

A Wideband, Multibeam Spectrometer for Parkes

Lister Staveley-Smith

Matthew Bailes, Steven Tingay, Robert Braun, Mike Jones, Douglas Bock, Willem van Stratten, Jonathon Kocz, Danny Price, Sascha Schediwy, Ettore Carretti

Outline

- Gas evolution in galaxies
- Proposal for a wideband multibeam spectrometer at Parkes
- RFI

Galaxy Evolution

- Cosmic variance (small volumes)
- S/N ratio (long integrations)
- Radio Frequency Interference

RFI occupancy @ Arecibo

Stacking Speed

121 galaxy GMRT stack: galaxies at z=0.24

Lah et al. (2007)

neutral hydrogen gas measurement

using 121 redshifts

$$M_{\rm HI} =$$
 (2.26 ± 0.90)
 $\times 10^9 \, \rm M_{\odot}$

$$0.36 \pm 0.14 \; M*$$

A stacked HI signal at z=0.1 with Parkes (GAMA9 field; Delhaize et al.)

Deep HI integrations by stacking Delhaize

• Noise decreases as \sqrt{t} for up to 60 days!

Issues with multibeam correlator

- Bandwidth of 64 MHz corresponds to only $\Delta z=0.04$
- Spectral resolution of 0.1 MHz too coarse
- Dynamic range
- Robustness against RFI

1270MHz RFI @ Parkes

Proposal

- New multibeam spectrometer/filterbank
- Bandwidth of 200 MHz, or greater (~500 MHz possible, but available 21cm redshifted band is only 1220-1420 MHz).
- Multi-bit for better efficiency and dynamic range
- RFI suppression:
 - polyphase filters
 - bit-locking?
 - reference beam adaptive nulling?
 - beam cross-correlation?

ROACH solution

- Upgrade pulsar iBOBs to ROACH boards with Xilinx Vertex 5 FPGAs.
- ROACH=Reconfigurable Open Architecture Computer Hardware from CASPER (=Collaboration for Astronomy Signal Processing and Electronics Research).

Hardware costs:

ROACH boards	(x16):	\$58k
--------------------------------	--------	-------

- FPGAs (x16): nil

Digitisers (x3): \$5k

Rack, cables \$7k

Computers, switch: \$8k

SUB-TOTAL \$78k

Parkes Unified Backend (PUB?)

Also add following pulsar costs:

– GPU servers (x8): \$67k (Matthew's talk)

10GbE switch (x2): \$32k

SUB-TOTAL: \$99k

TOTAL: \$177k

ROACH advantages

- Cheap
- Well-tested (bugs known)
- Configurable
- Existing code base

LIEF proposal

- Joint ICRAR/Swinburne/CASS/Oxford proposal hopefully to be submitted today to cover unified spectrometer hardware
- Includes \$80k University cash + \$135k in-kind support from CASS+Universities
- Includes 1 FTE engineer
- Timescale: end-2011?

Possible ATUC discussion

- Support from ATUC? (whether or not LIEF successful)
- Other Parkes users (H₂O, methanol, continuum, polarimetry...)?
- ASKAP 32-beam correlator is an alternative solution:
 - similar capabilities (eg 300 MHz bandwidth)
 - see Carrad/Leach talk

Summary

- Wideband, multibeam upgrade has benefits for z>0 HI observations:
 - Efficiency (8-bit)
 - Speed (3x available bandwidth)
 - Dynamic range
 - Robustness against RFI
- Cost-effective
- RFI adaptive cancellation possibilities to be explored
- ROACH/ASKAP technologies combine bandwidth, spectral resolution and dump rate
 - Unified Parkes spectrometer/filterbank