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Abstract: I identify the key challenges in xNTD computing as the large 
scale in data and processing, the use of focal plane arrays in radio 
synthesis, and the need for streamlined scientific operations. System 
complexity must be limited if the software costs are to be constrained. I 
propose an approach to xNTD computing designed to provide robust, 
well-documented scientific capabilities with a limited software budget. In 
this approach, the complexity is constrained at the top level by only 
supporting a limited number of observing modes. These modes are 
implemented by “Software Instruments”. As we gain experience, we can 
deliver more Software Instruments. 

 

1. xNTD Goals and challenges 
 
The xNTD has two main purposes – to act as a demonstrator for the Square Kilometer 
Array and to do great science. The xNTD will be a novel type of radio telescope – 
consisting of about 30 – 50 conventional synthesis arrays operating in parallel.  
 

 
 
Focal plane arrays on each of twenty antennas will deliver multiple parallel streams of 
digitized signals that must be transported, correlated, calibrated, and transformed into one 
image of a region of the sky. Since the telescope is parallel, the peak data rate is high (a 
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few TB per hour – see Cornwell, 2006) as is the necessary peak computing (about 
20Tflops). The first computing challenge is therefore of large scale in both data and 
processing. Cornwell shows that parallel processing with thousands of processors will be 
necessary to handle full spectral line observations. Fortunately, much of this processing is 
independent per channel – embarrassingly parallel in the terminology of high 
performance computing – and can thus be spread across multiple processors with less 
effort than would be required for continuum processing. 
 
Although radio synthesis is well understood and quite advanced, until now only single 
feeds have been used, and those have been well-behaved systems such as horns. xNTD 
will synthesize feeds by summing multiple elements in a focal plane array. We currently 
know little about the performance of such systems in an astronomical context. Novel 
calibration and imaging techniques will certainly be necessary. This constitutes the 
second challenge: use of focal plane arrays in radio synthesis. Experience with the 
NTD will give insight on what the problems are likely to be but we already know that 
calibration of the FPA is likely to be an important factor. 
 
The xNTD will be operated as a national facility (rather than, for example, an 
experimental system), and although the system will be complex, it must allow effective 
scientific use. This is clearly the third challenge: streamlined scientific operation. There 
are a number of models for how to do this but most require substantial software 
resources. For example, ALMA is spending about 430 FTE-years to make a telescope 
that can be used easily by radio astronomy neophytes. 
 
Thus, to summarize, the key challenges that must be overcome are: 
 

• Large scale in data and processing 
• Use of focal plane arrays 
• Streamlined scientific operation 

 
These three challenges will also be present for the SKA as well. Any proposed approach 
for xNTD or SKA computing must therefore be capable of meeting these challenges. 

2. Science requirements 
Johnston (2005) has summarized the xNTD science requirements, drawing on a 
workshop held at the ATNF in April 2005.  Here we distill only the core performance 
requirements. We also show the key parameters of the xNTD, along with the 
corresponding values for the KAT and the SKA. 
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Table 1 Summary of possible xNTD science 

Topic Requirements 
Extragalactic HI emission surveys 300 day all sky survey. Ultra deep, 100 day 

integration in one direction. 
Extragalactic HI absorption 
surveys 

Large scale survey, tens of days, to 0.01 optical 
depth 

Survey for OH masers and mega 
masers 

100 day survey over 1000 square degrees 

Continuum surveys NVSS equivalent every day. 1 day gives 400uJy 
noise (confusion limit), can see polarization 
variability deeper. Variability at 2% for 100mJy 
sources, 20% for 10mJy, daily. 

Galactic HI surveys 100 day survey, 600 square degrees at 1K, 40 
arcsec. Deep imaging of mid-latitudes for HVCs: 
100mK at 3 arcmin 

Pulsar surveys 120 day all sky survey, adding all collecting area, 
pixelizing the primary beam 

Polarization and Cosmic 
Magnetism 

All sky survey to 1% across the field. Faraday 
tomography: slices of 100MHz across entire band 

VLBI Wide field of view, ionospheric calibration 
 

Table 2 xNTD, KAT, and SKA telescope parameters 

 xNTD KAT SKA 
Frequency Range 0.8 – 1.7 GHz 0.7 – 1.7 GHz 0.1 – 30 GHz 

Polarizations 2 2 2 
Bandwidth 256MHz 250 MHz 25% 

Frequency resolution 5kHz 4kHz  
Spectral Channels per beam 65536 65536 65536 

Spectral Resolution NYS ~2 km/s NYS 

Aeff/Tsys 3584/50 = 76 45 20000 
Field of view 40 deg2 40 deg2 1 – 200 deg2 

 

3. Resources and Assets 
 
Suppose that the computing budget of xNTD was to be $10M? What would this buy? 
Splitting equally between hardware and software, we could afford computing hardware of 
$5M – about right according to the preliminary analysis by Cornwell (2006). The other 
$5M buys about 50 FTE-years of software effort. This is about one tenth that planned for 
ALMA, half of that for LOFAR, and close to that for KAT. Large analysis packages such 
as AIPS, IRAF, and AIPS++ typically consume hundreds of FTE-years to reach a level of 
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maturity sufficient of supporting a range of science. Put another way, at our typical costs 
and levels of quality, 50 FTE-years buys about 300,000 to 400,000 lines of debugged, 
tested, documented code. Hence the conclusion has to be that reuse of existing software 
packages is essential. Examples of packages available to us internally are AIPS++, 
MIRIAD, ATOMS, SCHED, LiveData, the ATCA pipeline, ASAP, RVS.  
 
We also have an option to collaborate closely with the KAT group to share computing 
costs. This seems very advisable given the limited resources available to both groups, the 
similarity of the telescopes, and the shared imperative to demonstrate international 
collaboration in the lead up to SKA. The KAT computing group expects to consume a 
similar number of FTE-years. The group is strong in non-astronomical software 
development, particularly so in commercial web-based solutions. This is complementary 
to the skill-base of ATNF, which is mainly in astronomy, telescope monitor and control, 
and the development of astronomical packages such as those listed above. In addition, 
there are areas in which neither group has significant existing expertise, such as high 
performance computing and very large data storage. Collaboration between the xNTD 
and KAT computing groups would double the nominal resources available, though with 
some increase in overhead due to the geographic and organizational splits between the 
two groups.  
 
On the hardware side, an investment of $5M represents a substantial increment to 
Australia’s total capacity in scientific computing. Since the xNTD computing throughput 
needs will ebb and flow with the science to be done, some form of cost sharing within 
CSIRO via HPSC or in the larger community via APAC may be possible. 

4. Operational Model 
 
In this section, we turn to a discussion of the scientific operations. Conventionally, radio 
synthesis arrays are operated in a free-form way. Observations are specified at a fine 
level by using a program such as SCHED to issue sequences of commands such as 
“observe this source at this frequency for a few minutes”. A complete observation may 
consist of hundreds of such commands. The observer is normally responsible for the 
subsequent data processing in which the inevitable complexity arising from the fine 
specifications must be deal with. The input complexity of the telescope therefore 
translates directly into complexity for the observer and for the software developer. 
The conventional architecture for a synthesis telescope is therefore quite flat (see Figure 
1), requiring the observer to interact directly with the telescope, archive, and the 
reduction packages. Even in a sophisticated and complex telescope like ALMA, this 
layering is used. 
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Figure 1 Conceptual layering of software in conventional design for a synthesis telescope. 

 
The ALMA project has as a high priority the goal of making the telescope usable by radio 
astronomy neophytes. To do this, ALMA is taking the approach of developing a software 
system capable of tracking and dealing with the complexity at the second layer. The 
ALMA software will aid the observer in setting up the schedule, and then deal 
automatically with the necessary processing during observing and data processing. 
Whether this is a viable approach has yet to be demonstrated by the successful operation 
of ALMA in this mode. As noted above, the ALMA software budget exceeds that of 
xNTD by about an order of magnitude.  
 
An alternative approach, similar to that used in the Parkes Multibeam system (Barnes, 
1997), is to limit complexity at the front end. Only certain types of observing are to be 
supported and these are describable by a limited set of parameters. Ensuring that the 
processing engine can support the observing is then much easier. The KAT project has a 
similar concept in which the back end software is called a Software Instrument. I suggest 
we adopt the same terminology. A Software Instrument presents a simple interface aimed 
at supporting one type of observation. For example, one SI would support continuum 
polarimetric imaging and another would support HI surveys. 
The proposed conceptual layering of xNTD is represented in Figure 2. In the proposed 
approach, the presentation layer and the software instruments are layered on top of the 
data reduction packages and thus mediate the complexity. 
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Figure 2 A possible conceptual layering showing multiple software instruments SI1, SI2, SI3, SI4 

 

Under this model, operations proceed as follows. The observer interacts with a given 
software instrument. Using the SI, the telescope is placed into a well-determined 
observing mode, specified by a limited number of options. We can call this a use case. 
Data flow through the software instrument, which executes in the known computer 
hardware environment available, and the results are stored in the archive for access by the 
observer. Opportunities for interaction by the observer are limited – the existing 
observing can be aborted and another configuration invoked. As an example, consider a 
survey of a given region for HI. The observer should specify the field center, observing 
frequency, velocity resolution, and integration time. In addition, some defaults for 
calibration (amplitude, phase, bandpass) can be examined and overridden if necessary. 
Data are collected and flow through to the archive. A Software Instrument (SI) monitors 
the data accumulation and processes the data accordingly. The observing context and 
sequence of observations match the heuristics built into the SI so relatively little 
intelligence is needed. Furthermore, the SI is matched to the computing hardware 
available (probably a large cluster) and so computing times (such as that taken for a 
bandpass solution) are known. This makes the internal logic of the processing 
significantly easier to design. 
 
As said earlier, this key to this approach is to limit complexity at the telescope front end. 
The scientific capabilities of the telescope are limited explicitly by the use cases 
supported. Consequently, we can ensure that for early supported use case, there is a 
corresponding SI available and that it is well tested and documented. Thus this approach 
also should increase quality by constraining the data pathways that must be tested prior to 
release of a new capability. As we gain more experience in operations, we can make the 
telescope support more use cases by the development, testing, and deployment of the 
corresponding software instruments. 
 
The science topics listed in Table 1 translate to a limited number of use cases. Strategic 
decisions can be made to develop these use cases in a known order to match the overall 
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science goals for the telescope. All the activities of the xNTD team can be focused on 
developing one use case at a time. 
 
Different software instruments may be developed using whatever tools are most suitable. 
Both AIPS++ and MIRIAD are currently possibilities and others may come along. 
Decisions can be made at the time of implementation based on the needs of a given 
software instrument. Parallel processing will be needed to match the data processing load, 
especially for spectral line observations. As discussed by Cornwell (2006), this is 
probably embarrassingly parallel and could therefore be implemented at a high, data 
level, perhaps via a scripting layer layered on top of MIRIAD. Calibration and imaging of 
continuum observations is likely to be much more demanding algorithmically and 
computationally. Data level parallelization will not be sufficient and instead algorithmic 
parallelization either by MPI or perhaps OpenMP will be necessary. For this AIPS++ 
may be more suitable.  

5. Implications 
 
The disadvantages of this proposed scheme are: 
 

• Scientific capabilities are limited to those explicitly supported by an SI. 
 
The advantages are: 
 

• The telescope will be easier to use than with a conventional approach. 
• The optimum observing and data reduction strategies can be encapsulated in 

software instead of cookbooks and informal knowledge. 
• Scientific capabilities are released when ready, in a robust, well documented, 

computationally optimized scientific instrument. 
• Versioning of scientific instruments simplifies support. 
• New capabilities can be added incrementally, with known resource requirements. 

Thus the development of an SI could be the subject of an ATNF Project, managed 
by the usual CSIRO project management apparatus. 

• Software costs will be better known, more constrained, and lower than for a 
conventional approach. 

Finally, the software instruments need not be the only means for getting access to the 
telescope. For groups with the requisite software skills, we can provide open interfaces to 
various parts of the telescope. This allows the addition of new capabilities to the 
telescope without requiring the aid of the core team. Google Earth provides a nice 
example of the ingenious uses people can make of open interfaces. Examples of possible 
open interfaces in xNTD are: 

• TCP interface to the beamformer and correlator data streams (as used by ATA) 
• Software instrument - presentation layer 
• Archive access 

Opening the interfaces in this way will allow other groups with the requisite software 
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expertise to access the telescope at a deeper level than allowed by the software 
instruments. 
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