +

1
4
Fi−1 +

3
8
Fi +

1
4
Fi+1 +

1
16
Fi+2

and the flux of the corresponding pixel in the wavelet array will be

W ′i = Fi − F ′i =
−1
16
Fi−2 −

1
4
Fi−1 +

5
8
Fi −

1
4
Fi+1 −

1
16
Fi+2

Now, assuming each pixel has the same standard deviation σi = σ, we can work
out the standard deviation for the wavelet array:

σ′i = σ

√(
1
16

)2

+
(

1
4

)2

+
(

5
8

)2

+
(

1
4

)2

+
(

1
16

)2

= 0.72349 σ

Thus, the first scale wavelet coefficient array will have a standard deviation
of 72.3% of the input array. This procedure can be followed to calculate the
necessary values for all scales, dimensions and filters used by Duchamp.

Calculating these values is clearly a critical step in performing the recon-
struction. The method used by Starck and Murtagh (2002) was to simulate
data sets with Gaussian noise, take the wavelet transform, and measure the
value of σ for each scale. We take a different approach, by calculating the scal-
ing factors directly from the filter coefficients by taking the wavelet transform of
an array made up of a 1 in the central pixel and 0s everywhere else. The scaling
value is then derived by taking the square root of the sum (in quadrature) of
all the wavelet coefficient values at each scale. We give the scaling factors for
the three filters available to Duchamp below. These values are hard-coded into
Duchamp, so no on-the-fly calculation of them is necessary.

Memory limitations prevent us from calculating factors for large scales, par-
ticularly for the three-dimensional case (hence the smaller table). To calculate
factors for higher scales than those available, we divide the previous scale’s
factor by either

√
2, 2, or

√
8 for 1D, 2D and 3D respectively.
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B3 Spline Triangle Haar
{ 1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16} { 1

4 ,
1
2 ,

1
4} {0, 1

2 ,
1
2}

1 dimension
1 0.723489806 0.612372436 0.707106781
2 0.285450405 0.330718914 0.5
3 0.177947535 0.211947812 0.353553391
4 0.122223156 0.145740298 0.25
5 0.0858113122 0.102310944 0.176776695
6 0.0605703043 0.0722128185 0.125
7 0.0428107206 0.0510388224 0.0883883476
8 0.0302684024 0.0360857673 0.0625
9 0.0214024008 0.0255157615 0.0441941738
10 0.0151336781 0.0180422389 0.03125
11 0.0107011079 0.0127577667 0.0220970869
12 0.00756682272 0.00902109930 0.015625
13 0.00535055108 0.00637887978 0.0110485435
2 dimension
1 0.890796310 0.800390530 0.866025404
2 0.200663851 0.272878894 0.433012702
3 0.0855075048 0.119779282 0.216506351
4 0.0412474444 0.0577664785 0.108253175
5 0.0204249666 0.0286163283 0.0541265877
6 0.0101897592 0.0142747506 0.0270632939
7 0.00509204670 0.00713319703 0.0135316469
8 0.00254566946 0.00356607618 0.00676582347
9 0.00127279050 0.00178297280 0.00338291173
10 0.000636389722 0.000891478237 0.00169145587
11 0.000318194170 0.000445738098 0.000845727933
3 dimension
1 0.956543592 0.895954449 0.935414347
2 0.120336499 0.192033014 0.330718914
3 0.0349500154 0.0576484078 0.116926793
4 0.0118164242 0.0194912393 0.0413398642
5 0.00413233507 0.00681278387 0.0146158492
6 0.00145703714 0.00240175885 0.00516748303
7 0.000514791120 0.000848538128 0.00182698115
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