
 1

A proposal for xNTD computing

T.J. Cornwell, ATNF
Tim.Cornwell@csiro.au

10/2/06

Abstract: I identify the key challenges in xNTD computing as the large
scale in data and processing, the use of focal plane arrays in radio
synthesis, and the need for streamlined scientific operations. System
complexity must be limited if the software costs are to be constrained. I
propose an approach to xNTD computing designed to provide robust,
well-documented scientific capabilities with a limited software budget. In
this approach, the complexity is constrained at the top level by only
supporting a limited number of observing modes. These modes are
implemented by “Software Instruments”. As we gain experience, we can
deliver more Software Instruments.

1. xNTD Goals and challenges

The xNTD has two main purposes – to act as a demonstrator for the Square Kilometer
Array and to do great science. The xNTD will be a novel type of radio telescope –
consisting of about 30 – 50 conventional synthesis arrays operating in parallel.

Focal plane arrays on each of twenty antennas will deliver multiple parallel streams of
digitized signals that must be transported, correlated, calibrated, and transformed into one
image of a region of the sky. Since the telescope is parallel, the peak data rate is high (a

 2

few TB per hour – see Cornwell, 2006) as is the necessary peak computing (about
20Tflops). The first computing challenge is therefore of large scale in both data and
processing. Cornwell shows that parallel processing with thousands of processors will be
necessary to handle full spectral line observations. Fortunately, much of this processing is
independent per channel – embarrassingly parallel in the terminology of high
performance computing – and can thus be spread across multiple processors with less
effort than would be required for continuum processing.

Although radio synthesis is well understood and quite advanced, until now only single
feeds have been used, and those have been well-behaved systems such as horns. xNTD
will synthesize feeds by summing multiple elements in a focal plane array. We currently
know little about the performance of such systems in an astronomical context. Novel
calibration and imaging techniques will certainly be necessary. This constitutes the
second challenge: use of focal plane arrays in radio synthesis. Experience with the
NTD will give insight on what the problems are likely to be but we already know that
calibration of the FPA is likely to be an important factor.

The xNTD will be operated as a national facility (rather than, for example, an
experimental system), and although the system will be complex, it must allow effective
scientific use. This is clearly the third challenge: streamlined scientific operation. There
are a number of models for how to do this but most require substantial software
resources. For example, ALMA is spending about 430 FTE-years to make a telescope
that can be used easily by radio astronomy neophytes.

Thus, to summarize, the key challenges that must be overcome are:

• Large scale in data and processing
• Use of focal plane arrays
• Streamlined scientific operation

These three challenges will also be present for the SKA as well. Any proposed approach
for xNTD or SKA computing must therefore be capable of meeting these challenges.

2. Science requirements
Johnston (2005) has summarized the xNTD science requirements, drawing on a
workshop held at the ATNF in April 2005. Here we distill only the core performance
requirements. We also show the key parameters of the xNTD, along with the
corresponding values for the KAT and the SKA.

 3

Table 1 Summary of possible xNTD science

Topic Requirements
Extragalactic HI emission surveys 300 day all sky survey. Ultra deep, 100 day

integration in one direction.
Extragalactic HI absorption
surveys

Large scale survey, tens of days, to 0.01 optical
depth

Survey for OH masers and mega
masers

100 day survey over 1000 square degrees

Continuum surveys NVSS equivalent every day. 1 day gives 400uJy
noise (confusion limit), can see polarization
variability deeper. Variability at 2% for 100mJy
sources, 20% for 10mJy, daily.

Galactic HI surveys 100 day survey, 600 square degrees at 1K, 40
arcsec. Deep imaging of mid-latitudes for HVCs:
100mK at 3 arcmin

Pulsar surveys 120 day all sky survey, adding all collecting area,
pixelizing the primary beam

Polarization and Cosmic
Magnetism

All sky survey to 1% across the field. Faraday
tomography: slices of 100MHz across entire band

VLBI Wide field of view, ionospheric calibration

Table 2 xNTD, KAT, and SKA telescope parameters

 xNTD KAT SKA
Frequency Range 0.8 – 1.7 GHz 0.7 – 1.7 GHz 0.1 – 30 GHz

Polarizations 2 2 2
Bandwidth 256MHz 250 MHz 25%

Frequency resolution 5kHz 4kHz
Spectral Channels per beam 65536 65536 65536

Spectral Resolution NYS ~2 km/s NYS

Aeff/Tsys 3584/50 = 76 45 20000
Field of view 40 deg2 40 deg2 1 – 200 deg2

3. Resources and Assets

Suppose that the computing budget of xNTD was to be $10M? What would this buy?
Splitting equally between hardware and software, we could afford computing hardware of
$5M – about right according to the preliminary analysis by Cornwell (2006). The other
$5M buys about 50 FTE-years of software effort. This is about one tenth that planned for
ALMA, half of that for LOFAR, and close to that for KAT. Large analysis packages such
as AIPS, IRAF, and AIPS++ typically consume hundreds of FTE-years to reach a level of

 4

maturity sufficient of supporting a range of science. Put another way, at our typical costs
and levels of quality, 50 FTE-years buys about 300,000 to 400,000 lines of debugged,
tested, documented code. Hence the conclusion has to be that reuse of existing software
packages is essential. Examples of packages available to us internally are AIPS++,
MIRIAD, ATOMS, SCHED, LiveData, the ATCA pipeline, ASAP, RVS.

We also have an option to collaborate closely with the KAT group to share computing
costs. This seems very advisable given the limited resources available to both groups, the
similarity of the telescopes, and the shared imperative to demonstrate international
collaboration in the lead up to SKA. The KAT computing group expects to consume a
similar number of FTE-years. The group is strong in non-astronomical software
development, particularly so in commercial web-based solutions. This is complementary
to the skill-base of ATNF, which is mainly in astronomy, telescope monitor and control,
and the development of astronomical packages such as those listed above. In addition,
there are areas in which neither group has significant existing expertise, such as high
performance computing and very large data storage. Collaboration between the xNTD
and KAT computing groups would double the nominal resources available, though with
some increase in overhead due to the geographic and organizational splits between the
two groups.

On the hardware side, an investment of $5M represents a substantial increment to
Australia’s total capacity in scientific computing. Since the xNTD computing throughput
needs will ebb and flow with the science to be done, some form of cost sharing within
CSIRO via HPSC or in the larger community via APAC may be possible.

4. Operational Model

In this section, we turn to a discussion of the scientific operations. Conventionally, radio
synthesis arrays are operated in a free-form way. Observations are specified at a fine
level by using a program such as SCHED to issue sequences of commands such as
“observe this source at this frequency for a few minutes”. A complete observation may
consist of hundreds of such commands. The observer is normally responsible for the
subsequent data processing in which the inevitable complexity arising from the fine
specifications must be deal with. The input complexity of the telescope therefore
translates directly into complexity for the observer and for the software developer.
The conventional architecture for a synthesis telescope is therefore quite flat (see Figure
1), requiring the observer to interact directly with the telescope, archive, and the
reduction packages. Even in a sophisticated and complex telescope like ALMA, this
layering is used.

 5

Figure 1 Conceptual layering of software in conventional design for a synthesis telescope.

The ALMA project has as a high priority the goal of making the telescope usable by radio
astronomy neophytes. To do this, ALMA is taking the approach of developing a software
system capable of tracking and dealing with the complexity at the second layer. The
ALMA software will aid the observer in setting up the schedule, and then deal
automatically with the necessary processing during observing and data processing.
Whether this is a viable approach has yet to be demonstrated by the successful operation
of ALMA in this mode. As noted above, the ALMA software budget exceeds that of
xNTD by about an order of magnitude.

An alternative approach, similar to that used in the Parkes Multibeam system (Barnes,
1997), is to limit complexity at the front end. Only certain types of observing are to be
supported and these are describable by a limited set of parameters. Ensuring that the
processing engine can support the observing is then much easier. The KAT project has a
similar concept in which the back end software is called a Software Instrument. I suggest
we adopt the same terminology. A Software Instrument presents a simple interface aimed
at supporting one type of observation. For example, one SI would support continuum
polarimetric imaging and another would support HI surveys.
The proposed conceptual layering of xNTD is represented in Figure 2. In the proposed
approach, the presentation layer and the software instruments are layered on top of the
data reduction packages and thus mediate the complexity.

 6

Figure 2 A possible conceptual layering showing multiple software instruments SI1, SI2, SI3, SI4

Under this model, operations proceed as follows. The observer interacts with a given
software instrument. Using the SI, the telescope is placed into a well-determined
observing mode, specified by a limited number of options. We can call this a use case.
Data flow through the software instrument, which executes in the known computer
hardware environment available, and the results are stored in the archive for access by the
observer. Opportunities for interaction by the observer are limited – the existing
observing can be aborted and another configuration invoked. As an example, consider a
survey of a given region for HI. The observer should specify the field center, observing
frequency, velocity resolution, and integration time. In addition, some defaults for
calibration (amplitude, phase, bandpass) can be examined and overridden if necessary.
Data are collected and flow through to the archive. A Software Instrument (SI) monitors
the data accumulation and processes the data accordingly. The observing context and
sequence of observations match the heuristics built into the SI so relatively little
intelligence is needed. Furthermore, the SI is matched to the computing hardware
available (probably a large cluster) and so computing times (such as that taken for a
bandpass solution) are known. This makes the internal logic of the processing
significantly easier to design.

As said earlier, this key to this approach is to limit complexity at the telescope front end.
The scientific capabilities of the telescope are limited explicitly by the use cases
supported. Consequently, we can ensure that for early supported use case, there is a
corresponding SI available and that it is well tested and documented. Thus this approach
also should increase quality by constraining the data pathways that must be tested prior to
release of a new capability. As we gain more experience in operations, we can make the
telescope support more use cases by the development, testing, and deployment of the
corresponding software instruments.

The science topics listed in Table 1 translate to a limited number of use cases. Strategic
decisions can be made to develop these use cases in a known order to match the overall

 7

science goals for the telescope. All the activities of the xNTD team can be focused on
developing one use case at a time.

Different software instruments may be developed using whatever tools are most suitable.
Both AIPS++ and MIRIAD are currently possibilities and others may come along.
Decisions can be made at the time of implementation based on the needs of a given
software instrument. Parallel processing will be needed to match the data processing load,
especially for spectral line observations. As discussed by Cornwell (2006), this is
probably embarrassingly parallel and could therefore be implemented at a high, data
level, perhaps via a scripting layer layered on top of MIRIAD. Calibration and imaging of
continuum observations is likely to be much more demanding algorithmically and
computationally. Data level parallelization will not be sufficient and instead algorithmic
parallelization either by MPI or perhaps OpenMP will be necessary. For this AIPS++
may be more suitable.

5. Implications

The disadvantages of this proposed scheme are:

• Scientific capabilities are limited to those explicitly supported by an SI.

The advantages are:

• The telescope will be easier to use than with a conventional approach.
• The optimum observing and data reduction strategies can be encapsulated in

software instead of cookbooks and informal knowledge.
• Scientific capabilities are released when ready, in a robust, well documented,

computationally optimized scientific instrument.
• Versioning of scientific instruments simplifies support.
• New capabilities can be added incrementally, with known resource requirements.

Thus the development of an SI could be the subject of an ATNF Project, managed
by the usual CSIRO project management apparatus.

• Software costs will be better known, more constrained, and lower than for a
conventional approach.

Finally, the software instruments need not be the only means for getting access to the
telescope. For groups with the requisite software skills, we can provide open interfaces to
various parts of the telescope. This allows the addition of new capabilities to the
telescope without requiring the aid of the core team. Google Earth provides a nice
example of the ingenious uses people can make of open interfaces. Examples of possible
open interfaces in xNTD are:

• TCP interface to the beamformer and correlator data streams (as used by ATA)
• Software instrument - presentation layer
• Archive access

Opening the interfaces in this way will allow other groups with the requisite software

 8

expertise to access the telescope at a deeper level than allowed by the software
instruments.

Acknowledgements

Many of the ideas presented here arose from discussions with a wide range of people. I’d
particularly like to acknowledge Jasper Horrell and Simon Ratcliffe of the KAT
Computing Group.

References

Barnes, D.G., 1998, “Realtime, Object-oriented Reduction of Parkes Multibeam Data
using AIPS++”, ADASS VII, ASP Conference series vol 145. See
http://www.adass.org/adass/proceedings/adass97/barnesd1.html.

