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Abstract. In Paper I, Greisen & Calabretta (2002) describe a generalized method for assigning physical coordinates to FITS
image pixels. This paper implements this method for all spherical map projections likely to be of interest in astronomy. The
new methods encompass existing informal FITS spherical coordinate conventions and translations from them are described.
Detailed examples of header interpretation and construction are given.
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1. Introduction

This paper is the second in a series which establishes conven-
tions by which world coordinates may be associated with FITS
(Hanisch et al. 2001) image, random groups, and table data.
Paper I (Greisen & Calabretta 2002) lays the groundwork by
developing general constructs and related FITS header key-
words and the rules for their usage in recording coordinate in-
formation. In Paper III, Greisen et al. (2002) apply these meth-
ods to spectral coordinates. Paper IV (Calabretta et al. 2002)
extends the formalism to deal with general distortions of the co-
ordinate grid. This paper, Paper II, addresses the specific prob-
lem of describing celestial coordinates in a two-dimensional
projection of the sky. As such it generalizes the informal but
widely used conventions established by Greisen (1983, 1986)
for the Astronomical Image Processing System, hereinafter re-
ferred to as the AIPS convention.

Paper I describes the computation of world coordinates as
a multi-step process. Pixel coordinates are linearly transformed
to intermediate world coordinates that in the final step are trans-
formed into the required world coordinates.

In this paper we associate particular elements of the inter-
mediate world coordinates with Cartesian coordinates in the
plane of the spherical projection. Figure 1, by analogy with
Fig. 1 of Paper I, focuses on the transformation as it applies
to these projection plane coordinates. The final step is here di-
vided into two sub-steps, a spherical projection defined in terms
of a convenient coordinate system which we refer to as native
spherical coordinates, followed by a spherical rotation of these
native coordinates to the required celestial coordinate system.

Send offprint requests to: M. Calabretta,
e-mail: mcalabre@atnf.csiro.au

PIXEL
COORDINATES

linear transformation:
translation, rotation,

CRPIXja
PCi_ja
CDELTiaskewness, scale

PROJECTION PLANE
COORDINATES

spherical CTYPEia
PVi_maprojection

NATIVE SPHERICAL
COORDINATES

spherical
coordinate

CRVALia
LONPOLEa
LATPOLEarotation

CELESTIAL SPHERICAL
COORDINATES

pj

r j
mi j
si

(x, y)

(φ0, θ0)
Table 13

(φ, θ)

(α0, δ0)
φp

θp

(α, δ)

Fig. 1. Conversion of pixel coordinates to celestial coordinates. The
   of Paper I, Fig. 1 are here interpreted
as   , i.e. Cartesian coordinates in the plane
of projection, and the multiple steps required to produce them have
been condensed into one. This paper is concerned in particular with
the steps enclosed in the dotted box. For later reference, the math-
ematical symbols associated with each step are shown in the box at
right (see also Tables 1 and 13).

The original FITS paper by Wells et al. (1981) intro-
duced the CRPIX ja1 keyword to define the pixel coordinates
(r1, r2, r3, . . .) of a coordinate reference point. Paper I retains

1 The single-character alternate version code “a” on the various
FITS keywords was introduced in Paper I. It has values blank and
A through Z.
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this but replaces the coordinate rotation keywords CROTA i with
a linear transformation matrix. Thus, the transformation of
pixel coordinates (p1, p2, p3, . . .) to intermediate world coor-
dinates (x1, x2, x3, . . .) becomes

xi = si

N∑
j=1

mi j(p j − r j), (1)

=

N∑
j=1

(simi j)(p j − r j),

where N is the number of axes given by the NAXIS keyword. As
suggested by the two forms of the equation, the scales si, and
matrix elements mi j may be represented either separately or in
combination. In the first form si is given by CDELT ia and mi j by
PC i ja; in the second, the product simi j is given by CD i ja. The
two forms may not coexist in one coordinate representation.

Equation (1) establishes that the reference point is the ori-
gin of intermediate world coordinates. We require that the lin-
ear transformation be constructed so that the plane of projec-
tion is defined by two axes of the xi coordinate space. We will
refer to intermediate world coordinates in this plane as pro-
jection plane coordinates, (x, y), thus with reference point at
(x, y) = (0, 0). Note that this does not necessarily correspond to
any plane defined by the p j axes since the linear transformation
matrix may introduce rotation and/or skew.

Wells et al. (1981) established that all angles in FITS
were to be measured in degrees and this has been entrenched
by the AIPS convention and confirmed in the IAU-endorsed
FITS standard (Hanisch et al. 2001). Paper I introduced the
CUNIT ia keyword to define the units of CRVAL ia and CDELT ia.
Accordingly, we require CUNIT ia = ’deg’ for the celes-
tial CRVAL ia and CDELT ia, whether given explicitly or not.
Consequently, the (x, y) coordinates in the plane of projection
are measured in degrees. For consistency, we use degree mea-
sure for native and celestial spherical coordinates and for all
other angular measures in this paper.

For linear coordinate systems Wells et al. (1981) prescribed
that world coordinates should be computed simply by adding
the relative world coordinates, xi, to the coordinate value at
the reference point given by CRVAL ia. Paper I extends this by
providing that particular values of CTYPE ia may be established
by convention to denote non-linear transformations involving
predefined functions of the xi parameterized by the CRVAL ia
keyword values and possibly other parameters.

In Sects. 2, 3 and 5 of this paper we will define the func-
tions for the transformation from (x, y) coordinates in the plane
of projection to celestial spherical coordinates for all spherical
map projections likely to be of use in astronomy.

The FITS header keywords discussed within the main body
of this paper apply to the primary image header and image ex-
tension headers. Image fragments within binary tables exten-
sions defined by Cotton et al. (1995) have additional nomencla-
ture requirements, a solution for which was proposed in Paper I.
Coordinate descriptions may also be associated with the ran-
dom groups data format defined by Greisen & Harten (1981).
These issues will be expanded upon in Sect. 4.

Section 6 considers the translation of older AIPS conven-
tion FITS headers to the new system and provisions that may
be made to support older FITS-reading programs. Section 7
discusses the concepts presented here, including worked exam-
ples of header interpretation and construction.

2. Basic concepts

2.1. Spherical projection

As indicated in Fig. 1, the first step in transforming (x, y) coor-
dinates in the plane of projection to celestial coordinates is to
convert them to native longitude and latitude, (φ, θ). The equa-
tions for the transformation depend on the particular projection
and this will be specified via the CTYPE ia keyword. Paper I
defined “4–3” form for such purposes; the rightmost three-
characters are used as an algorithm code that in this paper will
specify the projection. For example, the stereographic projec-
tion will be coded as STG. Some projections require additional
parameters that will be specified by the FITS keywordsPV i ma
for m = 0, 1, 2, . . ., also introduced in Paper I. These parame-
ters may be associated with the longitude and/or latitude co-
ordinate as specified for each projection. However, definition
of the three-letter codes for the projections and the equations,
their inverses and the parameters which define them, form a
large part of this work and will be discussed in Sect. 5. The
leftmost four characters of CTYPE ia are used to identify the ce-
lestial coordinate system and will be discussed in Sect. 3.

2.2. Reference point of the projection

The last step in the chain of transformations shown in Fig. 1 is
the spherical rotation from native coordinates, (φ, θ), to celes-
tial2 coordinates (α, δ). Since a spherical rotation is completely
specified by three Euler angles it remains only to define them.

In principle, specifying the celestial coordinates of any par-
ticular native coordinate pair provides two of the Euler an-
gles (either directly or indirectly). In the AIPS convention, the
CRVAL ia keyword values for the celestial axes3 specify the ce-
lestial coordinates of the reference point and this in turn is as-
sociated with a particular point on the projection. For zenithal
projections that point is the sphere’s point of tangency to the
plane of projection and this is the pole of the native coordinate
system. Thus the AIPS convention links a celestial coordinate
pair to a native coordinate pair via the reference point. Note that
this association via the reference point is purely conventional;
it has benefits which are discussed in Sect. 5 but in principle
any other point could have been chosen.

Section 5 presents the projection equations for the transfor-
mation of (x, y) to (φ, θ). The native coordinates of the refer-
ence point would therefore be those obtained for (x, y) = (0, 0).
However, it may happen that this point lies outside the bound-
ary of the projection, for example as for the ZPN projection of

2 Usage here of the conventional symbols for right ascension and
declination for celestial coordinates is meant only as a mnemonic. It
does not preclude other celestial systems.

3 We will refer to these simply as “the CRVAL ia”, and likewise for
the other keyword values.
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Table 1. Summary of important variable names and other symbols used throughout the paper.

Variable(s) Meaning Related FITS keywords (if any)

i Index variable for world coordinates
j Index variable for pixel coordinates
a Alternate version code, blank or A to Z
pj Pixel coordinates
r j Reference pixel coordinates CRPIX ja
mi j Linear transformation matrix CD i ja or PC i ja
si Coordinate scales CDELT ia
xi Intermediate world coordinates (in general)
(x, y) Projection plane coordinates
(φ, θ) Native longitude and latitude
(α, δ) Celestial longitude and latitude
(φ0, θ0) Native longitude and latitude of the fiducial point PV i 1a†, PV i 2a†

(α0, δ0) Celestial longitude and latitude of the fiducial point CRVAL ia
(φp, θp) Native longitude and latitude of the celestial pole LONPOLEa ( = PV i 3a†), LATPOLEa, ( = PV i 4a†)
(αp, δp) Celestial longitude and latitude of the native pole (δp = θp)
arg() Inverse tangent function that returns the correct quadrant

† Associated with longitude axis i.

Sect. 5.1.7. Therefore, while this work follows the AIPS ap-
proach it must of necessity generalize it.

Accordingly we specify only that a fiducial celestial coor-
dinate pair (α0, δ0) given by the CRVAL ia will be associated
with a fiducial native coordinate pair (φ0, θ0) defined explicitly
for each projection. For example, zenithal projections all have
(φ0, θ0) = (0, 90◦), while cylindricals have (φ0, θ0) = (0, 0). The
AIPS convention has been honored here as far as practicable by
constructing the projection equations so that (φ0, θ0) transforms
to the reference point, (x, y) = (0, 0). Thus, apart from the one
exception noted, the fiducial celestial and native coordinates
are the celestial and native coordinates of the reference point
and we will not normally draw a distinction.

It is important to understand why (φ0, θ0) differs for dif-
ferent projection types. There are two main reasons; the first
makes it difficult for it to be the same, while the second makes
it desirable that it differs. Of the former, some projections such
as Mercator’s, diverge at the native pole, therefore they cannot
have the reference point there because that would imply infinite
values for CRPIX ja. On the other hand, the gnomonic projec-
tion diverges at the equator so it can’t have the reference point
there for the same reason. Possibly (φ0, θ0) chosen at some mid-
latitude could satisfy all projections, but that leads us to the
second reason.

Different projection types are best suited to different pur-
poses. For example, zenithal projections are best for mapping
the region in the vicinity of a point, often a pole; cylindrical
projections are appropriate for the neighborhood of a great cir-
cle, usually an equator; and the conics are suitable for small
circles such as parallels of latitude. Thus, it would be awkward
if a cylindrical used to map, say, a few degrees on either side
of the galactic plane, had its reference point, and thus CRPIX ja
and CRVAL ia, at the native pole, way outside the map bound-
ary. In formulating the projection equations themselves the na-
tive coordinate system is chosen to simplify the geometry as
much as possible. For the zenithals the natural formulation has

(x, y) = (0, 0) at the native pole, whereas for the cylindricals
the equations are simplest if (x, y) = (0, 0) at a point on the
equator.

As discussed above, a third Euler angle must be specified
and this will be given by the native longitude of the celestial
pole, φp, specified by the new FITS keyword

LONPOLEa (floating-valued).

The default value of LONPOLEa will be 0 for δ0 ≥ θ0 or 180◦
for δ0 < θ0. This is the condition for the celestial latitude to
increase in the same direction as the native latitude at the refer-
ence point. Thus, for example, in zenithal projections the de-
fault is always 180◦ (unless δ0 = 90◦) since θ0 = 90◦. In
cylindrical projections, where θ0 = 0, the default value for
LONPOLEa is 0 for δ0 ≥ 0, but it is 180◦ for δ0 < 0.

2.3. Spherical coordinate rotation

Since (φ0, θ0) differs for different projections it is apparent that
the relationship between (α0, δ0) and the required Euler angles
also differs.

For zenithal projections, (φ0, θ0) = (0, 90◦) so the CRVAL ia
specify the celestial coordinates of the native pole, i.e.
(α0, δ0) = (αp, δp). There is a simple relationship between
the Euler angles for consecutive rotations about the Z-, X-,
and Z-axes and αp, δp and φp; the ZXZ Euler angles are
(αp+90◦, 90◦−δp, φp−90◦). Given this close correspondence it
is convenient to write the Euler angle transformation formulæ
directly in terms of αp, δp and φp:

α = αp + arg (sin θ cos δp − cos θ sin δp cos(φ − φp),
− cos θ sin(φ − φp)),

δ = sin−1(sin θ sin δp + cos θ cos δp cos(φ − φp)),
(2)



1080 M. R. Calabretta and E. W. Greisen: Representations of celestial coordinates in FITS

where arg () is an inverse tangent function that returns the cor-
rect quadrant, i.e. if (x, y) = (r cos β, r sin β) with r > 0 then
arg (x, y) = β. Note that, if δp = 90◦, Eqs. (2) become

α = αp + φ − φp − 180◦,
δ = θ,

(3)

which may be used to define a simple change in the origin of
longitude. Likewise for δp = −90◦

α = αp − φ + φp,
δ = −θ. (4)

The inverse equations are

φ = φp + arg (sin δ cos δp − cos δ sin δp cos(α − αp),
− cos δ sin(α − αp)),

θ = sin−1(sin δ sin δp + cos δ cos δp cos(α − αp)).
(5)

Useful relations derived from Eqs. (2) and (5) are

cos δ cos(α − αp) = sin θ cos δp − cos θ sin δp cos(φ − φp),

cos δ sin(α − αp) = − cos θ sin(φ − φp), (6)

cos θ cos(φ − φp) = sin δ cos δp − cos δ sin δp cos(α − αp),

cos θ sin(φ − φp) = − cos δ sin(α − αp). (7)

A matrix method of handling the spherical coordinate rotation
is described in Appendix B.

2.4. Non-polar (φ0, θ0)

Projections such as the cylindricals and conics for which
(φ0, θ0) , (0, 90◦) are handled by providing formulae to com-
pute (αp, δp) from (α0, δ0) whence the above equations may be
used.

Given that (α0, δ0) are the celestial coordinates of the point
with native coordinates (φ0, θ0), Eqs. (6) and (7) may be in-
verted to obtain

δp = arg (cos θ0 cos(φp − φ0), sin θ0)

± cos−1

 sin δ0√
1 − cos2 θ0 sin2(φp − φ0)

 , (8)

sin(α0 − αp) = sin(φp − φ0) cos θ0/ cos δ0, (9)

cos(α0 − αp) =
sin θ0 − sin δp sin δ0

cos δp cos δ0
, (10)

whence Eqs. (2) may be used to determine the celestial coor-
dinates. Note that Eq. (8) contains an ambiguity in the sign of
the inverse cosine and that all three indicate that some com-
binations of φ0, θ0, α0, δ0, and φp are not allowed. For these
projections, we must therefore adopt additional conventions:

1. Equations (9) and (10) indicate that αp is undefined when
δ0 = ±90◦. This simply represents the longitude singularity
at the pole and forces us to define αp = α0 in this case.

2. If δp = ±90◦ then the longitude at the native pole is αp =

α0 + φp − φ0 − 180◦ for δp = 90◦ and αp = α0 − φp + φ0 for
δp = −90◦.

3. Some combinations of φ0, θ0, δ0, and φp produce an in-
valid argument for the cos−1() in Eq. (8). This is indicative
of an inconsistency for which there is no solution for δp.
Otherwise Eq. (8) produces two solutions for δp. Valid so-
lutions are ones that lie in the range −90◦ to +90◦, and it is
possible in some cases that neither solution is valid.
Note, however, that if φ0 = 0, as is usual, then when
LONPOLEa (≡ φp) takes its default value of 0 or 180◦ (de-
pending on θ0) then any combination of δ0 and θ0 produces
a valid argument to the cos−1() in Eq. (8), and at least one
of the solutions is valid.

4. Where Eq. (8) has two valid solutions the one closest to the
value of the new FITS keyword

LATPOLEa (floating-valued)

is chosen. It is acceptable to set LATPOLEa to a number
greater than +90◦ to choose the northerly solution (the de-
fault if LATPOLEa is omitted), or a number less than −90◦
to select the southern solution.

5. Equation (8) often only has one valid solution (because
the other lies outside the range −90◦ to +90◦). In this case
LATPOLEa is ignored.

6. For the special case where θ0 = 0, δ0 = 0, and φp − φ0 =

±90◦ then δp is not determined and LATPOLEa specifies it
completely. LATPOLEa has no default value in this case.

These rules governing the application of Eqs. (8–10) are cer-
tainly the most complex of this formalism. FITS writers are
well advised to check the values of φ0, θ0, α0, δ0, and φp against
them to ensure their validity.

2.5. User-specified (φ0, θ0)

In Sect. 2.2 we formally decoupled (α0, δ0) from the reference
point and associated it with (φ0, θ0). One implication of this is
that it should be possible to allow (φ0, θ0) to be user-specifiable.
This may be useful in some circumstances, mainly to allow
CRVAL ia to match a point of interest rather than some prede-
fined point which may lie well outside the image and be of no
particular interest. We therefore reserve keywords PV i 1a and
PV i 2a attached to longitude coordinate i to specify φ0 and θ0

respectively.
By itself, this prescription discards the AIPS convention

and lacks utility because it breaks the connection between
CRVAL ia and any point whose pixel coordinates are given in the
FITS header. New keywords could be invented to define these
pixel coordinates but this would introduce additional complex-
ity and still not satisfy the AIPS convention. The solution
adopted here is to provide an option to force (x, y) = (0, 0) at
(φ0, θ0) by introducing an implied offset (x0, y0) which is com-
puted for (φ0, θ0) from the relevant projection equations given
in Sect. 5. This is to be applied to the (x, y) coordinates when
converting to or from pixel coordinates. The operation is con-
trolled by the value of PV i 0a attached to longitude coordinate
i; the offset is to be applied only when this differs from its de-
fault value of zero.

This construct should be considered advanced usage, of
which Figs. 33 and 34 provide an example. Normally we
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Fig. 2. A linear equatorial coordinate system (top) defined via the
methods of Wells et al. (1981), and the corresponding oblique system
constructed using the methods of this paper. The reference coordinate
(α0, δ0) for each is at right ascension 8hr, declination +60◦ (marked).
The two sets of FITS header cards differ only in their CTYPE ia key-
word values. The non-oblique graticule could be obtained in the cur-
rent system by setting (α0, δ0, φp) = (120◦, 0, 0).

expect that PV i 1a and PV i 2a will either be omitted or set to
the projection-specific defaults given in Sect. 5.

2.6. Encapsulation

So that all required transformation parameters can be contained
completely within the recognized world coordinate system
(WCS) header cards, the values of LONPOLEa and LATPOLEa
may be recorded as PV i 3a and PV i 4a, attached to longitude
coordinate i, and these take precedence where a conflict arises.

We recommend that FITS writers include the PV i 1a,
PV i 2a, PV i 3a, and PV i 4a cards in the header, even if only
to denote the correct use of the default values.

Note carefully that these are associated with the longitude
coordinate, whereas the projection parameters defined later are
all associated with the latitude coordinate.

2.7. Change of coordinate system

A change of coordinate system may be effected in a straightfor-
ward way if the transformation from the original system, (α, δ),
to the new system, (α′, δ′), and its inverse are known. The new
coordinates of the (φ0, θ0), namely (α′0, δ

′
0), are obtained simply

by transforming (α0, δ0). To obtain φ′p, first transform the coor-
dinates of the pole of the new system to the original celestial
system and then transform the result to native coordinates via
Eq. (5) to obtain (φ′p, θ′p). As a check, compute δ′p via Eq. (8)
and verify that θ′p = δ′p.

2.8. Comparison with linear coordinate systems

It must be stressed that the coordinate transformation described
here differs from the linear transformation defined by Wells
et al. (1981) even for some simple projections where at first
glance they may appear to be the same. Consider the plate car-
rée projection defined in Sect. 5.2.3 with φ = x, θ = y and
illustrated in Fig. 18. Figure 1 shows that while the transfor-
mation from (x, y) to (φ, θ) may be linear (in fact identical),
there still remains the non-linear transformation from (φ, θ)
to (α, δ). Hence the linear coordinate description defined by
the unqualified CTYPE ia pair of RA, DEC which uses the Wells
et al. prescription will generally differ from that of RA---CAR,
DEC---CARwith the same CRVAL ia, etc. If LONPOLEa assumes
its default value then they will agree to first order at points near
the reference point but gradually diverge at points away from
it.

Figure 2 illustrates this point for a plate carrée projection
with reference coordinates of 8hr right ascension and +60◦ dec-
lination and with φp = 0. It is evident that since the plate carrée
has (φ0, θ0) = (0, 0), a non-oblique graticule may only be ob-
tained by setting δ0 = 0 with φp = 0. It should also be noted
that where a larger map is to be composed of tiled submaps the
coordinate description of a submap should only differ in the
value of its reference pixel coordinate.

3. Celestial coordinate systems

As mentioned in Sect. 2.1, Paper I defined “4–3” form for the
CTYPE ia keyword value; i.e., the first four characters specify
the coordinate type, the fifth character is a “-”, and the remain-
ing three characters specify an algorithm code for computing
the world coordinate value. Thus while the right half speci-
fies the transformation to be applied in computing the spher-
ical coordinate pair, (α, δ), the left half simply identifies the
celestial system with which (α, δ) are to be associated. In this
sense CTYPE ia contains an active part which drives the trans-
formation and a passive part which describes the results.

Consistent with past practice, an equatorial coordinate pair
is denoted by RA-- and DEC-, and other celestial systems are of
the form xLON and xLAT for longitude and latitude pairs, where
x = G for galactic4, E for ecliptic, H for helioecliptic5, and S for
supergalactic coordinates. Since representation of planetary, lu-
nar and solar coordinate systems could exceed the 26 possibili-
ties afforded by the single character x, we also here allow yzLN
and yzLT pairs. Additional values of x and yz will undoubtedly
be defined. A basic requirement, however, is that the coordinate
system be right-handed and that the pole be at latitude +90◦. A
coordinate pair such as azimuth and zenith distance would have
to be represented as a negative azimuth and elevation with im-
plied conversion. In some situations negation of the longitude
coordinate may be implemented via a sign reversal of the

4 “New” galactic coordinates are assumed here, Blaauw et al.
(1960). Users of the older system or future systems should adopt a
different value of x and document its meaning.

5 Ecliptic and helioecliptic systems each have their equator on the
ecliptic. However, the reference point for ecliptic longitude is the ver-
nal equinox while that for helioecliptic longitude is the sun vector.
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Table 2. Allowed values of RADESYSa.

RADESYSa Definition

ICRS International Celestial Reference System
FK5 mean place,

new (IAU 1984) system
FK4 mean place,

old (Bessell-Newcomb) system
FK4-NO-E mean place,

old system but without e-terms
GAPPT geocentric apparent place,

IAU 1984 system

appropriate CDELT ia. It remains the responsibility of the au-
thors of new coordinate system types to define them properly
and to gain general recognition for them from the FITS com-
munity. However, FITS interpreters should be able to associate
coordinate pairs even if the particular coordinate system is not
recognized.

Paper I clarified that, while the subscript of CRPIX ja and
the j subscript of PC i ja and CD i ja refer to pixel coordinate el-
ements, the i subscript of PC i ja and CD i ja and the subscripts
of CDELT ia, CTYPE ia and CRVAL ia refer to world coordinate
elements. However we now have three different sets of world
coordinates, (x, y), (φ, θ), and (α, δ). This leads us to associate
x, φ, and α on the one hand, and y, θ, and δ on the other. This
simply means, for example, that if CTYPE3 = ’GLON-AIT’,
then the third element of the intermediate world coordinate cal-
culated via Eq. (1) corresponds to what we have been calling
the x-coordinate in the plane of projection, the association be-
ing between α and x. In this way pairs of CTYPE ia with com-
plementary left halves and matching right halves define which
elements of the intermediate world coordinate vector form the
plane of projection.

3.1. Equatorial and ecliptic coordinates
Several systems of equatorial coordinates (right ascension and
declination) are in common use. Apart from the International
Celestial Reference System (ICRS, IAU 1998), the axes of
which are by definition fixed with respect to the celestial
sphere, each system is parameterized by time. In particular,
mean equatorial coordinates (Hohenkerk et al. 1992) are de-
fined in terms of the epoch (i.e. instant of time) of the mean
equator and equinox (i.e. pole and origin of right ascension).
The same applies for ecliptic coordinate systems. Several addi-
tional keywords are therefore required to specify these systems
fully. We introduce the new keyword

RADESYSa (character-valued)

to specify the particular system. Recognized values are given in
Table 2. Apart from FK4-NO-E these keywords are applicable
to ecliptic as well as equatorial coordinates.

Wells et al. (1981) introduced the keyword EPOCH to mean
the epoch of the mean equator and equinox. However we here
replace it with

EQUINOXa (floating-valued),

since the word “epoch” is often used in astrometry to refer to
the time of observation. The new keyword6 takes preference
over EPOCH if both are given. Note that EQUINOXa applies to
ecliptic as well as to equatorial coordinates.

For RADESYSa values of FK4 and FK4-NO-E, any stated
equinox is Besselian and, if neither EQUINOXa nor EPOCH are
given, a default of 1950.0 is to be taken. For FK5, any stated
equinox is Julian and, if neither keyword is given, it defaults to
2000.0.

If the EQUINOXa keyword is given it should always be ac-
companied by RADESYSa. However, if it should happen to ap-
pear by itself then RADESYSa defaults to FK4 if EQUINOXa
< 1984.0, or to FK5 if EQUINOXa ≥ 1984.0. Note that these
defaults, while probably true of older files using the EPOCH key-
word, are not required of them.
RADESYSa defaults to ICRS if both it and EQUINOXa are

absent.
Geocentric apparent equatorial and ecliptic coordinates

(GAPPT) require the epoch of the equator and equinox of date.
This will be taken as the time of observation rather than
EQUINOXa. The time of observation may also be required for
other astrometric purposes in addition to the usual astrophys-
ical uses, for example, to specify when the mean place was
correct in accounting for proper motion, including “fictitious”
proper motions in the conversion between the FK4 and FK5 sys-
tems. The old DATE-OBS keyword may be used for this pur-
pose. However, to provide a more convenient specification we
here introduce the new keyword

MJD-OBS (floating-valued),

that provides DATE-OBS as a Modified Julian Date (JD −
2 400 000.5) but is identical to it in all other respects. MJD-OBS
does not have a version code since there can only be one time
of observation. Following the year-2000 conventions for DATE
keywords (Bunclark & Rots 1996), this time refers by default
to the start of the observation unless another interpretation is
clearly explained in the comment field. In the present case the
distinction is not important. We leave it to future agreements to
clarify systems of time measurement and other matters related
to time.

The combination of CTYPE ia, RADESYSa, and EQUINOXa
define the coordinate system of the CRVAL ia and of the ce-
lestial coordinates that result from the sequence of transfor-
mations summarized by Fig. 1. However, FK4 coordinates are
not strictly spherical since they include a contribution from
the elliptic terms of aberration, the so-called “e-terms” which
amount to ≤343 milliarcsec. Strictly speaking, therefore, a map
obtained from, say, a radio synthesis telescope, should be re-
garded as FK4-NO-E unless it has been appropriately resam-
pled or a distortion correction provided (Paper IV). In common
usage, however, CRVAL ia for such maps is usually given in FK4
coordinates. In doing so, the e-terms are effectively corrected
to first order only.

6 EQUINOX has since been adopted by Hanisch et al. (2001) which
deprecates EPOCH.
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4. Alternate FITS image representations

4.1. Random groups visibility data

The random-groups extension to FITS (Greisen & Harten
1981) has been used to transmit interferometer fringe visibility
sample data. It has been customary among users of this format
to convey the suggested projection type as the last four char-
acters of the random parameter types (PTYPEn) of the Fourier
plane coordinates (u, v, w). Any rotation of these coordinates
was carried, however, by CROTA i associated with the one-pixel
array axis used to convey the field declination. Within the new
convention users of random groups for visibility data should
be prepared to read, carry forward, and use as needed, the
new keywords PC i ja, CD i ja, LONPOLEa, LATPOLEa, PV i ja,
MJD-OBS, EQUINOXa, and RADESYSa. In particular, any rota-
tion of the (u, v) coordinate system should be represented via
PC i ja or CD i ja (but not both) attached to the two degenerate
axes used to convey the celestial coordinates of the field center.

4.2. Pixel list and image array column elements

Paper I defined the coordinate keywords used to describe a
multi-dimensional image array in a single element of a FITS
binary table and a tabulated list of pixel coordinates in a FITS
ASCII or binary table. In this section we extend this to the key-
words specific to celestial coordinates.

4.2.1. Keyword naming convention

Table 3 lists the corresponding set of coordinate system key-
words for use with each type of FITS image representation.

The data type of the alternate keyword matches that of the
primary keyword and the allowed values are the same. The fol-
lowing notes apply to the naming conventions used in Table 3:

– a is a 1-character coordinate version code and may be blank
(for the primary version of the coordinate description) or
any single uppercase character from A through Z.

– n is an integer table column number without any leading
zeros (1 – 999).

When using the BINTABLE image array format (Cotton et al.
1995), if the table only contains a single image column or if
there are multiple image columns but they all have the same
value for any of the keywords in Table 3 then the simpler form
of the keyword name, as used for primary arrays, may be used.
For example, if all the images in the table have the same epoch
then one may use a single EQUINOXa keyword rather than mul-
tiple EQUIna keywords. The other keywords, however, must al-
ways be specified using the more complex keyword name with
the column number suffix and the axis number prefix.

In principle, more than one pixel list image can be stored
in a single FITS table by defining more than one pair of p1

and p2 pixel coordinate columns. Under the convention defined
here, however, all the images must share the same values for the
keywords in Table 3.

Example binary table and pixel list headers are given in
Sect. 7.3.2.

Table 3. Alternate coordinate keywords; the data type of the alternate
keyword matches that of the primary keyword.

Keyword Primary BINTABLE Pixel
Description Array Array List

Coord Rotation LONPOLEa LONPna LONPna
Coord Rotation LATPOLEa LATPna LATPna
Coord Epoch EQUINOXa EQUIna EQUIna
Date of Obs MJD-OBS MJDOBn MJDOBn
Reference Frame RADESYSa RADEna RADEna

5. Spherical map projections

In this section we present the transformation equations for all
spherical map projections likely to be of use in astronomy.
Many of these such as the gnomonic, orthographic, zenithal
equidistant, Sanson-Flamsteed, Hammer-Aitoff and COBE
quadrilateralized spherical cube are in common use. Others
with special properties such as the stereographic, Mercator, and
the various equal area projections could not be excluded. A se-
lection of the conic and polyconic projections, much favored by
cartographers for their minimal distortion properties, has also
been included. However, we have omitted numerous other pro-
jections which we considered of mathematical interest only.
Evenden (1991) presents maps of the Earth for 73 different
projections, although without mathematical definition, includ-
ing most of those described here. These are particularly useful
in judging the distortion introduced by the various projections.
Snyder (1993) provides fascinating background material on the
subject; historical footnotes in this paper, mainly highlighting
astronomical connections, are generally taken from this source.
It should be evident from the wide variety of projections
described here that new projections could readily be accom-
modated, the main difficulty being in obtaining general recog-
nition for them from the FITS community.

Cartographers have often given different names to spe-
cial cases of a class of projection. This applies particularly
to oblique projections which, as we have seen in Sect. 2,
the current formalism handles in a general way. While we
have tended to avoid such special cases, the gnomonic, stere-
ographic, and orthographic projections, being specializations
of the zenithal perspective projection, are included for confor-
mance with the AIPS convention. It is also true that zenithal
and cylindrical projections may be thought of as special cases
of conic projections (see Sect. 5.4). However, the limiting
forms of the conic equations tend to become intractable and
infinite-valued projection parameters may be involved. Even
when the conic equations don’t have singularities in these lim-
its it is still likely to be less efficient to use them than the sim-
pler special-case equations. Moreover, we felt that it would be
unwise to disguise the true nature of simple projections by im-
plementing them as special cases of more general ones. In the
same vein, the cylindrical equal area projection, being a spe-
cialization of the cylindrical perspective projection, stands on
its own right, as does the Sanson-Flamsteed projection which
is a limiting case of Bonne’s projection. A list of aliases is pro-
vided in Appendix A, Table A.1.
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Fig. 3. (Left) native coordinate system with its pole at the reference point, i.e. (φ0, θ0) = (0, 90◦), and (right) with the intersection of the equator
and prime meridian at the reference point i.e. (φ0, θ0) = (0, 0).

The choice of a projection often depends on particular spe-
cial properties that it may have. Certain equal area projections
(also known as authalic, equiareal, equivalent, homalographic,
homolographic, or homeotheric) have the property that equal
areas on the sphere are projected as equal areas in the plane
of projection. This is obviously a useful property when sur-
face density must be preserved. Mathematically, a projection is
equiareal if and only if the Jacobian,

∂(x, y)
∂(φ cos θ, θ)

≡ 1
cos θ

∣∣∣∣∣∣∣∣∣
∂x
∂φ

∂x
∂θ

∂y
∂φ

∂y
∂θ

∣∣∣∣∣∣∣∣∣ ,
is constant.

Conformality is a property which applies to points in the
plane of projection which are locally distortion-free. Practically
speaking, this means that the projected meridian and parallel
through the point intersect at right angles and are equiscaled. A
projection is said to be conformal or orthomorphic if it has this
property at all points. Such a projection cannot be equiareal.
Conformal projections preserve angle; the angle of intersection
of two lines on the sphere is equal to that of their projection. It
must be stressed that conformality is a local property, finite re-
gions in conformal projections may be very severely distorted.

A projection is said to be equidistant if the meridians are
uniformly, truely, or correctly divided so that the parallels are
equispaced. That is, the native latitude is proportional to the
distance along the meridian measured from the equator, though
the constant of proportionality may differ for different meridi-
ans. Equidistance is not a fundamental property. It’s main ben-
efit is in facilitating measurement from the graticule since lin-
ear interpolation may be used over the whole length of the
meridian. This is especially so if the meridians are projected
as straight lines which is the case for all equidistant projections
presented here.

Zenithal, or azimuthal projections, discussed in Sect. 5.1,
give the true azimuth to all points on the map from the reference

point at the native pole. By contrast, retroazimuthal projections
give the true azimuth from all points on the map to the reference
point, measured as an angle from the vertical. The first projec-
tion specifically designed with this property7, Craig’s “Mecca”
projection of 1909, allowed Muslim worshippers to find the di-
rection to Mecca for daily prayers. Such maps have also been
used to allow radio operators to determine the bearing to ra-
dio transmitters. In practice, however, retroazimuthal projec-
tions may be considered mathematical curiosities of question-
able value; most are so severely distorted as to be difficult to
read, and we have not included any in this work. Instead the
stereographic projection (Sect. 5.1.4) can serve the same pur-
pose, except that the azimuth to the reference point must be
measured with respect to the, typically curved, inclined merid-
ians, rather than from the vertical.

A number of projections have other special properties and
these will be noted for each.

Maps of the Earth are conventionally displayed with ter-
restrial latitude increasing upwards and longitude to the right,
i.e. north up and east to the right, as befits a sphere seen from
the outside. On the other hand, since the celestial sphere is
seen from the inside, north is conventionally up and east to the
left. The AIPS convention arranged that celestial coordinates at
points near the reference point should be calculable to first or-
der via the original linear prescription of Wells et al. (1981), i.e.
(α, δ) ≈ (α0, δ0) + (x, y). Consequently, the CDELT ia keyword
value associated with the right ascension was negative while
that for the declination was positive. The handedness of the
(x, y) coordinates as calculated by the AIPS convention equiv-
alent of Eq. (1) is therefore opposite to that of the (p1, p2) pixel
coordinates.

7 In fact, apart from being conformal, the Littrow projection of 1833
goes further in allowing direct measurement of the azimuth from any
point on the map to any point on the central meridian. However, this
was only discovered much later, by Weir in 1890.
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In accordance with the image display convention of Paper I
we think of the p1-pixel coordinate increasing to the right with
p2 increasing upwards, i.e. a right-handed system. This means
that the (x, y) coordinates must be left-handed as shown in
Fig. 3. Note, however, that the approximation (α, δ) ≈ (α0, δ0)+
(x, y) cannot hold unless 1) (φ0, θ0), and hence (α0, δ0), do ac-
tually map to the reference point (Sect. 2.2), 2) φp assumes its
default value (Sect. 2.8), and 3) the projection is scaled true
at the reference point (some are not as discussed in Sect. 7.2).
Figure 3 also illustrates the orientation of the native coordinate
system with respect to the (x, y) coordinate system for the two
main cases.

Cartographers, for example Kellaway (1946), think of
spherical projections as being a projection of the surface of a
sphere onto a plane, this being the forward direction; the depro-
jection from plane back to sphere is thus the inverse or reverse
direction. However, this is at variance with common usage in
FITS where the transformation from pixel coordinates to world
coordinates is considered the forward direction. We take the
cartographic view in this section as being the natural one and
trust that any potential ambiguity may readily be resolved by
context.

The requirement stated in Sect. 1 that (x, y) coordinates in
the plane of projection be measured in “degrees” begs clari-
fication. Spherical projections are usually defined mathemati-
cally in terms of a scale factor, r0, known as the “radius of the
generating sphere”. However, in this work r0 is set explicitly
to 180◦/π in order to maintain backwards compatibility with
the AIPS convention. This effectively sets the circumference of
the generating sphere to 360◦ so that arc length is measured
naturally in degrees (rather than radians as for a unit sphere).
However, this true angular measure on the generating sphere
becomes distorted when the sphere is projected onto the plane
of projection. So while the “degree” units of r0 are notionally
carried over by conventional dimensional analysis to the (x, y)
they no longer represent a true angle except near the reference
point (for most projections).

In addition to the (x, y) coordinates, the native spherical co-
ordinates, (φ, θ), celestial coordinates, (α, δ), and all other an-
gles in this paper are measured in degrees. In the equations
given below, the arguments to all trigonometric functions are
in degrees and all inverse trigonometric functions return their

result in degrees. Whenever a conversion between radians and
degrees is required it is shown explicitly. All of the graticules
presented in this section have been drawn to the same scale
in (x, y) coordinates in order to represent accurately the exag-
geration and foreshortening found in some projections. It will
also be apparent that since FITS image planes are rectangular
and the boundaries of many projections are curved, there may
sometimes be cases when the FITS image must contain pixels
that are outside the boundary of the projection. These pixels
should be blanked correctly and geometry routines should re-
turn a sensible error code to indicate that their celestial coordi-
nates are undefined.

5.1. Zenithal (azimuthal) projections

Zenithal or azimuthal projections all map the sphere directly
onto a plane. The native coordinate system is chosen to have
the polar axis orthogonal to the plane of projection at the refer-
ence point as shown on the left side of Fig. 3. Meridians of na-
tive longitude are projected as uniformly spaced rays emanat-
ing from the reference point and the parallels of native latitude
are mapped as concentric circles centered on the same point.
Since all zenithal projections are constructed with the pole of
the native coordinate system at the reference point we set

(φ0, θ0)zenithal = (0, 90◦). (11)

Zenithal projections are completely specified by defining
the radius as a function of native latitude, Rθ. Rectangular
Cartesian coordinates, (x, y), in the plane of projection as de-
fined by Eq. (1), are then given by

x = Rθ sinφ, (12)

y = −Rθ cosφ, (13)

which may be inverted as

φ = arg (−y, x), (14)

Rθ =

√
x2 + y2. (15)

5.1.1. AZP: Zenithal perspective

Zenithal (azimuthal) perspective projections are generated
from a point and carried through the sphere to the plane of
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projection as illustrated in Fig. 4. We need consider only the
case where the plane of projection is tangent to the sphere at
its pole; the projection is simply rescaled if the plane intersects
some other parallel of native latitude. If the source of the pro-
jection is at a distance µ spherical radii from the center of the
sphere with µ increasing in the direction away from the plane
of projection, then it is straightforward to show that

Rθ =
180◦

π

(µ + 1) cos θ
µ + sin θ

, (16)

with µ , −1 being the only restriction. When Rθ is given
Eq. (16) has two solutions for θ, one for each side of the sphere.
The following form of the inverse equation always gives the
planeward solution for any µ

θ = arg (ρ, 1) − sin−1

 ρµ√
ρ2 + 1

 , (17)

where

ρ =
π

180◦
Rθ

µ + 1
· (18)

For |µ| , 1 the sphere is divided by a native parallel at latitude
θx into two unequal segments that are projected in superposi-
tion:

θx =

{
sin−1(−1/µ) . . . |µ| > 1
sin−1(−µ) . . . |µ| < 1

. (19)

For |µ| > 1, the projection is bounded and both segments are
projected in the correct orientation, whereas for |µ| ≤ 1 the
projection is unbounded and the anti-planewards segment is in-
verted.

A near-sided perspective projection may be obtained with
µ < −1. This correctly represents the image of a sphere, such
as a planet, when viewed from a distance |µ| times the planetary
radius. The coordinates of the reference point may be expressed
in planetary longitude and latitude, (λ, β). Also, the signs of the
relevant CDELT ia may be chosen so that longitude increases as

appropriate for a sphere seen from the outside rather than from
within.

It is particularly with regard to planetary mapping that we
must generalize AZP to the case where the plane of projection is
tilted with respect to the axis of the generating sphere, as shown
on the left side of Fig. 5. It can be shown (Sect. 7.4.1) that this
geometry is appropriate for spacecraft imaging with non-zero
look-angle, γ, the angle between the camera’s optical axis and
the line to the center of the planet.

Such slant zenithal perspective projections are not radially
symmetric and their projection equations must be expressed di-
rectly in terms of x and y:

x= R sin φ, (20)

y=−R sec γ cosφ, (21)

where

R =
180◦

π

(µ + 1) cos θ
(µ + sin θ) + cos θ cosφ tanγ

(22)

is a function of φ as well as θ. Equations (20) and (21) reduce
to the non-slant case for γ = 0. The inverse equations are

φ= arg (−y cosγ, x), (23)

θ=

{
ψ − ω
ψ + ω + 180◦ , (24)

where

ψ= arg (ρ, 1), (25)

ω= sin−1

 ρµ√
ρ2 + 1

 , (26)

ρ=
R

180◦
π

(µ + 1) + y sin γ
, (27)

R=
√

x2 + y2 cos2 γ. (28)

For |µ| < 1 only one of the solutions for θwill be valid, i.e. lie in
the range [−90◦, 90◦] after normalization. Otherwise there will
be two valid solutions; the one closest to 90◦ should be chosen.
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Fig. 6. Slant zenithal perspective (AZP) projection with µ = 2 and
γ = 30◦ which corresponds to the left-hand side of Fig. 5. The
reference point of the corresponding SZP projection is marked at
(φ, θ) = (0, 60◦).

With γ , 0 the projection is not scaled true at the reference
point. In fact the x scale is correct but the y scale is magnified
by sec γ, thus stretching parallels of latitude near the pole into
ellipses (see Fig. 6). This also shows the native meridians pro-
jected as rays emanating from the pole. For constant θ, each
parallel of native latitude defines a cone with apex at the point
of projection. This cone intersects the tilted plane of projec-
tion in a conic section. Equations (20) and (21) reduce to the
parametric equations of an ellipse, parabola, or hyperbola; the
quantity

C = (µ + sin θ)2 − tan2 γ cos2 θ (29)

determines which:

C> 0 ...ellipse,
C= 0 ...parabola,
C< 0 ...hyperbola.

(30)

If |µ cosγ| ≤ 1 then the open conic sections are possible and
C = 0 when

θ = ±γ − sin−1(µ cosγ). (31)

For C > 0 the eccentricity of the ellipse is a function of θ, as is
the offset of its center in y.

Definition of the perimeter of the projection is more com-
plicated for the slant projection than the orthogonal case. As
before, for |µ| > 1 the sphere is divided into two unequal seg-
ments that are projected in superposition. The boundary be-
tween these two segments is what would be seen as the limb of
the planet in spacecraft photography. It corresponds to native
latitude

θx = sin−1(−1/µ), (32)

which is projected as an ellipse, parabola, or hyperbola for
|µ cos γ| greater than, equal to, or less than 1 respectively.
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Fig. 7. Slant zenithal perspective (SZP) projection with µ = 2 and
(φc, θc) = (180◦, 60◦), which corresponds to the right-hand side of
Fig. 5. The reference point of the corresponding AZP projection is
marked at (φ, θ) = (180◦, 60◦).

In general, for |µ cosγ| > 1, the projection is bounded, oth-
erwise it is unbounded. However, the latitude of divergence is
now a function of φ:

θ∞ =
{
ψ − ω
ψ + ω + 180◦ , (33)

where

ψ=− tan−1( tan γ cosφ), (34)

ω= sin−1

 µ√
1 + tan2 γ cos2 φ

 · (35)

Zero, one, or both of the values of θ∞ given by Eq. (33) may be
valid, i.e. lie in the range [−90◦, 90◦] after normalization.

The FITS keywords PV i 1a and PV i 2a, attached to latitude
coordinate i, will be used to specify, respectively, µ in spherical
radii and γ in degrees, both with default value 0.

5.1.2. SZP: Slant zenithal perspective

While the generalization of the AZP projection to tilted planes
of projection is useful for certain applications it does have a
number of drawbacks, in particular, unequal scaling at the ref-
erence point.

Figure 5 shows that moving the point of projection, P, off
the axis of the generating sphere is equivalent, to within a scale
factor, to tilting the plane of projection. However this approach
has the advantage that the plane of projection remains tangent
to the sphere. Thus the projection is conformal at the native
pole as can be seen by the circle around the native pole in Fig. 7.
It is also quite straightforward to formulate the projection equa-
tions with P offset in x as well as y.

It is interesting to note that this slant zenithal perspec-
tive (SZP) projection also handles the case that corresponds to
γ = 90◦ in AZP. AZP fails in this extreme since P falls in the
plane of projection – effectively a scale factor of zero is ap-
plied to AZP over the corresponding SZP case. One of the more



1088 M. R. Calabretta and E. W. Greisen: Representations of celestial coordinates in FITS

important aspects of SZP is the application of its limiting case
with µ = ∞ in aperture synthesis radio astronomy as discussed
in Sect. 5.1.5. One minor disadvantage is that the native merid-
ians are projected as curved conic sections rather than straight
lines.

If the Cartesian coordinates of P measured in units of the
spherical radius are (xp, yp, zp), then

x=
180◦

π

zp cos θ sin φ − xp(1 − sin θ)

zp − (1 − sin θ)
, (36)

y=−180◦

π

zp cos θ cosφ + yp(1 − sin θ)

zp − (1 − sin θ)
· (37)

To invert these equations, compute θ first via

θ= sin−1

−b ± √b2 − ac
a

 , (38)

where

a = X′2 + Y′2 + 1, (39)

b = X′(X − X′) + Y′(Y − Y′), (40)

c = (X − X′)2 + (Y − Y′)2 − 1, (41)

(X, Y) =
π

180◦
(x, y), (42)

(X′, Y′) = (X − xp, Y − yp)/zp. (43)

Choose θ closer to 90◦ if Eq. (38) has two valid solutions; then
φ is given by

φ = arg (−(Y − Y′(1 − sin θ)), X − X′(1 − sin θ)). (44)

The Cartesian coordinates of P are simply related to the param-
eters used in AZP. If µ is the distance of P from the center of
the sphere O, and the line through P and O intersects the sphere
at (φc, θc) on the planewards side (point r in Fig. 5, right), then
γ = 90◦ − θc and

xp = −µ cos θc sin φc, (45)

yp = µ cos θc cosφc, (46)

zp = µ sin θc + 1, (47)

where µ is positive if P lies on the opposite side of O from r
and negative otherwise. For a non-degenerate projection we re-
quire zp , 0 and this is the only constraint on the projection
parameters.

For |µ| > 1 the sphere is divided into two unequal segments
that are projected in superposition. The limb is defined by com-
puting the native latitude θx as a function of φ

θx =

{
ψ − ω
ψ + ω + 180

, (48)

where

ψ = arg (ρ, σ), (49)

ω = sin−1

 1√
ρ2 + σ2

 , (50)

(ρ, σ) = (zp − 1, xp sinφ − yp cosφ), (51)

= (µ sin θc, −µ cos θc cos(φ − φc). (52)
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Fig. 8. Gnomonic (TAN) projection; diverges at θ = 0.

Zero, one, or both of the values of θx given by Eq. (48) may
be valid, i.e. lie in the range [−90◦, 90◦] after normalization. A
second boundary constraint applies if |1− zp| ≤ 1 in which case
the projection diverges at native latitude:

θ∞ = sin−1(1 − zp). (53)

The FITS keywords PV i 1a, PV i 2a, and PV i 3a, attached to
latitude coordinate i, will be used to specify, respectively, µ in
spherical radii with default value 0, φc in degrees with default
value 0, and θc in degrees with default value 90◦.

5.1.3. TAN: Gnomonic

The zenithal perspective projection with µ = 0, the gnomonic
projection8, is widely used in optical astronomy and was given
its own code within the AIPS convention, namely TAN9. For
µ = 0, Eq. (16) reduces to

Rθ =
180◦

π
cot θ, (54)

with inverse

θ= tan−1

(
180◦

πRθ

)
· (55)

The gnomonic projection is illustrated in Fig. 8. Since the pro-
jection is from the center of the sphere, all great circles are
projected as straight lines. Thus, the shortest distance between
two points on the sphere is represented as a straight line inter-
val, which, however, is not uniformly divided. The gnomonic
projection diverges at θ = 0, but one may use a gnomonic pro-
jection onto the six faces of a cube to display the whole sky.
See Sect. 5.6.1 for details.

8 The gnomonic projection is the oldest known, dating to Thales of
Miletus (ca. 624–547 ..). The stereographic and orthographic date to
Hipparchus (ca. 190-after 126 ..).

9 Referring to the dependence of Rθ on the angular separation be-
tween the tangent point and field point, i.e. the native co-latitude.
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Fig. 9. Stereographic (STG) projection; diverges at θ = −90◦.

5.1.4. STG: Stereographic

The stereographic projection, the second important special case
of the zenithal perspective projection defined by the AIPS con-
vention, has µ = 1, for which Eq. (16) becomes

Rθ =
180◦

π

2 cos θ
1 + sin θ

, (56)

=
360◦

π
tan

(
90◦ − θ

2

)
,

with inverse

θ = 90◦ − 2 tan−1
(
πRθ

360◦
)
· (57)

The stereographic projection illustrated in Fig. 9 is the confor-
mal (orthomorphic) zenithal projection10, everywhere satisfy-
ing the isoscaling requirement

∂Rθ

∂θ
=
−πRθ

180◦ cos θ
· (58)

This allows its use as a replacement for retroazimuthal projec-
tions, as discussed in Sect. 5.

The stereographic projection also has the amazing property
that it maps all circles on the sphere to circles in the plane of
projection, although concentric circles on the sphere are not
necessarily concentric in the plane of projection. This prop-
erty made it the projection of choice for Arab astronomers in
constructing astrolabes. In more recent times it has been used
by the Astrogeology Center for maps of the Moon, Mars, and
Mercury containing craters, basins, and other circular features.

5.1.5. SIN: Slant orthographic

The zenithal perspective projection with µ = ∞, the ortho-
graphic projection, is illustrated in the upper portion of Fig. 10
(at consistent scale). It represents the visual appearance of a
sphere, e.g. a planet, when seen from a great distance.

10 First noted by astronomer Edmond Halley (1656–1742).
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Fig. 10. Slant orthographic (SIN) projection: (top) the orthographic
projection, (ξ, η) = (0, 0), north and south sides begin to overlap at θ =
0; (bottom left) (φc, θc) = (225◦, 60◦), i.e. (ξ, η) = (−1/

√
6, 1/

√
6);

(bottom right) projection appropriate for an east-west array observing
at δ0 = 60◦, (φc, θc) = (180◦, 60◦), (ξ, η) = (0, 1/

√
3).

The orthographic projection is widely used in aperture syn-
thesis radio astronomy and was given its own code within
the AIPS convention, namely SIN11. Use of this projection code
obviates the need to specify an infinite value as a parameter
of AZP. In this case, Eq. (16) becomes

Rθ =
180◦

π
cos θ, (59)

with inverse

θ = cos−1
(
π

180◦
Rθ

)
· (60)

In fact, use of the orthographic projection in radio interfer-
ometry is an approximation, applicable only for small field
sizes. However, an exact solution exists where the interferome-
ter baselines are co-planar. It reduces to what Greisen (1983)
called the NCP projection for the particular case of an East-
West interferometer (Brouw 1971). The projection equations
(derived in Appendix C) are

x=
180◦

π

[
cos θ sin φ + ξ (1 − sin θ)

]
, (61)

y=−180◦

π

[
cos θ cosφ − η (1 − sin θ)

]
. (62)

These are the equations of the “slant orthographic” projection,
equivalent to Eqs. (36) and (37) of the SZP projection in the
limit µ = ∞, with

ξ= cot θc sinφc, (63)

η=− cot θc cosφc. (64)

It can be shown that the slant orthographic projection is
equivalent to an orthographic projection centered at (x, y) =
180◦
π

(ξ, η) which has been stretched in the φc direction by a

11 Similar etymology to TAN.
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Fig. 11. Zenithal equidistant (ARC) projection; no limits.

factor of cosec θc. The projection equations may be inverted
using Eqs. (38) and (44) except that Eq. (43) is replaced with

(X′, Y′) = (ξ, η). (65)

The outer boundary of the SIN projection is given by Eq. (48)
in the limit µ = ∞:

θx = − tan−1 (ξ sin φ − η cosφ) . (66)

Two example graticules are illustrated in the lower portion of
Fig. 10. We here extend the original SIN projection of the
AIPS convention to encompass the slant orthographic projec-
tion, with the dimensionless ξ and η given by keywords PV i 1a
and PV i 2a, respectively, attached to latitude coordinate i, both
with default value 0.

5.1.6. ARC: Zenithal equidistant

Some non-perspective zenithal projections are also of interest
in astronomy. The zenithal equidistant projection first appeared
in Greisen (1983) as ARC. It is widely used as the approximate
projection of Schmidt telescopes. As illustrated in Fig. 11, the
native meridians are uniformly divided to give equispaced par-
allels. Thus

Rθ =90◦ − θ, (67)

which is trivially invertible. This projection was also known in
antiquity.

5.1.7. ZPN: Zenithal polynomial

The zenithal polynomial projection, ZPN, generalizes
the ARC projection by adding polynomial terms up to a
large degree in the zenith distance. We define it as

Rθ =
180◦

π

20∑
m=0

Pm

(
π

180◦
(90◦ − θ)

)m
· (68)

0

30

60

9
0

120

150

180

21
0

24
0

2
7
0

30
0

33
0

0

-30

-60

Fig. 12. Zenithal polynomial projection (ZPN) with parameters, 0.050,
0.975, −0.807, 0.337, −0.065, 0.010, 0.003, −0.001; limits depend
upon the parameters.

Note the dimensionless units of Pm imparted by π/180◦.
Allowance is made for a polynomial of degree up to 20 as a
conservative upper limit that should encompass all practical ap-
plications. For speed and numerical precision the polynomial
should be evaluated in Horner form, i.e.

(. . . (P20γ + P19)γ + . . .P2)γ + P1)γ + P0

where γ = (180◦/π)(90◦ − θ).
Since its inverse cannot be expressed analytically,

ZPN should only be used when the geometry of the observations
require it. In particular, it should never be used as an nth-degree
expansion of one of the standard zenithal projections.

If P0 is non-zero the native pole is mapped to an open circle
centered on the reference point as illustrated in Fig. 12. In other
words, (φ0, θ0) = (0, 90◦) is not at (x, y) = (0, 0), which in fact
lies outside the boundary of the projection. However, we do
not dismiss P0 , 0 as a possibility since it is not inconsistent
with the formalism presented in Sect. 2.2 and could conceiv-
ably be useful for images which do not contain the reference
point. Needless to say, care should be exercised in constructing
and interpreting such systems particularly in that (α0, δ0) (i.e.
the CRVAL ia) do not specify the celestial coordinates of the ref-
erence point (the CRPIX ja).

Pm (dimensionless) is given by the keywords PV i 0a,
PV i 1a, . . ., PV i 20a, attached to latitude coordinate i, all of
which have default values of zero.

5.1.8. ZEA: Zenithal equal-area

Lambert’s zenithal equal-area projection illustrated in Fig. 13
is constructed by defining Rθ so that the area enclosed by the
native parallel at latitude θ in the plane of projection is equal to
the area of the corresponding spherical cap. It may be generated
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Fig. 13. Zenithal equal area projection (ZEA); no limits.

using

Rθ =
180◦

π

√
2(1 − sin θ) (69)

=
360◦

π
sin

(
90◦ − θ

2

)
,

with inverse

θ = 90◦ − 2 sin−1
(
πRθ

360◦
)
· (70)

5.1.9. AIR: Airy projection

The Airy projection12 minimizes the error for the region within
latitude θb (Evenden 1991). It is defined by

Rθ = −2
180◦

π

(
ln(cos ξ)

tan ξ
+

ln(cos ξb)
tan2 ξb

tan ξ
)
, (71)

where

ξ=
90◦ − θ

2
,

ξb =
90◦ − θb

2
·

When θb approaches 90◦, the second term of Eq. (71) ap-
proaches its asymptotic value of − 1

2 . For all θb, the projection
is unbounded at the native south pole. Inversion of Eq. (71),
a transcendental equation in θ, must be done via iterative
methods.

The FITS keyword PV i 1a, attached to latitude coordi-
nate i, will be used to specify θb in degrees with a default of 90◦.
This projection is illustrated in Fig. 14.

5.2. Cylindrical projections

Cylindrical projections are so named because the surface of
projection is a cylinder. The native coordinate system is chosen
to have its polar axis coincident with the axis of the cylinder.
Meridians and parallels are mapped onto a rectangular gratic-
ule so that cylindrical projections are described by formulæ

12 Devised in 1861 by astronomer royal George Biddell Airy, 1801–
1892.
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Fig. 14. Airy projection (AIR) with θb = 45◦; diverges at θ = −90◦.

y

θ

λ µ

Fig. 15. Geometry of cylindrical projections.

which return x and y directly. Since all cylindrical projections
are constructed with the native coordinate system origin at the
reference point, we set

(φ0, θ0)cylindrical = (0, 0). (72)

Furthermore, all cylindrical projections have

x ∝ φ. (73)

Cylindrical projections are often chosen to map the regions ad-
jacent to a great circle, usually the equator, with minimal dis-
tortion.

5.2.1. CYP: Cylindrical perspective

Figure 15 illustrates the geometry for the construction of cylin-
drical perspective projections. The sphere is projected onto a
cylinder of radius λ spherical radii from points in the equato-
rial plane of the native system at a distance µ spherical radii
measured from the center of the sphere in the direction oppo-
site the projected surface. The cylinder intersects the sphere at
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Fig. 16. Gall’s stereographic projection, CYP with µ = 1, θx = 45◦; no
limits.

latitudes θx = cos−1 λ. It is straightforward to show that

x=λφ, (74)

y=
180◦

π

(
µ + λ

µ + cos θ

)
sin θ. (75)

This may be inverted as

φ=
x
λ
, (76)

θ= arg (1, η) + sin−1

 ηµ√
η2 + 1

 , (77)

where

η =
π

180◦
y

µ + λ
· (78)

Note that all values of µ are allowable except µ = −λ. For
FITS purposes, we define the keywords PV i 1a to convey µ
and PV i 2a for λ, both measured in spherical radii, both with
default value 1, and both attached to latitude coordinate i.

The case with µ = ∞ is covered by the class of cylindrical
equal area projections. No other special-cases need be defined
since cylindrical perspective projections have not previously
been used in FITS. Aliases for a number of special cases are
listed in Appendix A, Table A.1. Probably the most important
of these is Gall’s stereographic projection, which minimizes
distortions in the equatorial regions. It has µ = 1, λ =

√
2/2,

giving

x=φ/
√

2,

y=
180◦

π

1 +
√

2
2

 tan
(
θ

2

)
·

It is illustrated in Fig. 16.

5.2.2. CEA: Cylindrical equal area

The cylindrical equal area projection is the special case of the
cylindrical perspective projection with µ = ∞. It is conformal
at latitudes ±θc where λ = cos2 θc. The formulæ are

x=φ, (79)

y=
180◦

π

sin θ
λ

, (80)
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Fig. 17. Lambert’s equal area projection, CEA with λ = 1; no limits.
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Fig. 18. The plate carrée projection (CAR); no limits.

which reverse to

φ= x, (81)

θ= sin−1
(
π

180◦
λy

)
· (82)

Note that the scaling parameter λ is applied to the y-coordinate
rather than the x-coordinate as in CYP. The keyword PV i 1a
attached to latitude coordinate i is used to specify the dimen-
sionless λ with default value 1.

Lambert’s13 equal area projection, the case with λ = 1, is
illustrated in Fig. 17. It shows the extreme compression of the
parallels of latitude at the poles typical of all cylindrical equal
area projections.

5.2.3. CAR: Plate carrée

The equator and all meridians are correctly scaled in the plate
carrée projection14, whose main virtue is that of simplicity. Its
formulæ are

x=φ, (83)

y= θ. (84)

The projection is illustrated in Fig. 18.

5.2.4. MER: Mercator

Since the meridians and parallels of all cylindrical projections
intersect at right angles the requirement for conformality

13 The mathematician, astronomer and physicist Johann Heinrich
Lambert (1728–1777) was the first to make significant use of calculus
in constructing map projections. He formulated and gave his name to
a number of important projections as listed in Table A.1.

14 Although colloquially referred to as “Cartesian”,
Claudius Ptolemy (ca. 90-ca. 170 ..), influential cartographer
and author of the Ptolemaic model of the solar system, credits
Marinus of Tyre with its invention in about .. 100, thus predating
Descartes by some 1500 years.
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reduces to that of equiscaling at each point. This is expressed
by the differential equation

∂y

∂θ
=
−1

cos θ
∂x
∂φ
, (85)

the solution15 of which gives us Mercator’s projection:

x=φ, (86)

y=
180◦

π
ln tan

(
90◦ + θ

2

)
, (87)

with inverse

θ = 2 tan−1
(
eyπ/180◦

)
− 90◦. (88)

This projection, illustrated in Fig. 19, has been widely used
in navigation since it has the property that lines of constant
bearing (known as rhumb lines or loxodromes) are projected as
straight lines. This is a direct result of its conformality and the
fact that its meridians do not converge.

Refer to Sect. 6.1.4 for a discussion of the usage of MER in
AIPS.

5.3. Pseudocylindrical and related projections

Pseudocylindricals are like cylindrical projections except
that the parallels of latitude are projected at diminishing
lengths towards the polar regions in order to reduce lat-
eral distortion there. Consequently the meridians are curved.
Pseudocylindrical projections lend themselves to the con-
struction of interrupted projections in terrestrial cartography.
However, this technique is unlikely to be of use in celestial
mapping and is not considered here. Like ordinary cylindri-
cal projections, the pseudocylindricals are constructed with
the native coordinate system origin at the reference point.
Accordingly we set

(φ0, θ0)pseudocylindrical = (0, 0). (89)

The Hammer-Aitoff projection is a modified zenithal projec-
tion, not a pseudocylindrical, but is presented with this group
on account of its superficial resemblance to them.

5.3.1. SFL: Sanson-Flamsteed

Bonne’s projection (Sect. 5.5.1) reduces to the pseudocylindri-
cal Sanson-Flamsteed16 projection when θ1 = 0. Parallels are
equispaced and projected at their true length which makes it an
equal area projection. The formulæ are

x=φ cos θ, (90)

y= θ, (91)
15 Gerardus Mercator (1512–1594), a prominent Flemish map-

maker, effectively solved this equation by numerical integration.
Presented in 1569 it thus predates Newton’s theory of fluxions by
nearly a century.

16 Nicolas Sanson d’Abbeville (1600–1667) of France and John
Flamsteed (1646–1719), the first astronomer royal of England, pop-
ularized this projection, which was in existence at least as early as
1570.
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Fig. 19. Mercator’s projection (MER); diverges at θ = ±90◦.

which reverse into

φ=
x

cos y
, (92)

θ= y. (93)

This projection is illustrated in Fig. 20. Refer to Sect. 6.1.4 for
a discussion relating SFL to the GLS projection in AIPS.

5.3.2. PAR: Parabolic

The parabolic or Craster pseudocylindrical projection is illus-
trated in Fig. 21. The meridians are projected as parabolic arcs
which intersect the poles and correctly divide the equator, and
the parallels of latitude are spaced so as to make it an equal
area projection. The formulæ are

x=φ

(
2 cos

2θ
3
− 1

)
, (94)

y= 180◦ sin
θ

3
, (95)

with inverse

θ=3 sin−1
(
y

180◦
)
, (96)

φ=
180◦

π

x
1 − 4(y/180◦)2

· (97)

5.3.3. MOL: Mollweide’s

In Mollweide’s pseudocylindrical projection17, the meridians
are projected as ellipses that correctly divide the equator and
the parallels are spaced so as to make the projection equal area.
The formulæ are

x=
2
√

2
π

φ cosγ, (98)

y=
√

2
180◦

π
sin γ, (99)

17 Presented in 1805 by astronomer and mathematician Karl
Brandan Mollweide (1774–1825).
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Fig. 20. Sanson-Flamsteed projection (SFL); no limits.
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Fig. 21. Parabolic projection (PAR); no limits.
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Fig. 22. Mollweide’s projection (MOL); no limits.
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Fig. 23. Hammer-Aitoff projection (AIT); no limits.

where γ is defined as the solution of the transcendental equation

sin θ =
γ

90◦
+

sin 2γ
π
· (100)

The inverse equations may be written directly without refer-
ence to γ,

φ=πx/

(
2

√
2 − (

π

180◦
y)2

)
, (101)

θ= sin−1

(
1

90◦
sin−1

(
π

180◦
y√
2

)

+
y

180◦

√
2 − (

π

180◦
y)2

)
· (102)

Mollweide’s projection is illustrated in Fig. 22.

5.3.4. AIT: Hammer-Aitoff

The Hammer-Aitoff18 projection illustrated in Fig. 23 is devel-
oped from the equatorial case of the zenithal equal area projec-
tion by doubling the equatorial scale and longitude coverage.
The whole sphere is mapped thereby while preserving the equal
area property. Note, however, that the equator is not evenly di-
vided.

This projection reduces distortion in the polar regions com-
pared to pseudocylindricals by making the meridians and par-
allels more nearly orthogonal. Together with its equal area
property this makes it one of most commonly used all-sky pro-
jections.

The formulæ for the projection and its inverse are derived
in Greisen (1986) and Calabretta (1992) among others. They
are

x= 2γ cos θ sin
φ

2
, (103)

y= γ sin θ, (104)

where

γ =
180◦

π

√
2

1 + cos θ cos(φ/2)
· (105)

The reverse equations are

φ=2 arg
(
2Z2 − 1,

π

180◦
Z
2

x
)
, (106)

θ= sin−1
(
π

180◦
yZ

)
, (107)

where

Z=

√
1 −

(
π

180◦
x
4

)2
−

(
π

180◦
y

2

)2
, (108)

=

√
1
2

(
1 + cos θ cos

φ

2

)
· (109)

Note that 1
2 ≤ Z2 ≤ 1. Refer to Sect. 6.1.4 for a discussion of

the usage of AIT in AIPS.
18 David Aitoff (1854–1933) developed his projection from the

zenithal equidistant projection in 1889 and in 1892 Ernst Hammer
(1858–1925) applied his idea more usefully to the zenithal equal area
projection. See Jones (1993).
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Fig. 24. Construction of conic perspective projections (COP) and the resulting graticules; (left) two-standard projection with θ1 = 20◦, θ2 = 70◦;
(right) one-standard projection with θ1 = θ2 = 45◦. Both projections have θa = 45◦ and this accounts for their similarity. Both diverge at
θ = θa ± 90◦.

5.4. Conic projections

In conic projections the sphere is thought to be projected onto
the surface of a cone which is then opened out. The native co-
ordinate system is chosen so that the poles are coincident with
the axis of the cone. Native meridians are then projected as uni-
formly spaced rays that intersect at a point (either directly or by
extrapolation), and parallels are projected as equiangular arcs
of concentric circles.

Two-standard conic projections are characterized by two
latitudes, θ1 and θ2, whose parallels are projected at their true
length. In the conic perspective projection these are the lati-
tudes at which the cone intersects the sphere. One-standard
conic projections have θ1 = θ2 and the cone is tangent to the
sphere as shown in Fig. 24. Since conics are designed to mini-
mize distortion in the regions between the two standard paral-
lels they are constructed so that the point on the prime meridian
mid-way between the two standard parallels maps to the refer-
ence point so we set

(φ0, θ0)conic = (0, θa), (110)

where

θa = (θ1 + θ2)/2. (111)

Being concentric, the parallels may be described by Rθ, the ra-
dius for latitude θ, and Aφ, the angle for longitude φ. An offset
in y is also required to force (x, y) = (0, 0) at (φ, θ) = (0, θa).
All one- and two-standard conics have

Aφ =Cφ, (112)

where C, a constant known as the constant of the cone, is such
that the apical angle of the projected cone is 360◦C. Since the
standard parallels are projected as concentric arcs at their true
length we have

C =
180◦ cos θ1

πRθ1

=
180◦ cos θ2

πRθ2

· (113)

Cartesian coordinates in the plane of projection are

x= Rθ sin(Cφ), (114)

y=−Rθ cos(Cφ) + Y0, (115)

and these may be inverted as

Rθ = sign θa

√
x2 + (Y0 − y)2, (116)

φ = arg
(
Y0 − y

Rθ
,

x
Rθ

)
/C. (117)

To complete the inversion the equation for θ as a function of Rθ

is given for each projection. The equations given here correctly
invert southern conics, i.e. those with θa < 0. An example is
shown in Fig. 25.

The conics will be parameterized in FITS by θa (given by
Eq. (111)) and η where

η = |θ1 − θ2|/2. (118)

The keywords PV i 1a and PV i 2a attached to latitude coordi-
nate i will be used to specify θa and η respectively, both mea-
sured in degrees. PV i 1a has no default while PV i 2a defaults
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Fig. 25. Conic equal area projection (COE) with θ1 = −20◦, and θ2 =

−70◦, also illustrating the inversion of southern hemisphere conics; no
limits.

to 0. It is recommended that both keywords always be given.
Where θ1 and θ2 are required in the equations below they may
be computed via

θ1 = θa − η, (119)

θ2 = θa + η. (120)

This sets θ2 to the larger of the two. The order, however, is
unimportant.

As noted in Sect. 5, the zenithal projections are special
cases of the conics with θ1 = θ2 = 90◦. Likewise, the cylin-
drical projections are conics with θ1 = −θ2. However, we
strongly advise against using conics in these cases for the rea-
sons given previously. Nevertheless, the only formal require-
ment on θ1 and θ2 in the equations presented below is that
−90◦ ≤ θ1, θ2 ≤ 90◦.

5.4.1. COP: Conic perspective

Development of Colles’ conic perspective projection is shown
in Fig. 24. The projection formulæ are

C = sin θa, (121)

Rθ =
180◦

π
cos η [cot θa − tan(θ − θa)] , (122)

Y0 =
180◦

π
cos η cot θa. (123)

The inverse may be computed with

θ = θa + tan−1

(
cot θa − π

180◦
Rθ

cos η

)
· (124)

5.4.2. COE: Conic equal area

The standard parallels in Alber’s conic equal area projection are
projected as concentric arcs at their true length and separated
so that the area between them is the same as the corresponding
area on the sphere. The other parallels are then drawn as con-
centric arcs spaced so as to preserve the area. The projection
formulæ are

C =γ/2, (125)
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Fig. 26. Conic equidistant projection (COD) with θ1 = 20◦ and θ2 =

70◦; no limits.

Rθ =
180◦

π

2
γ

√
1 + sin θ1 sin θ2 − γ sin θ, (126)

Y0 =
180◦

π

2
γ

√
1 + sin θ1 sin θ2 − γ sin((θ1 + θ2)/2), (127)

where

γ = sin θ1 + sin θ2. (128)

The inverse may be computed with

θ= sin−1

(
1
γ
+

sin θ1 sin θ2

γ
− γ

(
πRθ

360◦
)2)
· (129)

This projection is illustrated in Fig. 25.

5.4.3. COD: Conic equidistant

In the conic equidistant projection the standard parallels are
projected at their true length and at their true separation. The
other parallels are then drawn as concentric arcs spaced at their
true distance from the standard parallels. The projection for-
mulæ are

C=
180◦

π

sin θa sin η
η

, (130)

Rθ = θa − θ + η cot η cot θa, (131)

Y0 = η cot η cot θa. (132)

The inverse may be computed with

θ = θa + η cot η cot θa − Rθ. (133)

For θ1 = θ2 these expressions reduce to

C = sin θa, (134)

Rθ = θa − θ + 180◦

π
cot θa, (135)

Y0 =
180◦

π
cot θa, (136)

and inverse

θ = θa +
180◦

π
cot θa − Rθ . (137)

This projection is illustrated in Fig. 26.
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Fig. 27. Conic orthomorphic projection (COO) with θ1 = 20◦ and θ2 =

70◦; diverges at θ = −90◦.

5.4.4. COO: Conic orthomorphic

The requirement for conformality of conic projections is

∂Rθ

∂θ
=
−πRθ

180◦ cos θ
C. (138)

Solution of this differential equation gives rise to the formulæ
for Lambert’s conic orthomorphic projection:

C =
ln

(
cos θ2
cos θ1

)

ln


tan

(
90
◦−θ2
2

)

tan
(

90
◦−θ1
2

)

, (139)

Rθ =ψ

[
tan

(
90◦ − θ

2

)]C

, (140)

Y0 =ψ

[
tan

(
90◦ − θa

2

)]C

, (141)

where

ψ=
180◦

π

cos θ1

C
[
tan

(
90◦−θ1

2

)]C , (142)

=
180◦

π

cos θ2

C
[
tan

(
90◦−θ2

2

)]C · (143)

The inverse may be computed with

θ = 90◦ − 2 tan−1


[
Rθ

ψ

] 1
C

 · (144)

When θ1 = θ2 the expression for C may be replaced with C =
sin θ1. This projection is illustrated in Fig. 27.

5.5. Polyconic and pseudoconic projections

Polyconics are generalizations of the standard conic projec-
tions; the parallels of latitude are projected as circular arcs
which may or may not be concentric, and meridians are curved
rather than straight as in the standard conics. Pseudoconics are

a sub-class with concentric parallels. The two polyconics pre-
sented here have parallels projected at their true length and use
the fact that for a cone tangent to the sphere at latitude θ1, as
shown in Fig. 24, we have Rθ1 =

180◦
π cot θ1. Since both are

constructed with the native coordinate system origin at the ref-
erence point we set

(φ0, θ0)polyconic = (0, 0). (145)

5.5.1. BON: Bonne’s equal area

In Bonne’s pseudoconic projection19 all parallels are projected
as concentric equidistant arcs of circles of true length and true
spacing. This is sufficient to guarantee that it is an equal area
projection. It is parameterized by the latitude θ1 for which
Rθ1 =

180◦
π cot θ1. The projection is conformal at this latitude

and along the central meridian. The equations for Bonne’s pro-
jection become divergent for θ1 = 0 and this special case is
handled as the Sanson-Flamsteed projection. The projection
formulæ are

x= Rθ sin Aφ, (146)

y=−Rθ cos Aφ + Y0, (147)

where

Aφ =
180◦

πRθ
φ cos θ, (148)

Rθ =Y0 − θ, (149)

Y0 =
180◦

π
cot θ1 + θ1. (150)

The inverse formulæ are then

θ=Y0 − Rθ, (151)

φ=
π

180◦
AφRθ / cos θ, (152)

where

Rθ = sign θ1

√
x2 + (Y0 − y)2, (153)

Aφ = arg
(
Y0 − y

Rθ
,

x
Rθ

)
· (154)

This projection is illustrated in Fig. 28. The keyword PV i 1a at-
tached to latitude coordinate i will be used to give θ1 in degrees
with no default value.

5.5.2. PCO: Polyconic

Each parallel in Hassler’s polyconic projection is projected
as an arc of a circle of radius 180◦

π
cot θ at its true length,

360◦ cos θ, and correctly divided. The scale along the central

19 The ancestry of this important projection may be traced back to
Ptolemy. Attribution for its invention is uncertain but it was certainly
used before the birth of Rigobert Bonne (1727–1795) who did much
to popularize it.
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Fig. 28. Bonne’s projection (BON) with θ1 = 45◦; no limits.

meridian is true and consequently the parallels are not concen-
tric. The projection formulæ are

x=
180◦

π
cot θ sin(φ sin θ), (155)

y= θ +
180◦

π
cot θ

[
1 − cos(φ sin θ)

]
. (156)

Inversion requires iterative solution for θ of the equation

x2 − 360◦

π
(y − θ) cot θ + (y − θ)2 = 0. (157)

Once θ is known φ is given by

φ =
1

sin θ
arg

(
180◦

π
− (y − θ) tan θ, x tan θ

)
. (158)

The polyconic projection is illustrated in Fig. 29.

5.6. Quad-cube projections

Quadrilateralized spherical cube (quad-cube) projections be-
long to the class of polyhedral projections20 in which the sphere
is projected onto the surface of an enclosing polyhedron, typi-
cally one of the five Platonic polyhedra: the tetrahedron, hexa-
hedron (cube), octahedron, dodecahedron, and icosahedron.

The starting point for polyhedral projections is the
gnomonic projection of the sphere onto the faces of an enclos-
ing polyhedron. This may then be modified to make the pro-
jection equal area or impart other special properties. However,
minimal distortion claims often made for polyhedral projec-
tions should be balanced against the many interruptions of the
flattened polyhedron; the breaks should be counted as extreme
distortions. Their importance in astronomy is not so much in
visual representation but in solving the problem of distribut-
ing N points as uniformly as possible over the sphere. This may
be of particular importance in optimizing computationally in-
tensive applications. The general problem may be tackled by

20 Polyhedral projections date from renaissance times when the artist
and mathematician Albrecht Dürer (1471–1528) described, although
did not implement, the tetrahedral, dodecahedral, and icosahedral
cases. Snyder (1993) traces subsequent development into the twentieth
century, including one by R. Buckminster Fuller onto the non-Platonic
“cuboctahedron” with constant scale along each edge.
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Fig. 29. Polyconic projection (PCO); no limits.

pixelizations such as HEALPix (Hierarchical Equal Area iso-
Latitude PIXelization, Górski & Hivon 1999), which define a
distribution of points on the sphere but do not relate these to
points in a plane of projection and are therefore outside the
scope of this paper.

The quad-cubes have been used extensively in
the COBE project and are described by Chan & O’Neill
(1975) and O’Neill & Laubscher (1976). The icosahedral case
has also been studied by Tegmark (1996). It is close to optimal,
providing a 10% improvement over the cubic case. However,
we have not included it here since it relies on image pixels
being organized in an hexagonal close-packed arrangement
rather than the simple rectangular arrangement supported by
FITS.

The six faces of quad-cube projections are numbered and
laid out as

0
4 3 2 1 4 3 2

5

where faces 2, 3 and 4 may appear on one side or the other
(or both). The layout used depends only on the FITS writer’s
choice of φc in Table 4. It is also permissible to split faces be-
tween sides, for example to put half of face 3 to the left and
half to the right to create a symmetric layout. FITS readers
should have no difficulty determining the layout since the ori-
gin of (x, y) coordinates is at the center of face 1 and each face
is 90◦ on a side. The range of x therefore determines the lay-
out. Other arrangements are possible and Snyder (1993) illus-
trates the “saw-tooth” layout of Reichard’s 1803 map of the
Earth. While these could conceivably have benefit in celestial
mapping we judged the additional complication of representing
them in FITS to be unwarranted. The layout used in the COBE
project itself has faces 2, 3, and 4 to the left.

The native coordinate system has its pole at the center of
face 0 and origin at the center of face 1 (see Fig. 30) which is
the reference point whence

(φ0, θ0)quad−cube = (0, 0). (159)
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Table 4. Assignment of parametric variables and central longitude and
latitude by face number for quadrilateralized spherical cube projec-
tions.

Face ξ η ζ φc θc

0 m −l n 0◦ 90◦

1 m n l 0◦ 0◦

2 −l n m − 270◦ or 90◦ 0◦

3 −m n −l −180◦ or 180◦ 0◦

4 l n −m −90◦ or 270◦ 0◦

5 m l −n 0◦ −90◦

The face number may be determined from the native longitude
and latitude by computing the direction cosines:

l= cos θ cosφ,

m= cos θ sin φ, (160)

n= sin θ.

The face number is that which maximizes the value of ζ in
Table 4. That is, if ζ is the largest of n, l, m, −l, −m, and −n,
then the face number is 0 through 5, respectively. Each face
may then be given a Cartesian coordinate system, (ξ, η), with
origin in the center of each face as per Table 4. The formulæ
for quad-cubes are often couched in terms of the variables

χ= ξ/ζ, (161)

ψ=η/ζ. (162)

Being composed of six square faces the quad-cubes admit the
possibility of efficient data storage in FITS. By stacking them
on the third axis of a three-dimensional data structure the stor-
age required for an all-sky map may be halved. This axis will
be denoted by a CTYPE ia value of CUBEFACE. In this case the
value of (x, y) computed via Eq. (1) for the center of each face
must be (0, 0) and the FITS interpreter must increment this by
(φc, θc) using its choice of layout. Since the CUBEFACE axis
type is purely a storage mechanism the linear transformation
of Eq. (1) must preserve the CUBEFACE axis pixel coordinates.

5.6.1. TSC: Tangential spherical cube

While perspective quad-cube projections could be developed
by projecting a sphere onto an enclosing cube from any point
of projection, inside or outside the sphere, it is clear that only
by projecting from the center of the sphere will every face be
treated equally. Thus the tangential spherical cube projection
(TSC) consists of six faces each of which is a gnomonic pro-
jection of a portion of the sphere. As discussed in Sect. 5.1.1,
gnomonic projections map great circles as straight lines but un-
fortunately diverge very rapidly away from the poles and can
only represent a portion of the sphere without extreme distor-
tion. The TSC projection partly alleviates this by projecting
great circles as piecewise straight lines. To compute the for-
ward projection first determine χ and ψ as described above,
then

x=φc + 45◦χ, (163)

y= θc + 45◦ψ. (164)
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Fig. 30. Tangential spherical cube projection (TSC); no limits.

To invert these first determine to which face the (x, y) coordi-
nates refer, then compute

χ= (x − φc)/45◦, (165)

ψ= (y − θc)/45◦, (166)

then

ζ =1/
√

1 + χ2 + ψ2. (167)

Once ζ is known ξ and η are obtained via

ξ=χζ, (168)

η=ψζ. (169)

The direction cosines (l,m, n) may be identified with (ξ, η, ζ)
with with the aid of Table 4, whence (φ, θ) may readily be com-
puted. The projection is illustrated in Fig. 30 for the full sphere.

5.6.2. CSC: COBE quadrilateralized spherical cube

The COBE quadrilateralized spherical cube projection illus-
trated in Fig. 31 modifies the tangential spherical cube projec-
tion in such a way as to make it approximately equal area. The
forward equations are

x=φc + 45◦ F(χ, ψ), (170)

y= θc + 45◦ F(ψ, χ), (171)

where the function F is given by

F(χ, ψ)=χγ∗ + χ3(1 − γ∗)
+χψ2(1 − χ2)

Γ + (M − Γ)χ2

+ (1 − ψ2)
∞∑

i=0

∞∑
j=0

Ci jχ
2iψ2 j


+χ3(1 − χ2)

Ω1 − (1 − χ2)
∞∑

i=0

Diχ
2i

 . (172)

Ci j and Di are derived from c∗i j and d∗i as given by Chan &
O’Neill (1975). The other parameters are given by exact for-
mulæ developed by O’Neill & Laubscher (1976), who provide
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Fig. 31. COBE quadrilateralized spherical cube projection (CSC); no
limits.

the numeric values of their parameters in tables and software
listings. Both disagree with their formulæ, but the software list-
ings do contain the actual numeric parameters still in use for the
COBE Project (Immanuel Freedman, private communication,
1993). They are

γ∗ = 1.37484847732
M = 0.004869491981
Γ =−0.13161671474
Ω1 =−0.159596235474
C00 = 0.141189631152
C10 = 0.0809701286525
C01 =−0.281528535557
C20 =−0.178251207466
C11 = 0.15384112876
C02 = 0.106959469314
D0 = 0.0759196200467
D1 =−0.0217762490699

Chan & O’Neill (1975) actually defined the projection via the
inverse equations. Their formulation may be rewritten in a
more convenient form which is now the current usage in the
COBE Project (Immanuel Freedman, private communication,
1993):

χ= f (x − φc, y − θc), (173)

ψ= f (y − θc, x − φc), (174)

where

f (x − φc, y − θc) = X + X
(
1 − X2

) N∑
j=0

N− j∑
i=0

Pi jX2iY2 j, (175)

and

X = (x − φc)/45◦,
Y = (y − θc)/45◦.

For COBE, N = 6 and the best-fit parameters have been taken
to be

P00 =−0.27292696 P04 = 0.93412077
P10 =−0.07629969 P50 = 0.25795794
P01 =−0.02819452 P41 = 1.71547508
P20 =−0.22797056 P32 = 0.98938102
P11 =−0.01471565 P23 =−0.93678576
P02 = 0.27058160 P14 =−1.41601920
P30 = 0.54852384 P05 =−0.63915306
P21 = 0.48051509 P60 = 0.02584375
P12 =−0.56800938 P51 =−0.53022337
P03 =−0.60441560 P42 =−0.83180469
P40 =−0.62930065 P33 = 0.08693841
P31 =−1.74114454 P24 = 0.33887446
P22 = 0.30803317 P15 = 0.52032238
P13 = 1.50880086 P06 = 0.14381585.

Given the face number, χ, and ψ, the native coordinates (φ, θ)
may be computed as for the tangential spherical cube projec-
tion.

Equations (172) and (175), the forward and reverse projec-
tion equations used by COBE, are not exact inverses. Each set
could of course be inverted to any required degree of precision
via iterative methods (in that case Eq. (175) should be taken to
define the projection). However, the aim here is to describe the
projection in use within the COBE project. One may evaluate
the closure error in transforming (x − φc, y − θc) to (χ, ψ) with
Eq. (175) and then transforming back to (x − φc, y − θc) with
Eq. (172), i.e.

E2
i j =

(
F( f (xi, y j), f (y j, xi)) − xi

)2

+
(
F( f (y j, xi), f (xi, y j)) − y j

)2
.

The COBE parameterization produces an average error of 4.7
arcsec over the full field. The root mean square and peak errors
are 6.6 and 24 arcsec, respectively. In the central parts of the
image (|X|, |Y | ≤ 0.8), the average and root mean square errors
are 5.9 and 8.0 arcsec, larger than for the full field.

Measures of equal-area conformance obtained for Eq. (175)
show that the rms deviation is 1.06% over the full face and
0.6% over the inner 64% of the area of each face. The maxi-
mum deviation is +13.7% and −4.1% at the edges of the face
and only ±1.3% within the inner 64% of the face.

5.6.3. QSC: Quadrilateralized spherical cube

O’Neill & Laubscher (1976) derived an exact expression for
an equal-area transformation from a sphere to the six faces
of a cube. At that time, their formulation was thought to be
computationally intractable, but today, with modern computers
and telescopes of higher angular resolution than COBE, their
formulation has come into use. Fred Patt (1993, private com-
munication) has provided us with the inverse of the O’Neill
& Laubscher formula and their expression in Cartesian coordi-
nates.

O’Neill & Laubscher’s derivation applies only in the quad-
rant −45◦ ≤ φ ≤ 45◦ and must be reflected into the other
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Fig. 32. Quadrilateralized spherical cube projection (QSC); no limits.

quadrants. This has the effect of making the projection non-
differentiable along the diagonals as is evident in Fig. 32. To
compute the forward projection first identify the face and find
(ξ, η, ζ) and (φc, θc) from Table 4. Then

(x, y) = (φc, θc) +
{

(u, v) if |ξ| > |η|
(v, u) otherwise

, (176)

where

u=45◦S

√
1 − ζ

1 − 1/
√

2 + ω2
, (177)

v=
u

15◦

tan−1 (ω) − sin−1

 ω√
2(1 + ω2)


 , (178)

ω=

{
η/ξ if |ξ| > |η|
ξ/η otherwise

,

S =

{
+1 if ξ > |η| or η > |ξ|
−1 otherwise

.

To compute the inverse first identify the face from the (x, y)
coordinates, then determine (u, v) via

(u, v) =
{

(x − φc, y − θc) if |x − φc| > |y − θc |
(y − θc, x − φc) otherwise

. (179)

Then

ζ = 1 −
( u
45◦

)2
(
1 − 1√

2 + ω2

)
, (180)

where

ω =
sin(15◦v/u)

cos(15◦v/u) − 1/
√

2
· (181)

If |x − φc| > |y − θc | then

ξ=

√
1 − ζ2

1 + ω2
, (182)

η= ξω, (183)

otherwise

η=

√
1 − ζ2

1 + ω2
, (184)

ξ=ηω. (185)

Given the face number and (ξ, η, ζ), the native coordinates (φ, θ)
may be computed with reference to Table 4 as for the tangential
spherical cube projection.

6. Support for the AIPS convention

A large number of FITS images have been written using the
AIPS coordinate convention and a substantial body of software
exists to interpret it. Consequently, the AIPS convention has
acquired the status of a de facto standard and FITS interpreters
will need to support it indefinitely in order to obey the maxim
“once FITS always FITS”. Translations between the old and
new system are therefore required.

6.1. Interpreting old headers

In the AIPS convention, CROTA i assigned to the latitude axis
was used to define a bulk rotation of the image plane. Since this
rotation was applied after CDELT i the translation to the current
formalism follows from(
CDELT1 0

0 CDELT2

) (
PC1 1PC1 2

PC2 1PC2 2

)
= (186)(

cos ρ− sin ρ
sin ρ cos ρ

) (
CDELT1 0

0 CDELT2

)
,

where we have used subscript 1 for the longitude axis, 2 for
latitude, and written ρ for the value of CROTA2. Equation (186),
which includes the added constraint of preserving CDELT i in
the translation, is readily solved for the elements of the PC i ja
matrix(
PC1 1PC1 2

PC2 1PC2 2

)
=

(
cos ρ−λ sin ρ

1
λ

sin ρ cos ρ

)
, (187)

where

λ = CDELT2/CDELT1. (188)

Note that Eq. (187) defines a rotation if and only if λ = ±1,
which is often the case. In fact, the operations of scaling and
rotation are commutative if and only if the scaling is isotropic,
i.e. λ = +1; for λ = −1 the direction of the rotation is re-
versed. However, whatever the value of λ, the interpretation of
Eq. (186) as that of a scale followed by a rotation is preserved.

The translation for CD i ja is simpler, effectively because
the CDELT i have an implied value of unity and the constraint
on preserving them in the translation is dropped:(
CD1 1CD1 2

CD2 1CD2 2

)
=

(
CDELT1 cos ρ−CDELT2 sin ρ
CDELT1 sin ρ CDELT2 cosρ

)
. (189)

The expressions in Hanisch & Wells (1988) and Geldzahler &
Schlesinger (1997) yield the same results as Eq. (189) for the
usual left-handed sky coordinates and right-handed pixel coor-
dinates, but can lead to an incorrect interpretation (namely, pos-
sible sign errors for the off-diagonal elements) for other config-
urations of the coordinate systems. The Hanisch & Wells draft
and the coordinate portions of Geldzahler & Schlesinger are
superseded by this paper.
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6.1.1. SIN

The SIN projection defined by Greisen (1983) is here general-
ized by the addition of projection parameters. However, these
parameters assume default values which reduce to the simple
orthographic projection of the AIPS convention. Therefore no
translation is required.

6.1.2. NCP

The “north-celestial-pole” projection defined by Greisen
(1983) is a special case of the new generalized SIN projection.
The old header cards

CTYPE1= ’RA---NCP’,

CTYPE2= ’DEC--NCP’,

should be translated to the current formalism as

CTYPE1= ’RA---SIN’,

CTYPE2= ’DEC--SIN’,

PV2 1= 0,

PV2 2= cot δ0.

6.1.3. TAN, ARC and STG

The TAN, ARC and STG projections defined by Greisen (1983,
1986) are directly equivalent to those defined here and no trans-
lation is required.

6.1.4. AIT, GLS and MER

Special care is required in interpreting the AIT (Hammer-
Aitoff), GLS (Sanson-Flamsteed), and MER (Mercator) projec-
tions in the AIPS convention as defined by Greisen (1986). As
explained in Sect. 7.1, the AIPS convention cannot represent
oblique celestial coordinate graticules such as the one shown
in Fig. 2. CRVAL i for these projections in AIPS does not corre-
spond to the celestial coordinates (α0, δ0) of the reference point,
as understood in this formalism, unless they are both zero in
which case no translation is required.

A translation into the new formalism exists for non-zero
CRVAL i but only if CROTA i is zero. It consists of setting CRVAL i
to zero and adjusting CRPIX j and CDELT i accordingly in the
AIPS header whereupon the above situation is obtained. The
corrections to CRPIX j are obtained by computing the pixel co-
ordinates of (α, δ) = (0, 0) within the AIPS convention. For AIT
and MER (but not GLS), CDELT i must also be corrected for the
scaling factors fα and fδ incorporated into the AIPS projection
equations.

Of the three projections only GLS is known to have been
used with non-zero CRVAL i. Consequently we have renamed it
as SFL as a warning that translation is required.

6.2. Supporting old interpreters

As mentioned in Sect. 6, FITS interpreters will need to recog-
nize the AIPS convention virtually forever. It stands to reason,

therefore, that if modern FITS-writers wish to assist older FITS
interpreters they may continue to write older style headers, as-
suming of course that it is possible to express the coordinate
system in the AIPS convention.

Modern FITS-writers must not attempt to help older inter-
preters by including CROTA i together with the new keyword
values (assuming the combination of CDELT i and PC i ja ma-
trix, or CD i ja matrix, is amenable to such translation). We
make this requirement primarily to minimize confusion.

Assuming that a header has been developed using the
present formalism the following test may be applied to deter-
mine whether the combination of CDELT ia and PC i ja matrix
represents a scale followed by a rotation as in Eq. (186). Firstly
write(
CD1 1CD1 2

CD2 1CD2 2

)
=

(
CDELT1 0

0 CDELT2

) (
PC1 1PC1 2

PC2 1PC2 2

)
, (190)

where 1 is the longitude coordinate and 2 the latitude coordi-
nate, then evaluate ρa and ρb as

ρa =


arg ( CD1 1, CD2 1) if CD2 1 > 0
0 if CD2 1 = 0
arg (−CD1 1,−CD2 1) if CD2 1 < 0

,

ρb =


arg (−CD2 2, CD1 2) if CD1 2 > 0
0 if CD1 2 = 0
arg ( CD2 2,−CD1 2) if CD1 2 < 0

. (191)

If ρa = ρb to within reasonable precision (Geldzahler &
Schlesinger 1997), then compute

ρ = (ρa + ρb)/2 (192)

as the best estimate of the rotation angle, the older
keywords are

CDELT1=CD1 1/ cos ρ,

CDELT2=CD2 2/ cos ρ, (193)

CROTA2=ρ.

Note that the translated values of CDELT i in Eqs. (193) may
differ from the starting values in Eq. (190).

Solutions for CROTA2 come in pairs separated by 180◦. The
above formulæ give the solution which falls in the half-open
interval [0, 180◦). The other solution is obtained by subtracting
180◦ from CROTA2 and negating CDELT1 and CDELT2. While
each solution is equally valid, if one makes CDELT1 < 0 and
CDELT2 > 0 then it would normally be the one chosen.

Of course, the projection must be one of those supported
by the AIPS convention, which only recognizes SIN, NCP, TAN,
ARC, STG, AIT, GLS and MER. Of these, we strongly recommend
that the AIPS version of AIT, GLS, and MER not be written be-
cause of the problems described in Sect. 6.1.4. It is interesting
to note that a translation does exist for the slant orthographic
(SIN) projection defined in Sect. 5.1.5 to the simple ortho-
graphic projection of AIPS. However, we advise against such
translation because of the likelihood of creating confusion and
so we do not define it here. The exception is where the SIN
projection may be translated as NCP as defined in Sect. 6.1.2.
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7. Discussion

7.1. Oblique projections

The term oblique projection is often used when a projection’s
native coordinate system does not coincide with the coordi-
nate system of interest. Texts on terrestrial cartography often
separately name and derive projection equations for particu-
lar oblique projections. Thus the Cassini, Transverse Mercator,
and Bartholomew nordic projections are nothing more than the
plate carrée, Mercator, and Mollweide projections in disguise.

The view of obliqueness as being a property of a projection
arose mainly because of the computational difficulty of produc-
ing oblique graticules in the days before electronic computers.
The particular aspects chosen were those for which geomet-
rical construction was possible or for which the mathematical
formulation had a simple form, and this tended to entrench par-
ticular oblique projections as separate entities. In addition, ter-
restrial longitude and latitude are so closely tied to the visual
representation of the Earth’s surface that it is shown predomi-
nantly in the usual north-south orientation. The only other natu-
ral terrestrial coordinate system is that defined by the magnetic
pole but the difference between it and the geographic graticule
is sufficiently small that it is usually treated as a local correc-
tion to the magnetic bearing. The special view of obliqueness
was probably also reinforced by traditional methods of map
making using sextant and chronometer, which were based on
geographic longitude and latitude.

The situation in astronomical cartography is quite differ-
ent. The celestial sphere has a variety of natural coordinate
systems – equatorial, ecliptic, galactic, etc. – and oblique and
non-oblique graticules are often plotted together on the same
map. It wouldn’t make sense to describe such a projection as
being simultaneously oblique and non-oblique; clearly it is the
particular coordinate graticule which may be oblique, not the
projection. Visually, an area of the sky may be seen in differ-
ent orientations depending on whether it’s rising, transiting, or
setting, or whether seen from the northern or southern hemi-
sphere. Moreover, oblique graticules arise as a normal feature
of observations in optical, infrared, radio, and other branches
of astronomy, just as they do now in terrestrial mapping based
on aerial and satellite photography. The center of the field of
view, wherever it may happen to be, typically corresponds to
the native pole of a zenithal projection. Thus the aim of this
paper has been to provide a formalism whereby obliquity may
be handled in a general way.

Figures 33 and 34 illustrate the same four oblique celes-
tial graticules for the zenithal equal area, conic equidistant,
Hammer-Aitoff, and COBE quadrilateralized spherical cube
projections (at variable (x, y) scale). For the sake of intercom-
parison, these graticules are defined in terms of the celestial
coordinates of the native pole, (αp, δp), together with φp by set-
ting (φ0, θ0) = (0, 90◦) as described in Sect. 2.5.

The first graticule, A, when compared to the non-oblique
native coordinate graticules presented earlier for each pro-
jection, illustrates the effect of changing δp (and hence δ0).
Comparison of graticules A and B shows that changing
αp (and hence α0) results in a simple change in origin of

longitude. Graticules A, C, and D show the more interesting
effect of varying φp (conveyed by LONPOLEa). For the zenithal
projections the result is indistinguishable from a bulk rotation
of the image plane, but this is not the case for any other class of
projection. This explains why the role of LONPOLEa was cov-
ered by CROTA i in the AIPS convention for the zenithal projec-
tions introduced by Greisen (1983), but why this does not work
for any other class of projection.

7.2. Choice of projection

The projected meridians and parallels in Figs. 33 and 34 also
serve to illustrate the distortions introduced by the various pro-
jections. In particular, the quad-cube projection, while doing a
good job within each face, is very distorted over the sphere as
a whole, especially where the faces join, so much so that it is
difficult even to trace the path of some of the meridians and
parallels. However, as indicated previously, this projection is
designed for efficient numerical computation rather than visual
representation of the sphere.

This leads us to the question of the choice of projection
for a particular application. In some cases the projection is the
natural result of the geometry of the observation and there is
no choice. For example, maps produced by rotational synthe-
sis radio telescopes are orthographic (SIN) projections with na-
tive pole at the phase center of the observation. Photographic
plates produced by Schmidt telescopes are best described by
the zenithal equidistant (ARC) projection, while the field of view
of other optical telescopes is closer to a gnomonic (TAN) pro-
jection. On the other hand, the great circle scanning technique
of the Sloan Digital Sky Survey produces a cylindrical pro-
jection. Similarly a map of the surface of the Moon as it ap-
pears from Earth requires a zenithal perspective (AZP) projec-
tion with µ ≈ −220. The same is true for spacecraft generated
images of distant moons and planets. All-sky cameras should
be well served by a ZPN projection with empirically determined
parameters.

Sometimes observational data will be regridded onto a pro-
jection chosen for a particular purpose. Equal area projections
are often used since they preserve surface density and allow
integration, whether numerical or visual, to be performed with
reasonable accuracy by summing pixel values. The Hammer-
Aitoff (AIT) projection is probably the most widely used for
all-sky maps. However, the Sanson-Flamsteed (SFL) may be
preferred as being easier to take measurements from. The hum-
ble plate carrée (CAR) excels in this regard and may be consid-
ered adequate, say, for mapping a few degrees on either side
of the galactic plane. In general terms, zenithal projections are
good for mapping the region in the vicinity of a point, often a
pole; cylindrical projections are good for the neighborhood of a
great circle, usually an equator; and the conics are suitable for
small circles such as parallels of latitude. A conic projection
might be a good choice for mapping a hemisphere; distortion
at most points is reduced compared to a zenithal projection al-
though at the expense of the break between native longitudes
±180◦. However, in some cases this break might be considered
an extreme distortion which outweighs other reductions in
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Fig. 33. Oblique (α, δ) graticules plotted for the zenithal equal area (ZEA) and conic equidistant (COD) projections with parameters (A) αp = 0,
δp = 30◦, φp = 180◦; (B) αp = 45◦, δp = 30◦, φp = 180◦; (C) αp = 0, δp = 30◦, φp = 150◦; (D) αp = 0, δp = 30◦, φp = 75◦.
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Fig. 34. Oblique (α, δ) graticules plotted for the Hammer-Aitoff (AIT) and COBE quadrilateralized spherical cube (CSC) projections using the
same parameters as Fig. 33.
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distortion and, depending on the application, may mandate
the use of a zenithal projection. Cartographers typically fa-
vor conics and polyconics for “Australia-sized” regions of the
sphere and at this they excel. Oblique forms of the zenithal
equal-area projection are also commonly used. Celestial ap-
plications might include large scale maps of the Magellanic
clouds. Tables 3.1 and 4.1 of Snyder (1993) summarize actual
usage in a variety of 19th and 20th century atlases.

As mentioned in Sect. 5, some projections are not scaled
true at the reference point. In most cases this is deliberate, usu-
ally because the projection is designed to minimize distortion
over a wide area; the scale will be true at some other place
on the projection, typically along a parallel of latitude. If the
projection is required to have (α, δ) ≈ (α0, δ0) + (x, y) then a
number of projections will serve provided also that φp takes its
default value. The following are always scaled true at the refer-
ence point: SZP, TAN, SIN, STG, ARC, ZEA, CAR, MER, BON, PCO,
SFL, and AIT. The following are scaled true at the reference
point for the particular conditions indicated: AZP (γ = 0), ZPN
(P0 = 0, P1 = 1), AIR (θb = 90◦), CYP (λ = 1), CEA (λ = 1),
COP (η = 0), COD (η = 0), COE (η = 0), and COO (η = 0). The
following are never scaled true at the reference point: PAR (but
is scaled true in x), MOL, TSC, CSC, and QSC; the latter three are
equiscaled at the reference point.

Of course CDELT ia may be used to control scaling of (x, y)
with respect to (p1, p2). Thus, for example, the plate carrée pro-
jection (CAR) also serves as the more general equirectangular
projection.

7.3. Header interpretation examples

We now consider three examples chosen to illustrate how a
FITS reader would interpret a celestial coordinate header.

Example 1 is a simple header whose interpretation is quite
straightforward.

Example 2 is more complicated; it also serves to illustrate
the WCS header cards for 1) image arrays in binary tables, and
2) pixel lists.

Example 3 highlights a subtle problem introduced into a
header by the FITS writer and considers how this should be
corrected. As such, it introduces the generally more difficult
task of composing WCS headers, considered in greater detail
in Sect. 7.4.

7.3.1. Header interpretation example 1

Consider as the first example the relatively simple optical im-
age whose header is given in Table 5. The NAXIS and NAXIS j
keywords indicate that we have a four-dimensional image con-
sisting of 512 columns, 512 rows, 196 planes, and one polar-
ization. The degenerate STOKES axis is used simply to convey
a coordinate value which applies to every pixel in the image.
The CRPIX j keywords tell us that the reference point is at pixel
coordinate (256, 257, 1, 1). The PC i ja keywords default to the
unit matrix which indicates that no bulk rotation or shear is ap-
plied to the pixel coordinates. Intermediate world coordinates

may thus be computed from Eq. (1) as
x
y
z
s

=

−0.003 0 0 0

0 0.003 0 0
0 0 7128.3 0
0 0 0 1




p1 −256
p2 −257
p3 −1
p4 −1

 .
Since VELOCITY and STOKES are linear axis types, the velocity
and Stokes value of each point are found simply by adding the
coordinate value at the reference point to the relative coordi-
nate. Thus,

Velocity=500000.0+ 7128.3 (p3 − 1) m s−1,

Stokes=1 (I polarization).

The CTYPE1 and CTYPE2 keywords denote a TAN (gnomonic)
projection for which (x, y) are projection plane coordinates for
the zenithal perspective projection with the source of the pro-
jection at the center of the sphere. Thus the native longitude
and latitude are given by

φ= arg (−y, x),

θ= tan−1

180◦

π

1√
x2 + y2

 ,
which, on substitution, become

φ= arg (p2 − 257, p1 − 256) + 180◦,

θ= tan−1

 19098.◦5932√
(p1 − 256)2 + (p2 − 257)2

 ,
where we have used Eqs. (15), (14), and (55).

The celestial coordinate system is equatorial since the
CTYPE ia begin with RA and DEC and the RADESYSa and
EQUINOXa cards denote that these are in the IAU 1984 sys-
tem. Zenithal projections have (φ0, θ0) = (0, 90◦) for which the
CRVAL i give equatorial coordinates αp = 45.◦83 in right ascen-
sion and δp = 63.◦57 in declination. The equatorial north pole
has a longitude of 180◦ in the native coordinate system from the
LONPOLEa keyword. LATPOLEa is never required for zenithal
projections and was not given. Thus, Eqs. (6) for the right as-
cension and declination become

sin δ = sin θ sin(63.◦57) − cos θ cosφ cos(63.◦57),
cos δ sin(α − 45.◦83) = cos θ sin φ,
cos δ cos(α − 45.◦83) = sin θ cos(63.◦57)

+ cos θ cosφ sin(63.◦57).

Sample calculations for points on the diagonal near the three
corners of the image are shown in Table 6.

If we define the projection non-linearity as the departure of
θ from r =

√
x2 + y2, then in this 1.◦5 × 1.◦5 image it amounts

to ∼ 0.′′5 at the corners. However, in a 6◦ × 6◦ image it quickly
escalates to ∼ 0.′5, sixty times larger. Comparison of α for the
southeast and northeast corners indicates the significant effect
of grid convergence even in this moderate sized image. The two
differ by 22.s16, most of which is attributable to the cos δ term
in converting longitude offsets to true angular distances. The
effect of grid convergence is small for (α0, δ0) near the equator
and large near the poles.
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Table 5. FITS header for example 1.

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

NAXIS = 4 / 4-dimensional cube

NAXIS1 = 512 / x axis (fastest)

NAXIS2 = 512 / y axis (2nd fastest)

NAXIS3 = 196 / z axis (planes)

NAXIS4 = 1 / Dummy to give a coordinate

CRPIX1 = 256 / Pixel coordinate of reference point

CDELT1 = -0.003 / 10.8 arcsec per pixel

CTYPE1 = ’RA---TAN’ / Gnomonic projection

CRVAL1 = 45.83 / RA at reference point

CUNIT1 = ’deg ’ / Angles are degrees always

CRPIX2 = 257 / Pixel coordinate of reference point

CDELT2 = 0.003 / 10.8 arcsec per pixel

CTYPE2 = ’DEC--TAN’ / Gnomonic projection

CRVAL2 = 63.57 / Dec at reference point

CUNIT2 = ’deg ’ / Angles are degrees always

CRPIX3 = 1 / Pixel coordinate of reference point

CDELT3 = 7128.3 / Velocity increment

CTYPE3 = ’VELOCITY’ / Each plane at a velocity

CRVAL3 = 500000.0 / Velocity in m/s

CUNIT3 = ’m/s ’ / metres per second

CRPIX4 = 1 / Pixel coordinate of reference point

CDELT4 = 1 / Required here.

CTYPE4 = ’STOKES ’ / Polarization

CRVAL4 = 1 / Unpolarized

CUNIT4 = ’ ’ / Conventional unitless = I pol

LONPOLE = 180 / Native longitude of celestial pole

RADESYS = ’FK5 ’ / Mean IAU 1984 equatorial coordinates

EQUINOX = 2000.0 / Equator and equinox of J2000.0

Figure 35 investigates the effect of projective non-
linearities for moderate field sizes for the commonly used
zenithal projections. It shows the difference in Rθ between the
various projections and the SIN projection as a function of na-
tive latitude θ. The SIN projection is used as reference since it
always has Rθ less than the other zenithal projections. The dif-
ference for all projections exceeds 1 arcsec for values of θ less
than 88◦ and the difference for the TAN projection exceeds one
milliarcsec only 440 arcsec from the native pole. Such nonlin-
earities would be significant in optical, VLBI, and other high
resolution observations.

7.3.2. Header interpretation example 2

While the previous header was a realistic example it overlooked
many of the concepts introduced in this paper. Consider now
the header given in Table 7. Although contrived to illustrate as
much as possible in one example, this header could conceivably
arise as a “tile” from a conic equal area projection of a region
of the southern galactic hemisphere centered at galactic coor-
dinates (`, b) = (90◦,−25◦). The tile size of 2048× 2048 pixels
is approximately 10◦ × 10◦, and this particular tile is situated
immediately to the north of the central tile.

The header defines ecliptic coordinates as an alternate co-
ordinate system, perhaps to help define the distribution of zodi-
acal light. This has the same reference point and transformation

Table 6. Sample calculations for example 1.

parameter units SE corner NE corner NW corner

(p1, p2) pixel (1, 2) (1, 512) (511, 512)
(p3, p4) pixel (1, 1) (1, 1) (196, 1)

x deg 0.◦765000 0.◦765000 −0.◦765000
y deg −0.◦765000 0.◦765000 0.◦765000
φ deg 45.◦000000 135.◦000000 225.◦000000
θ deg 88.◦918255 88.◦918255 88.◦918255
α deg 47.◦503264 47.◦595581 44.◦064419
δ deg 62.◦795111 64.◦324332 64.◦324332

Velocity ms−1 500000.00 500000.00 1890018.50
Stokes 1.0 ≡ I 1.0 ≡ I 1.0 ≡ I

matrix as the primary description and the reference values are
translated according to the prescription given in Sect. 2. The
RADESYSA card indicates that the ecliptic coordinates are mean
coordinates in the IAU 1984 system, though the author of the
header has been sloppy in omitting the EQUINOXA card which
therefore defaults to J2000.0. Note that, in accord with Paper I,
all keywords for the alternate description are reproduced, even
those which do not differ from the primary description.

The problem will be to determine the galactic and eclip-
tic coordinates corresponding to a field point with pixel
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Fig. 35. Rθ(pro jection) − Rθ(SIN) in arcsec plotted versus θ for various projections.

coordinates (1957.2, 775.4). We begin as before by substitut-
ing in Eq. (1)(

x
y

)
=

(−0.005 0.00002
−0.000010.005

) (
p1 − 1024.5
p2 + 1023.5

)
·

Note that this transformation matrix describes a slight skewness
and rotation; the x-, and y-axes correspond to the following two
non-orthogonal lines in the pixel plane;

p2 =0.002 (p1 − 1024.5)− 1023.5,

p2 = 250 (p1 − 1024.5)− 1023.5.

The values of the (x, y) projection plane coordinates for the
chosen point are shown in Table 8 together with the remain-
ing calculations for this example.

The next step is to compute the native longitude and lati-
tude. Like all standard conics, the conic equal area projection
has two parameters, θa and η, given by the keywords PV i 1a
and PV i 2a attached to latitude coordinate i. In this example
PV2 1 is given but the author has again been sloppy in omitting
PV2 2, which thus defaults to 0. Explicit inclusion of this key-
word in the header would obviate any suspicion that it had been
accidentally omitted. The native coordinates, (φ, θ) are obtained
from (x, y) using Eqs. (117) and (129) via the intermediaries C,
Y0, and Rθ given by Eqs. (125), (127), and (116). These in turn
are expressed in terms of γ, θ1, and θ2 given by Eqs. (128),
(119), and (120). The calculations are shown in Table 8.

At this stage we have deprojected the field point. In this
example the alternate coordinate description defines the same
projection as the primary description. Indeed, it may seem odd
that the formalism even admits the possibility that they may
differ. However, this is a realistic possibility, for example in
defining multiple optical plate solutions based on the TAN pro-
jection. It now remains to transform the native spherical coordi-
nates into galactic coordinates, (`, b), and ecliptic coordinates,
(λ, β). To do this we need to apply Eqs. (2) and in order to do
that we need (`p, bp) and (λp, βp).

Looking first at galactic coordinates, we have (`0, b0) =
(90◦,−25◦) and φp = 0. This conic projection has (φ0, θ0) =
(0◦,−25◦), and because b0 = θ0 and φp = 0◦, the native and
galactic coordinate systems must coincide to within an off-
set in longitude. However, it is not obvious what `p should
be to produce this offset. Equation (8) has one valid solution,
namely bp = 90◦. The special case in point 2 in the usage
notes for Eqs. (9) and (10) must therefore be used to obtain
(`p, bp) = (−90◦, 90◦). The galactic coordinates of the field
point listed in Table 8 are then readily obtained by application
of Eqs. (2).

The header says that the ecliptic coordinates of the refer-
ence point are (λ0, β0) = (−7.◦0300934, 34.◦8474143) and the
native longitude of the ecliptic pole is φp = 6.◦3839706. It also
specifies LATPOLEA as 29.◦8114400. In this case Eq. (8) has two
valid solutions, βp = −25.◦1367794 ± 54.◦9482194, and the one
closest in value to LATPOLEA (in fact equal to it) is chosen. If
LATPOLEA had been omitted from the header its default value
of +90◦ would have selected the northerly solution anyway,
but of course it is good practice to make the choice clear. The
value of λp may be obtained by a straightforward application of
Eqs. (9) and (10), and the ecliptic coordinates of the field point
computed via Eqs. (2) are listed in Table 8 as the final step of
the calculation. The reader may verify the calculation by trans-
forming the computed galactic coordinates of the field point to
mean ecliptic coordinates.

7.3.3. Binary table representations of example 2

Table 9 shows the FITS header for a set of images stored in
binary table image array column format. The images are similar
to that described in header interpretation example 2, Sect. 7.3.2,
with primary image header illustrated in Table 7.

In this example the images are stored as 2-D arrays in
Col. 5 of the table and each row of the table contains a 2048 ×
2048 pixel image of a different region on the sky. This might
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Table 7. Second example FITS header (blank lines have been inserted for clarity).

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

NAXIS = 2 / 2-dimensional image

NAXIS1 = 2048 / x axis (fastest)

NAXIS2 = 2048 / y axis (2nd fastest)

MJD-OBS = 44258.7845612 / MJD at start of observation

CRPIX1 = 1024.5 / Pixel coordinate of reference point

CRPIX2 = -1023.5 / Pixel coordinate of reference point

PC1_1 = 1 / Transformation matrix element

PC1_2 = -0.004 / Transformation matrix element

PC2_1 = -0.002 / Transformation matrix element

PC2_2 = 1 / Transformation matrix element

CDELT1 = -0.005 / x-scale

CDELT2 = 0.005 / y-scale

CTYPE1 = ’GLON-COE’ / Conic equal area projection

CTYPE2 = ’GLAT-COE’ / Conic equal area projection

PV2_1 = -25.0 / Conic mid-latitude

CRVAL1 = 90.0 / Galactic longitude at reference point

CRVAL2 = -25.0 / Galactic latitude at reference point

CRPIX1A = 1024.5 / Pixel coordinate of reference point

CRPIX2A = -1023.5 / Pixel coordinate of reference point

PC1_1A = 1 / Transformation matrix element

PC1_2A = -0.004 / Transformation matrix element

PC2_1A = -0.002 / Transformation matrix element

PC2_2A = 1 / Transformation matrix element

CDELT1A = -0.005 / x-scale

CDELT2A = 0.005 / y-scale

CTYPE1A = ’ELON-COE’ / Conic equal area projection

CTYPE2A = ’ELAT-COE’ / Conic equal area projection

PV2_1A = -25.0 / Conic mid-latitude

CRVAL1A = -7.0300934 / Ecliptic longitude at reference point

CRVAL2A = 34.8474143 / Ecliptic latitude at reference point

LONPOLEA= 6.3839706 / Native longitude of ecliptic pole

LATPOLEA= 29.8114400 / Ecliptic latitude of native pole

RADESYSA= ’FK5 ’ / Mean IAU 1984 ecliptic coordinates

represent a set of smaller images extracted from a single larger
image. In this case all coordinate system parameters except for
the reference pixel coordinate are the same for each image and
are given as header keywords. The reference pixel coordinate
for the primary and secondary description are given in Cols. 1
to 4 of the binary table.

Table 10 shows the header for the same image given in pixel
list format. There are 10 000 rows in this table, each one listing
the pixel coordinates (XPOS, YPOS) of every detected “event”
or photon in the image. For illustration purposes, this table also
contains an optional DATA QUALITY column that could be used
to flag the reliability or statistical significance of each event.
A real image may be constructed from this virtual image as
the 2-dimensional histogram of the number of events that oc-
cur within each pixel. The additional TLMINn and TLMAXn key-
words shown here are used to specify the minimum and max-
imum legal values in XPOS and YPOS columns and are useful
for determining the range of each axis when constructing the
image histogram.

Table 8. Calculations for example 2.

(p1, p2) 1957.2 775.4
(x, y) −4.◦6275220 8.◦9851730
θa, η −25.◦0000000 0.◦0000000
θ1, θ2 −25.◦0000000 −25.◦0000000
γ −0.8452365
C,Y0 −0.4226183 −122.◦8711957
(φ, θ) −4.◦7560186 −15.◦8973800

(`p, bp) −90.◦0000000 90.◦0000000
(`, b) 85.◦2439814 −15.◦8973800

(λp, βp) −179.◦9767827 29.◦8114400
(λ, β) −14.◦7066741 43.◦0457292

7.3.4. Header interpretation example 3

This example has been adapted from a real-life FITS data file.
The simplicity of the header shown in Table 11 is deceptive; it
is actually presented as an example of how not to write a FITS
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Table 9. Example binary table image array header (blank lines have been inserted for clarity).

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

XTENSION= ’BINTABLE’ / Binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 16777232 / Width of table in bytes

NAXIS2 = 4 / Number of rows in table

PCOUNT = 0 / Size of special data area

GCOUNT = 1 / One data group (required keyword)

TFIELDS = 5 / number of fields in each row

TTYPE1 = ’1CRP5 ’ / Axis 1: reference pixel coordinate

TFORM1 = ’1J ’ / Data format of column 1: I*4 integer

TTYPE2 = ’2CRP5 ’ / Axis 2: reference pixel coordinate

TFORM2 = ’1J ’ / Data format of column 2: I*4 integer

TTYPE3 = ’1CRP5A ’ / Axis 1A: reference pixel coordinate

TFORM3 = ’1J ’ / Data format of column 3: I*4 integer

TTYPE4 = ’2CRP5A ’ / Axis 2A: reference pixel coordinate

TFORM4 = ’1J ’ / Data format of column 4: I*4 integer

TTYPE5 = ’Image ’ / 2-D image array

TFORM5 = ’4194304J’ / Data format of column 5: I*4 vector

TDIM5 = ’(2048,2048)’ / Dimension of column 5 array

MJDOB5 = 44258.7845612 / MJD at start of observation

COMMENT The following keywords define the primary coordinate description

COMMENT of the images contained in Column 5 of the table.

11PC5 = 1 / Transformation matrix element

12PC5 = -0.004 / Transformation matrix element

21PC5 = -0.002 / Transformation matrix element

22PC5 = 1 / Transformation matrix element

1CDE5 = -0.005 / Axis 1: scale

2CDE5 = 0.005 / Axis 2: scale

1CTY5 = ’GLON-COE’ / Axis 1: conic equal area projection

2CTY5 = ’GLAT-COE’ / Axis 2: conic equal area projection

2PV5_1 = -25.0 / Conic mid-latitude

1CRV5 = 90.0 / Axis 1: galactic longitude at reference point

2CRV5 = -25.0 / Axis 2: galactic latitude at reference point

COMMENT The following keywords define the secondary coordinate description

COMMENT of the images contained in Column 5 of the table.

11PC5A = 1 / Transformation matrix element

12PC5A = -0.004 / Transformation matrix element

21PC5A = -0.002 / Transformation matrix element

22PC5A = 1 / Transformation matrix element

1CDE5A = -0.005 / Axis 1A: scale

2CDE5A = 0.005 / Axis 2A: scale

1CTY5A = ’ELON-COE’ / Axis 1A: conic equal area projection

2CTY5A = ’ELAT-COE’ / Axis 2A: conic equal area projection

2PV5_1A = -25.0 / Conic mid-latitude

1CRV5A = -7.0300934 / Axis 1A: ecliptic longitude at reference point

2CRV5A = 34.8474143 / Axis 2A: ecliptic latitude at reference point

LONP5A = 6.3839706 / Native longitude of ecliptic pole

LATP5A = 29.8114400 / Ecliptic latitude of native pole

RADE5A = ’FK5 ’ / Mean IAU 1984 ecliptic coordinates

EQUI5A = 2000.0 / Coordinate epoch

END
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Table 10. Example pixel list header (blank lines have been inserted for clarity).

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

XTENSION= ’BINTABLE’ / Binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 5 / Width of table in bytes

NAXIS2 = 10000 / Number of rows in table

PCOUNT = 0 / Size of special data area

GCOUNT = 1 / One data group (required keyword)

TFIELDS = 3 / Number of fields in each row

TTYPE1 = ’DATA_QUALITY’ / Quality flag value of the photon

TFORM1 = ’1B ’ / Data format of the field: 1-byte integer

TTYPE2 = ’XPOS ’ / Axis 1: pixel coordinate of the photon

TFORM2 = ’1I ’ / Data format of column 2: I*2 integer

TLMIN2 = 1 / Lower limit of axis in column 2

TLMAX2 = 2048 / Upper limit of axis in column 2

TTYPE3 = ’YPOS ’ / Axis 2: pixel coordinate of the photon

TFORM3 = ’1I ’ / Data format of column 3: I*2 integer

TLMIN3 = 1 / Lower limit of axis in column 3

TLMAX3 = 2048 / Upper limit of axis in column 3

MJDOB3 = 44258.7845612 / MJD at start of observation

COMMENT The following keywords define the primary coordinate description.

TCRP2 = 1024.5 / Axis 1: reference pixel coordinate

TCRP3 = -1023.5 / Axis 2: reference point pixel coordinate

TPC2_2 = 1 / Transformation matrix element

TPC2_3 = -0.004 / Transformation matrix element

TPC3_2 = -0.002 / Transformation matrix element

TPC3_3 = 1 / Transformation matrix element

TCDE2 = -0.005 / Axis 1: scale

TCDE3 = 0.005 / Axis 2: scale

TCTY2 = ’GLON-COE’ / Axis 1: conic equal area projection

TCTY3 = ’GLAT-COE’ / Axis 2: conic equal area projection

TPV3_1 = -25.0 / Conic mid-latitude

TCRV2 = 90.0 / Axis 1: galactic longitude at reference point

TCRV3 = -25.0 / Axis 2: galactic latitude at reference point

COMMENT The following keywords define the secondary coordinate description.

TCRP2A = 1024.5 / Axis 1A: reference pixel coordinate

TCRP3A = -1023.5 / Axis 2A: reference point pixel coordinate

TP2_2A = 1 / Transformation matrix element

TP2_3A = -0.004 / Transformation matrix element

TP3_2A = -0.002 / Transformation matrix element

TP3_3A = 1 / Transformation matrix element

TCDE2A = -0.005 / Axis 1A: scale

TCDE3A = 0.005 / Axis 2A: scale

TCTY2A = ’ELON-COE’ / Axis 1A: conic equal area projection

TCTY3A = ’ELAT-COE’ / Axis 2A: conic equal area projection

TV3_1A = -25.0 / Conic mid-latitude

TCRV2A = -7.0300934 / Axis 1A: ecliptic longitude at reference point

TCRV3A = 34.8474143 / Axis 2A: ecliptic latitude at reference point

LONP3A = 6.3839706 / Native longitude of ecliptic pole

LATP3A = 29.8114400 / Ecliptic latitude of native pole

RADE3A = ’FK5 ’ / Mean IAU 1984 ecliptic coordinates

EQUI3A = 2000.0 / Coordinate epoch

END
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Table 11. Third example FITS header.

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

NAXIS = 2 / 2-dimensional image

NAXIS1 = 181 / x axis (fastest)

NAXIS2 = 91 / y axis (2nd fastest)

CRPIX1 = 226.0 / Pixel coordinate of reference point

CRPIX2 = 46.0 / Pixel coordinate of reference point

CDELT1 = -1.0 / x-scale

CDELT2 = 1.0 / y-scale

CTYPE1 = ’GLON-CAR’ / Plate carree projection

CTYPE2 = ’GLAT-CAR’ / Plate carree projection

CRVAL1 = 30.0 / Galactic longitude at reference point

CRVAL2 = 35.0 / Galactic latitude at reference point

header, although the latent problem with its interpretation is
quite subtle.

Observe that the image spans 180◦ in native longitude and
90◦ in native latitude and that the reference pixel lies outside
the image. In fact, the reference pixel is located so that the na-
tive longitude runs from 45◦ to 225◦ and hence the image lies
partly inside and partly outside the normal range of native lon-
gitude, [−180◦,180◦].

In fact, as might be expected, this makes no difference
to the computation of celestial coordinates. For example, in
computing the celestial coordinates of pixel (1, 1) we readily
find from Eqs. (83) and (84) that the native coordinates are
(φ, θ) = (225◦,−45◦). The fact that φ exceeds 180◦ becomes ir-
relevant once Eqs. (2) are applied since the trigonometric func-
tions do not distinguish between φ = 225◦ and φ = −135◦.
The latter value is the appropriate one to use if the cylinder of
projection is considered to be “rolled out” over multiple cycles.
Consequently the correct galactic coordinates are obtained.

The problem only surfaces when we come to draw a coordi-
nate grid on the image. A meridian of longitude, for example, is
traced by computing the pixel coordinates for each of a succes-
sion of latitudes along the segment of the meridian that crosses
the image. As usual, in computing pixel coordinates, the ce-
lestial coordinates are first converted to native coordinates by
applying Eqs. (5), and the native longitude will be returned in
the normal range [−180◦, 180◦]. Consequently, in those parts
of the image where φ > 180◦ the pixel coordinates computed
will correspond to the point at φ − 360◦, i.e. in the part of the
principle cycle of the cylindrical projection outside the image.

In principle it is possible to account for this, at least in spe-
cific cases, particularly for the cylindrical projections which
are somewhat unusual in this regard. In practice, however, it
is difficult to devise a general solution, especially when similar
problems may arise for projection types where it is not desir-
able to track φ outside its normal range. For example, consider
the case where a Hammer-Aitoff projection is used to represent
the whole sky; since its boundary is curved there will be out-
of-bounds areas in the corner of the image. Normally a grid
drawing routine can detect these by checking whether the in-
verse projection equations return a value for φ outside its nor-
mal range. It may thus determine the proper boundary of the

projection and deal with the discontinuity that arises when a
grid line passes through it.

How then should the header have been written? Note that
the problem exists at the lowest level of the coordinate descrip-
tion, in the conversion between (x, y) and (φ, θ), and the so-
lution must be found at this level. The problem arose from a
particular property of cylindrical projections in that they have
x ∝ φ. We must use this same property, which we might call
“φ-translation similarity”, to recast the coordinate description
into a more manageable form. φ-translation similarity simply
means that changing the origin of φ corresponds to shifting the
image in the x-direction. In other words, we can transfer the
reference point of the projection from its current location to
another location along the native equator without having to re-
grid the image. The fact that the PC i ja matrix is unity in this
example makes this task a little simpler than otherwise.

Note first that because the image straddles φ = 180◦ we
can’t simply reset CRPIX1 so as to shift the reference point to
φ = −360◦; the image would then straddle φ = −180◦, which
is no improvement. In this example it is convenient and suffi-
cient to shift the reference point to (φ, θ) = (180◦, 0◦), which
corresponds to pixel coordinate (p1, p2) = (46.0, 46.0). Hence
we need to reset CRPIX1 to 46.0 and adjust the keywords which
define the celestial coordinate system. The reader may readily
verify that the galactic coordinates of the new reference point
are (`, b) = (210◦,−35◦) and whereas the old, implied value of
LONPOLE was 0◦ when δ0 > 0, now that δ0 < 0 its new im-
plied value is 180◦, and this is correct. However, we will set it
explicitly anyway. The keywords to be changed are therefore

CRPIX1 = 46.0,

CRVAL1 = 210◦,
CRVAL2 = −35◦,
LONPOLE = 180◦.

What if the PC i ja matrix was not unity? The problem of
determining the pixel coordinates where (φ, θ) = (−180◦, 0◦)
would have presented little extra difficulty, although in general
CRPIX2 would also need to be changed. On reflection it may
come as a surprise that changing CRPIX j like this does not
fundamentally alter the linear transformation. However it may
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Fig. 36. The Earth from 2230 km above Cairo looking directly towards
Athens.

readily be verified that the only effect of changing CRPIX j is to
change the origin of the (x, y) coordinates.

7.4. Header construction examples

This section considers the more difficult problem faced by FITS
writers; that of constructing world coordinate system headers.

Example 1 is contrived to illustrate the general meth-
ods used in constructing a spherical coordinate representation.
Paying homage to Claudius Ptolemy, it actually constructs a
terrestrial coordinate grid for the Mediterranean region as seen
from space.

Example 2 constructs headers for the infra-red dust maps
produced by Schlegel et al. (1998) who regridded data from
the COBE/DIRBE and IRAS/ISSA surveys onto two zenithal
equal area projections.

Example 3 considers the case of long-slit optical spec-
troscopy. It is concerned in particular with solving the problem
of producing three world coordinate elements for a data array
of only two dimensions.

Example 4 constructs a dual coordinate description for an
image of the moon and considers the problem of producing
consistent scales for each. It also suggests an extension to deal
with the rings of the planet Saturn.

7.4.1. Header construction example 1

Our first example of FITS header construction concerns satel-
lite photography of the Earth. Figure 36 shows a part of
the world which probably would have been recognizable to
Claudius Ptolemy.

A satellite 2230 km immediately above Cairo aims its dig-
ital camera directly towards Athens and adjusts the orientation
and focal length to include Cairo in the field near the bottom
edge of the frame. The 2048 × 2048 pixel CCD detector
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Fig. 37. The geometry of Fig. 36. Cairo at C is at the reference point
of the projection with Athens at A. The camera with aperture at P and
focal plane F is not drawn to scale, though the rest of the diagram is.
Note that µ < 0 so −µ, as marked, is a positive value.

array employed by the camera is centered on its optical axis
so Athens is at pixel coordinate (1024.5, 1024.5). Cairo – at the
satellite’s nadir – is later found to be at (681.67, 60.12). The
task is to overlay a terrestrial coordinate grid on this image.

For the sake of simplicity we will assume pin-hole cam-
era optics. Figure 37 identifies the geometry as that of a tilted,
near-sided zenithal perspective projection with the nadir at the
reference point. The point of projection P corresponds to the
pin-hole of the camera and the tilted plane of projection is par-
allel to the camera’s focal plane F. The image in the focal plane
is simply scaled (and inverted) with respect to that on the plane
of projection. Clearly a tilted AZP projection is a better match
to the geometry than SZP in this instance.

The satellite altitude of 2230 km is 0.350 Earth radii and
since the projection is near-sided we may immediately write
µ = −1.350.

Determination of γ requires knowledge of the coordinates
of Cairo (31.◦15 E, 30.◦03 N) and Athens (23.◦44 E, 38.◦00 N).
From spherical trigonometry we may deduce that the angu-
lar separation between the two cities is 10.◦2072 and also that
Athens is on a bearing 36.◦6252 west of north from Cairo.

Now since Cairo is at the native pole of the projection the
angular separation between the two cities is just their difference
in native latitude, 90◦ − θA. Using the sine rule in triangle PAO
in Fig. 37 we obtain

90◦ − θ = −γ − sin−1(µ sin γ). (194)

This equation, which takes account of the fact that µ is negative,
may be solved iteratively to obtain γ = 25.◦8458.

The obliqueness of this view of the Earth, occasioned by
the fact that the image is not oriented along a meridian, is han-
dled partly via LONPOLEa and partly as a bulk image rotation
via PC i ja. Note that these are not complementary; they pro-
duce distinct effects since the tilted AZP projection does not
have point symmetry. Figure 37 shows the situation – the gen-
erating sphere with Cairo at the native pole must be oriented so
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that Athens is at native longitude 180◦. The native longitude of
the terrestrial pole (substituting for the celestial pole in this ex-
ample) is offset from this by the bearing of Athens from Cairo,
i.e. φp = 180◦ − 36.◦6252 = 143.◦3748.

Since Athens is at native longitude 180◦ its x-coordinate,
like Cairo’s, must be zero. The inequality of the corresponding
pixel coordinates must have arisen by the satellite rotating the
camera about its optical axis thereby rotating the CCD detec-
tor in the focal plane. The angle of this bulk rotation is read-
ily deduced from the pixel coordinates of Athens and Cairo,
arg( jA − jC, iA − iC) = 19.◦570. This rotation is to be applied
via PC i ja. The direction of rotation is completely determined
by the requirement that Athens’ x-coordinate be zero, regard-
less of the sign of CDELT ia, and the resulting PC i ja rotation
matrix is shown below.

The reference pixel coordinates, CRPIX ja, were mea-
sured from the image and the reference coordinates for Cairo,
CRVAL ia, were obtained from an atlas, so the last remaining
unknowns are the scales, CDELT ia. From previous calculations
we know that Athens is at (φ, θ) = (180◦, 79.◦7928) and we may
apply Eqs. (20) and (21) to obtain (x, y) = (0, 8.◦7424). The
distance in pixel coordinates between the two cities is readily
found to be 1023.5 so the y-scale must be 8.◦7424/1023.5 =
0.◦008542 per pixel.

The x-scale cannot be determined like this since both cities
have the same x-coordinate. However, the x-, and y-scales must
be equal because the focal plane is parallel to the plane of pro-
jection and ray-tracing through the pin-hole therefore results in
an isotropic change of scale. Do not confuse this with the state-
ment made in Sect. 5.1.1 that with γ , 0 the projection is not
scaled true at the reference point; this refers to the differential
scale between (x, y) and (φ, θ).

Though the image in the focal plane is inverted through
the pin-hole, thus indicating a negative scale, we can assume
that the camera compensated by reading out the CCD array in
reverse order. Thus for the image of Fig. 36 we make both of
the CDELT ia positive in order to have east to the right as befits a
sphere seen from the outside. Putting this all together we have

NAXIS = 2,

NAXIS1 = 2048,

NAXIS2 = 2048,

CRPIX1 = 681.67,

CRPIX2 = 60.12,

PC1 1 = 0.9422,

PC1 2 = −0.3350,

PC2 1 = 0.3350,

PC2 2 = 0.9422,

CDELT1 = 0.◦008542,

CDELT2 = 0.◦008542,

CTYPE1 = ’TLON-AZP’,

CTYPE2 = ’TLAT-AZP’,

PV2 1 = −1.350,

PV2 2 = 25.◦8458,

CRVAL1 = 31.◦15,

CRVAL2 = 30.◦03,

LONPOLE = 143.◦3748,

WCSNAME = ’Terrestrial coordinates’.

This example was simplified by the fact that the nadir was
known and was included in the field of view. This probably
would not be the case in a more realistic example where there
may also be some uncertainty in the target coordinates and the
value of µ. In such cases the mapping parameters would have
to be determined by least squares via the identification of an
adequate number of surface features with known coordinates.

7.4.2. Header construction example 2

The following example comes from the 4096 × 4096 pixel
infrared dust maps produced by Schlegel et al. (SFD, 1998).
The authors chose to regrid data from the COBE/DIRBE and
IRAS/ISSA maps onto two zenithal equal area (ZEA) projec-
tions centered on the galactic poles. The projection formula
given in their Appendix C expressed in terms of standard 1-
relative FITS pixel coordinates (p1, p2) is

p1 − 1= 2048
√

1 − n sin b cos ` + 2047.5,

p2 − 1=−n2048
√

1 − n sin b sin ` + 2047.5,

where n = +1 for the north Galactic pole and n = −1 for the
south Galactic pole maps. Now for ZEA from Eqs. (1), (12),
(13), and (69)

CDELT1 (p1 − CRPIX1)=
√

2
180◦

π

√
1 − sin θ sin φ,

CDELT2 (p2 − CRPIX2)=−
√

2
180◦

π

√
1 − sin θ cosφ.

If we take the north Galactic pole case first, the SFD equations
may be rewritten as

p1 − 2048.5=−2048
√

1 − sin b sin(` − 90◦),

p2 − 2048.5=−2048
√

1 − sin b cos(` − 90◦).

By inspection of the two sets of equations we must have

NAXIS = 2,

NAXIS1 = 4096,

NAXIS2 = 4096,

CRPIX1 = 2048.5,

CRPIX2 = 2048.5,

CDELT1 = −180◦
√

2/(2048π),

CDELT2 = 180◦
√

2/(2048π),

CTYPE1 = ’GLON-ZEA’,

CTYPE2 = ’GLAT-ZEA’,

` = φ + 90◦,
b = θ.

Now, writing ` and b in place of α and δ in Eqs. (2), we have
to determine `p, bp, and φp to give (`, b) in terms of (φ, θ). This
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is easy because we know bp = 90◦ and the simple special case
Eqs. (3) apply, so

` = φ + (`p − φp − 180◦).

We have a degree of freedom here since only `p − φp is deter-
mined. It’s best to let φp take its default value of 0◦ for zenithal
projections with the celestial pole at the native pole (it’s 180◦
otherwise), so we must have

CRVAL1 = 270◦,
CRVAL2 = 90◦,
LONPOLE = 0◦.

Although LONPOLE assumes its default value here it would of
course be wise to write it explicitly into the header. The proce-
dure for the south Galactic pole case is similar. The SFD equa-
tions may be rewritten

p1 − 2048.5=2048
√

1 − sin(−b) sin(90◦ − `),
p2 − 2048.5=2048

√
1 − sin(−b) cos(90◦ − `),

whence

CRPIX1 = 2048.5,

CRPIX2 = 2048.5,

CDELT1 = 180◦
√

2/(2048π),

CDELT2 = −180◦
√

2/(2048π),

` = 90◦ − φ,
b = −θ.
Equations (4) apply for bp = −90◦ so

`=(`p + φp) − φ.
Again we let φp take its default value of 180◦, so

CRVAL1 = 270◦,
CRVAL2 = −90◦,
LONPOLE = 180◦.

It’s generally easier to interpret coordinate headers than to con-
struct them so it’s essential after formulating the header to test
it at a few points and make sure that it works as expected. Note
that this sort of translation exercise wouldn’t be necessary if
the formalism of this paper was used right from the start, i.e. in
the regridding operation used to produce the maps.

7.4.3. Header construction example 3

Consider now the coordinate description for the two-
dimensional image formed by a long slit spectrograph. We as-
sume that the wavelength axis of length 1024 and dispersion
∆λ nm/pixel corresponds to the p1 pixel coordinate, and the
2048 pixel spatial axis corresponds to p2. The slit is centered
on equatorial coordinates (α0, δ0) and oriented at position an-
gle ρmeasured such that when ρ = 0 the first spectrum is north-
wards. We will assume that the telescope and spectrograph op-
tics are such that the distance along the slit is in proportion to

true angular distance on the sky with a separation between pix-
els of σ arcsec. We do not consider curvature of the slit here,
that is a distortion of the sort to be handled by the methods of
Paper IV.

Equiscaling along the length of the slit together with the
one-dimensional nature of the spatial geometry indicate that
any projection could be used that is equiscaled along a great
circle projected as a straight line. Many projections satisfy this
criterion. However, in practice the zenithal equidistant (ARC)
projection is the most convenient choice.

The one-dimensional spatial geometry may at first seem
problematical, with each point along the slit having a differ-
ent (α, δ). However, this is easily handled by introducing a
third, degenerate axis and introducing a rotation. The rotation
in position angle may be handled via the linear transformation
matrix. Moreover, since we’ve opted for a zenithal projection,
bearing in mind the discussion of Sect. 7.1, the rotation can
also be handled via φp (i.e. LONPOLE). We will demonstrate
both methods.

Use of φp is perhaps more straightforward, and the header
may be written without further ado:

NAXIS = 3,

NAXIS1 = 1024,

NAXIS2 = 2048,

NAXIS3 = 1,

CRPIX1 = 1,

CRPIX2 = 1024.5,

CRPIX3 = 1,

CDELT1 = ∆λ,

CDELT2 = −σ/3600,

CDELT3 = 1,

CTYPE1 = ’WAVELEN’,

CTYPE2 = ’RA---ARC’,

CTYPE3 = ’DEC--ARC’,

CUNIT1 = ’nm’,

CRVAL1 = λ0,

CRVAL2 = α0,

CRVAL3 = δ0,

LONPOLE = 90◦ + ρ.

LONPOLE is the only card which requires explanation. Since
no rotation is introduced by the linear transformation, the slit,
which coincides with the p2-axis, maps directly to the x-axis.
However, because CDELT2 is negative, the two axes run in op-
posite directions and, given that when ρ = 0 the p2-axis runs
from north to south, x must run from south to north. Referring
to the left side of Fig. 3 for zenithal projections, we see that
when ρ = 0, the north celestial pole must be at φ = 90◦. Since
position angle increases in an anticlockwise direction (i.e. north
through east) in the plane of the sky, the celestial pole must ro-
tate clockwise as ρ increases. Thus, as ρ increases so must φp,
hence φp = 90◦ + ρ.

To verify this representation we will test it with (α0, δ0) =
(150◦,−35◦), ρ = 30◦, andσ = 2′′ for pixel coordinate (1, 1, 1).
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The corresponding (s, x, y) coordinates are (0, 0.◦5686111, 0◦).
The wavelength is therefore λ0. From Eqs. (15), (14), and (67)
the native longitude and latitude are (φ, θ) = (90◦, 89.◦4313889),
φ is always ±90◦, and the value of θ corresponds to an off-
set of 2047′′ from the center of the slit as it should. From
Eqs. (2) the right ascension and declination are (α, δ) =
(150.◦3450039,−34.◦5070794), which are in the correct quad-
rant.

Most optical telescopes are better described by the TAN pro-
jection. In this case the only difference in the header would be

CTYPE2= ’RA---TAN’,

CTYPE3= ’DEC--TAN’.

Verifying it with the same values as before yields the same
(s, x, y) and thus the same wavelength. From Eqs. (15), (14),
and (54) we get (φ, θ) = (90◦, 89.◦4314076), the offset of
2046.′′933 differing by only 67 mas. The right ascension and
declination are (α, δ) = (150.◦3449926,−34.◦5070956).

As an alternative, the original header could also have been
written with the CTYPE i interchanged, so that the slit, still coin-
cident with the p2-axis, maps directly to the y-axis. The header
would be as above but with the following changes:

CTYPE2 = ’DEC--ARC’,

CTYPE3 = ’RA---ARC’,

CRVAL2 = δ0,

CRVAL3 = α0,

LONPOLE = 180◦ + ρ.

LONPOLE differs because the slit now runs along the y-axis
rather than the x-axis; the negative sign on CDELT2 is still
needed to make y run counter to p2.

There are several practical ways to rewrite the header using
the PC i j or CD i j matrices. Looking first at the CD i j form we
have

s
x
y

=

CD1 1CD1 2CD1 3

CD2 1CD2 2CD2 3

CD3 1CD3 2CD3 3




p1 − CRPIX1
p2 − CRPIX2
p3 − CRPIX3

 .
Since the third axis is degenerate, with CRPIX3 = 1, we have
p3 − CRPIX3 = 0, so the values of CD1 3, CD2 3, and CD3 3
are irrelevant. Moreover, CD1 2, CD2 1, and CD3 1 are all zero,
hence

s=CD1 1 (p1 − CRPIX1),
x=CD2 2 (p2 − CRPIX2), (195)

y=CD3 2 (p2 − CRPIX2).
Effectively this provides (x, y) coordinates along the slit via the
parametric equations of a line, where p2 − CRPIX2 is the dis-
tance parameter.

As before, the main problem is to determine the correct an-
gle of rotation. For zenithal projections φp = 180◦ by default,
and referring to the left side of Fig. 3 we see that this corre-
sponds to the y-axis. Thus when ρ = 0 we require a rotation of
90◦ to transform the p2-axis onto the y-axis. For ρ > 0 we need
to rotate further so the angle of rotation is 90◦ + ρ.

Therefore, CDELT i and LONPOLE in the original header
must be replaced with

CD1 1=∆λ,

CD2 2= cos(90◦ + ρ)(σ/3600),

CD3 2=− sin(90◦ + ρ)(σ/3600),

CD2 3= 1,

CD3 3= 1.

The negative sign on CD3 2 is associated with the rotation, not
the scale. Note that, although the value of CD3 3 is irrelevant,
it must be set non-zero otherwise the zero defaults for CD i j
would make the third column zero, thereby producing a singu-
lar matrix. Likewise, in this example and similarly below, we
set CD2 3 non-zero to prevent the second row of the matrix be-
coming zero for values of ρ such that cos(90◦ + ρ) = 0.

The PC i j matrix formulation is similar but allows more
flexibility in the way the scale is handled:

1. Since CDELT i defaults to unity, omitting it allows PC i j to
duplicate the functionality of CD i j. However, since PC i j
defaults to the unit matrix rather than zero, there is no need
to set PC3 3 specifically, hence

PC1 1=∆λ,

PC2 2= cos(90◦ + ρ)(σ/3600),

PC3 2=− sin(90◦ + ρ)(σ/3600),

PC2 3=1.

2. Equation (195), as a simple scaling relation, suggests the
use of CDELT i. However, PC3 2 must be non-zero since x
and y both depend on p2. Setting it to unity and allowing
the remaining PC i j to default to the unit matrix we have

PC3 2 = 1,

CDELT1 = ∆λ,

CDELT2 = cos(90◦ + ρ)(σ/3600),

CDELT3 = − sin(90◦ + ρ)(σ/3600).

3. The “orthodox” method is to encode the rotation and scale
separately in PC i j and CDELT i:

PC2 2 = cos(90◦ + ρ),

PC3 2 = − sin(90◦ + ρ),

PC2 3 = 1,

CDELT1 = ∆λ,

CDELT2 = σ/3600,

CDELT3 = σ/3600.

Arguably this is more amenable to human interpretation,
especially if thoughtful comments are added.

The above six methods should all be regarded as equally le-
gitimate. In fact, there are infinitely many ways to encode this
header, though most would disguise the essential simplicity of
the geometry.
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7.4.4. Header construction example 4

Thompson (1999) has applied the methods of this paper to the
definition of solar coordinates for a variety of coordinate sys-
tems. As the final header construction example we will con-
sider a specific coordinate description for another solar system
body, the Moon.

A short exposure plate taken at Sydney Observatory at
1:00 am on 15 February 1957 AEST (GMT +1000) of the full
Moon near lunar perigee has been digitized and converted to a
4096 × 4096 pixel image in FITS format. The scale is 1′′ per
pixel with the moon centered in the image, and it is desired
to construct a dual coordinate description. The first system is
geocentric apparent equatorial coordinates in a gnomonic pro-
jection. The second is selenographic coordinates in a zenithal
perspective projection attached to the surface of the Moon.

The ephemeris gives the geocentric apparent right ascen-
sion of the Moon at the time as 09h41m13.s1 and declination as
+08◦34′26′′. Diurnal parallax would have caused the Moon to
appear slightly offset from this position as seen from Sydney
Observatory, but to a good approximation the coordinate sys-
tems may be defined with the center of the Moon at the stated
geocentric coordinates. The image was digitized in the normal
orientation with north up and east to the left so the header for
the primary description is straightforward:

NAXIS = 2,

NAXIS1 = 4096,

NAXIS2 = 4096,

MJD-OBS = 35883.625,

CRPIX1 = 2048.5,

CRPIX2 = 2048.5,

CDELT1 = −0.0002778,

CDELT2 = 0.0002778,

CTYPE1 = ’RA---TAN’,

CTYPE2 = ’DEC--TAN’,

CRVAL1 = 145.30458,

CRVAL2 = 8.57386,

LONPOLE = 180.0,

RADESYS = ’GAPPT’.

If any rotation had been introduced it could have been corrected
for in the linear transformation matrix.

The first step in constructing the secondary description is
to determine the distance of the observer from the Moon. The
ephemeris gives the equatorial horizontal parallax as 61′29.′′3,
corresponding to a distance between the centers of the Earth
and Moon of 55.91 Earth radii. However, the observer may be
closer or further away by up to one Earth radius depending on
location and time of day and this 2% effect is deemed worthy of
correction. At Sydney Observatory (longitude 10h04m49.s2, lat-
itude −33◦51′41′′) the Greenwich apparent sidereal time was
00h51m43.s6. Thus the apparent right ascension and declina-
tion of the zenith was 10h56m32.s8, −33◦51′41′′. The vector
dot product then gives the distance correction as 0.69 Earth
radii. Using the ratio of the Earth and Moon radii of 3.670 the

Moon

celestial
sphere

O γβ

| µ |

Fig. 38. Geometry of header construction example 4 (not to scale).
The observer is at O, a distance of |µ| Moon radii from the center of
the Moon. The Moon is projected as a near-sided zenithal perspective
projection (µ < −1), and the celestial sphere as a gnomonic projection.
An alternative plane of projection is shown.

corrected distance of 55.22 Earth radii indicates that the dis-
tance parameter for the zenithal perspective projection is µ =
202.64 Moon radii.

We now need to determine the correct relative scale.
Figure 38 shows the geometry of the two projections where we
note, by analogy with Fig. 4, that µ < −1. From the diagram
we have

β = tan−1

(
sin γ

|µ| − cos γ

)
· (196)

The figure shows that this equation is not influenced by
the choice of the plane of projection. Evaluating the deriva-
tive dβ/dγ at γ = 0 we find the relative scale is 1/(|µ| − 1).

The ephemeris records that the selenographic coordinates
of the Earth at the time were (`, b) = (+0.◦26,+6.◦45) and the
position angle of the Moon’s axis was C = 19.◦03. However,
since the Earth subtends an angle of over 2◦ in the lunar sky,
topocentric optical libration – the correction for the observa-
tory’s location – is significant. Application of the correction
formulæ derived by Atkinson (1951) gives the selenographic
coordinates of Sydney Observatory as (`′, b′) = (−0.◦23, 5.◦89)
and C′ = 18.◦94. Since the image was taken in the normal
orientation and we have a zenithal projection it is convenient
to account for the position angle by setting φp = 180◦ − C′.
Adopting keyword values of SELN and SELT for selenographic
coordinates we may write

CRPIX1S = 2048.5,

CRPIX2S = 2048.5,

CDELT1S = 0.0562896,
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Table 12. Summary of new coordinate keywords introduced in this paper; see also Table 3 for alternate types used in binary tables.

Keyword Type Sect. Use Status Comments

LONPOLEa floating 2.2 coordinate rotation new Longitude in the native coordinate system of the
celestial system’s north pole.
Default: 0◦ if δ0 ≥ θ0, 180◦ otherwise.

LATPOLEa floating 2.4 coordinate rotation new Latitude in the native coordinate system of the
celestial system’s north pole, or equivalently, the
latitude in the celestial coordinate system of the
native system’s north pole.
Default: 90◦, unless (θ0, δ0, φp − φ0) = (0, 0,±90◦)
in which case it has no default.

RADESYSa character 3.1 frame of reference new Reference frame of equatorial and ecliptic
coordinates; recognized values are given in Table 2.
Default: FK4 if EQUINOXa < 1984.0, FK5 if
≥ 1984.0, or ICRS if EQUINOXa is not given.

EQUINOXa floating 3.1 coordinate epoch new Epoch of the mean equator and equinox in years;
Besselian if RADESYSa is FK4 or FK4-NO-E,
Julian if FK5; not applicable to ICRS or GAPPT.
Default: EPOCH if given, else 1950.0 if RADESYSa is FK4
or FK4-NO-E, or 2000.0 if FK5.

EPOCH floating 3.1 coordinate epoch deprecated Replaced by EQUINOXa.
MJD-OBS floating 3.1 time of observation new Modified Julian Date (JD – 2 400 000.5) of observation.

Default: DATE-OBS if given, else no default.

CDELT2S = 0.0562896,

CTYPE1S = ’SELN-AZP’,

CTYPE2S = ’SELT-AZP’,

PV2 1S = 202.64,

CRVAL1S = −0.23,

CRVAL2S = 5.89,

LONPOLES = 161.06,

WCSNAMES = ’SELENOGRAPHIC COORDINATES’.

We have used the letter S to denote the alternate coordinate
system simply to demonstrate that there is no requirement to
start with A. A WCSNAMEa keyword, defined in Paper I, is used
to identify the coordinate system. Note that selenographic co-
ordinates are right-handed so that selenographic longitude in-
creases towards the west on the celestial sphere as seen from
the Earth and this is handled by setting CDELT1S positive.

As an extension of this example, a FITS header with
three coordinate systems might be constructed for an image of
Saturn; a celestial grid for the background, a saturnographic
system for the surface of the planet, and a third system for
its rings. The rings might be described by a zenithal equidis-
tant (ARC) projection with associated linear transformation ma-
trix set to match the oblique viewing angle.

7.5. Realization

Calabretta (1995) has written, and made available under a GNU
license, a package of routines, , which implements all
projections and coordinate conversions defined here. It contains
independent C and Fortran libraries.

The Fortran library includes a routine, , which is
based on  and uses  to draw general curvilinear
coordinate axes. It was used to generate Fig. 36.

8. Summary

We have developed a flexible method for associating celestial
coordinates with a FITS image and implemented it for all pro-
jections likely to be of use in astronomy. It should be a rel-
atively simple matter to add new projections should the need
ever arise.

The FITS-header keywords defined in this paper are sum-
marized in Table 12 with the 3-letter projection codes listed in
Table 13. The column labeled θ0 gives the native latitude of the
reference point in degrees (φ0 = 0 always) and the parameters
associated with each projection are listed in the nomenclature
of Sect. 5.
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Table 13. Summary of projection codes, default values of φ0 and θ0, special properties, full name, and required parameters. Where a projection
has a special property other than being conformal, equiareal, or equidistant a reference is given to the section where this is discussed.

FITS Special Projection parameters associated with latitude† axis i
Code φ0 θ0 properties Projection name PV i 0a PV i 1a PV i 2a PV i 3a PV i ma

AZP 0◦ 90◦ Sect. 5.1.1 Zenithal perspective µ γ
SZP 0◦ 90◦ Sect. 5.1.2 Slant zenithal perspective µ φc θc

TAN 0◦ 90◦ Sect. 5.1.3 Gnomonic
STG 0◦ 90◦ Sect. 5.1.4, Conformal Stereographic
SIN 0◦ 90◦ Sect. 5.1.5 Slant orthographic ξ η
ARC 0◦ 90◦ Equidistant Zenithal equidistant
ZPN 0◦ 90◦ Zenithal polynomial P0 P1 P2 P3 . . . P20

ZEA 0◦ 90◦ Equiareal Zenithal equal-area
AIR 0◦ 90◦ Sect. 5.1.9 Airy θb

CYP 0◦ 0◦ Cylindrical perspective µ λ

CEA 0◦ 0◦ Equiareal Cylindrical equal area λ
CAR 0◦ 0◦ Equidistant Plate carrée
MER 0◦ 0◦ Conformal Mercator

SFL 0◦ 0◦ Equiareal Sanson-Flamsteed
PAR 0◦ 0◦ Equiareal Parabolic
MOL 0◦ 0◦ Equiareal Mollweide
AIT 0◦ 0◦ Equiareal Hammer-Aitoff

COP 0◦ θa Conic perspective θa η
COE 0◦ θa Equiareal Conic equal-area θa η
COD 0◦ θa Equidistant Conic equidistant θa η

COO 0◦ θa Conformal Conic orthomorphic θa η

BON 0◦ 0◦ Equiareal Bonne’s equal area θ1

PCO 0◦ 0◦ Polyconic

TSC 0◦ 0◦ Sect. 5.6.1 Tangential Spherical Cube
CSC 0◦ 0◦ Sect. 5.6 COBE Quadrilateralized Spherical Cube
QSC 0◦ 0◦ Sect. 5.6 Quadrilateralized Spherical Cube

† Parameters PV i 0a, PV i 1a, and PV i 2a associated with longitude axis i implement user-specified values of (φ0, θ0) as discussed in Sect. 2.5,
and PV i 3a, and PV i 4a encapsulate the values of LONPOLEa and LATPOLEa respectively, as discussed in Sect. 2.6.
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Appendix A: Projection aliases

Table A.1 provides a list of aliases which have been used by
cartographers for special cases of the projections described in
Sect. 5.

Appendix B: Mathematical methods

B.1. Coordinate rotation with matrices

The coordinate rotations represented in Eqs. (2) or (5) may be
represented by a matrix multiplication of a vector of direction
cosines. The matrix and its inverse (which is simply the trans-
pose) may be precomputed and applied repetitively to a variety
of coordinates, improving performance. Thus, we have

l
m
n

 =

r11 r12 r13

r21 r22 r23

r31 r32 r33




l′
m′
n′

 , (B.1)

where

(l′,m′, n′)= (cos δ cosα, cos δ sinα, sin δ),

(l,m, n)= (cos θ cosφ, cos θ sinφ, sin θ),
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Table A.1. Projection aliases.

Name Alias for Name Alias for

Gnomonic AZP with µ = 0 Miller CAR with x scaled by 2/π
= Central Equirectangular CAR with unequal scaling

Near-sided perspective AZP with µ = 1.35 Cartesian CAR

Clarke’s (first) AZP with µ = 1.35 = Equidistant
Clarke’s (second) AZP with µ = 1.65 cylindrical
James’ AZP with µ = 1.367 Cassini CAR transverse case
La Hire’s AZP with µ = 1.71 Transverse Mercator MER transverse case
Approximate equidistant = Transverse cylindrical

zenithal AZP with µ = 1.7519 orthomorphic
Approximate equal area Sinusoidal SFL

zenithal AZP with µ = 2.4142 = Global sinusoid (GLS)
Postel ARC =Mercator equal-area
= Equidistant =Mercator-Sanson
= Globular = Sanson’s

Lambert azimuthal Craster PAR

equivalent ZEA Bartholomew’s atlantis MOL oblique case
= Lambert azimuthal Mollweide’s homolographic MOL

equal area = Homolographic
= Lambert polar = Homalographic

azimuthal = Babinet
= Lorgna = Elliptical

Gall’s cylindrical CYP with µ = 1, λ =
√

2/2 Hammer equal area AIT

Cylindrical equal area CYP with µ = ∞ = Aitoff
Simple cylindrical CYP with µ = 0, λ = 1 = Aitov
= Central cylindrical Bartholomew’s nordic AIT oblique case
= Cylindrical central One-standard conic Conic with θ1 = θ2

perspective = Tangent conic
= Gall’s stereographic Two-standard conic Conic with θ1 , θ2

Lambert’s cylindrical CYP with µ = ∞, λ = 1 = Secant conic
= Lambert’s equal area Murdoch conic similar to COD

Behrmann equal area CEA with λ = 3/4 Alber’s COE

Gall’s orthographic CEA with λ = 1/2 = Alber’s equal area
= Approximate Peter’s Lambert equal area COE with θ2 = 90◦

Lambert’s equal area CEA with λ = 1 Lambert conformal conic for spherical Earth = COO
Werner’s BON with θ1 = 90◦

r11 =− sinαp sin φp − cosαp cosφp sin δp,

r12 = cosαp sin φp − sinαp cosφp sin δp,

r13 = cosφp cos δp,

r21 = sinαp cosφp − cosαp sin φp sin δp,

r22 =− cosαp cosφp − sinαp sinφp sin δp,

r23 = sin φp cos δp,

r31 = cosαp cos δp,

r32 = sinαp cos δp,

r33 = sin δp.

The inverse equation is


l′
m′
n′

 =

r11 r21 r31

r12 r22 r32

r13 r23 r33




l
m
n

 . (B.2)

B.2. Iterative solution

Iterative methods are required for the inversion of several of
the projections described in this paper. One, Mollweide’s, even
requires solution of a transcendental equation for the forward
equations. However, these do not give rise to any particular dif-
ficulties.

On the other hand, it sometimes happens that one pixel and
one celestial coordinate element is known and it is required to
find the others; this typically arises when plotting graticules on
image displays. Although analytical solutions exist for a few
special cases, iterative methods must be used in the general
case. If, say, p2 and α are known, one would compute pixel
coordinate as a function of δ and determine the value which
gave p2. The unknown pixel coordinate elements would be ob-
tained in the process.
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This prescription glosses over many complications, how-
ever. All bounded projections may give rise to discontinuities
in the graph of p2 versus δ (to continue the above exam-
ple), for example where the meridian through α crosses the
φ = ±180◦ boundary in cylindrical, conic and other projec-
tions. Even worse, if the meridian traverses a pole represented
as a finite line segment then p2 may become multivalued at a
particular value of δ. The derivative ∂p2/∂δ will also usually
be discontinuous at the point of discontinuity, and it should
be remembered that some projections such as the quad-cubes
may also have discontinuous derivatives at points within their
boundaries.

We will not attempt to resolve these difficulties here but
simply note that  (Calabretta, 1995) implements a solu-
tion.

Appendix C: The slant orthographic projection
The slant orthographic or generalized SIN projection derives
from the basic interferometer equation (e.g. Thompson et al.
1986). The phase term in the Fourier exponent is

℘ = (e − e0) · B, (C.1)

where e0 and e are unit vectors pointing towards the field center
and a point in the field, B is the baseline vector, and we measure
the phase ℘ in rotations so that we don’t need to carry factors
of 2π. We can write

℘ = puu + pvv + pww, (C.2)

where (u, v, w) are components of the baseline vector in a right-
handed coordinate system with the w-axis pointing from the
geocenter towards the source and the u-axis lying in the equa-
torial plane, and

pu = cos θ sin φ,
pv =− cos θ cosφ,
pw= sin θ − 1,

(C.3)

are the coordinates of (e − e0), where (φ, θ) are the longitude
and latitude of e in the spherical coordinate system with the
pole towards e0 and origin of longitude towards negative v, as
required by Fig. 3. Now, for a planar array we may write

nuu + nvv + nww = 0 (C.4)

where (nu, nv, nw) are the direction cosines of the normal to the
plane. Using this to eliminate w from Eq. (C.2) we have

℘ =

[
pu − nu

nw
pw

]
u +

[
pv − nv

nw
pw

]
v· (C.5)

Being the Fourier conjugate variables, the quantities in brackets
become the Cartesian coordinates, in radians, in the plane of the
synthesized map. Writing

ξ=nu/nw,
η=nv/nw,

(C.6)

Eqs. (61) and (62) are then readily derived from Eqs. (C.3) and
(C.5). For 12-hour synthesis by an east-west interferometer the
baselines all lie in the Earth’s equatorial plane whence (ξ, η) =
(0, cot δ0), where δ0 is the declination of the field center. For a

“snapshot” observation by an array such as the VLA, Cornwell
& Perley (1992) give (ξ, η) = (− tan Z sinχ, tan Z cosχ), where
Z is the zenith angle and χ is the parallactic angle of the field
center at the time of the observation.

In synthesizing a map a phase shift may be applied to the
visibility data in order to translate the field center. If the shift
applied is

∆℘ = quu + qvv + qww (C.7)

where (qu, qv, qw) is constant then Eq. (C.2) becomes

℘ = (pu − qu)u + (pv − qv)v + (pw − qw)w, (C.8)

whence Eq. (C.5) becomes

℘= [(pu − qu) − ξ(pw − qw)]u
+[(pv − qv) − η(pw − qw)]v.

(C.9)

Equations (61) and (62) become

x=
180◦

π

[
cos θ sin φ + ξ (sin θ − 1)

] − 180◦

π

[
qu − ξqw] ,

y=−180◦

π

[
cos θ cosφ − η (sin θ − 1)

] − 180◦

π

[
qv − ηqw

]
,

(C.10)

from which on comparison with Eqs. (61) and (62) we see that
the field center is shifted by

(∆x,∆y) =
180◦

π
(qu − ξqw, qv − ηqw). (C.11)

The shift is applied to the coordinate reference pixel.
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