

Parkes and Tidbinbilla at 12mm

ALMA's missing Band 0

Michael Burton

UNSW

Receivers/Front Ends

		Receiver noise	e temperature		Receiver technology				
ALMA Band	Frequency Range	T _{Rx} over 80% of the RF band	T _{Rx} at any RF frequency	Mixing scheme					
1	31.3 – 45 GHz	17 K	28 K	USB	HEMT				
2	67 – 90 GHz	30 K	50 K	LSB	HEMT				
•	SIS								
 18-26 GHz or 12mm Relative sensitivity good at 12mm 									
		d sources: 2 _{ALMA} ~ (A _{Park}		220 GHz ALMA T _{Parkes}	0.5 ~ 1				
10					SIS				

- Dual, linear polarization channels:
 - Increased sensitivity
 - ·Measurement of 4 Stokes parameters
- •183 GHz water vapour radiometer:
 •Used for atmospheric path length correction

12mm: Band 0

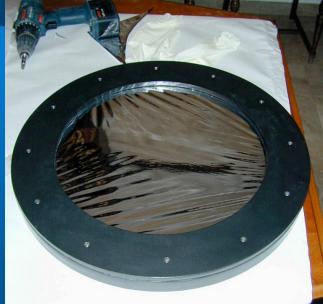
- A waveband in transition
 - From molecules to ionized gas
 - Dense Cores to HCHIIs to UCHIIs to HIIs
 - Mighty masers!
 - Dust in dense proto-planetary environments
 - SKA Cradle of Life
- Characterising the environment of the dense molecular medium of the Galaxy
 - Formation of stars, turbulence in the cold ISM, complex organic chemistry

ATNF Science Priorities Science in 2010 - 2015

Parkes November 2008

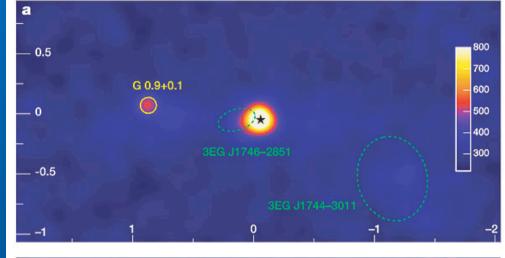
Lewis Ball, Robert Braun, Philip Edwards, Ilana Feain, George Hobbs, Simon Johnston, Naomi McClure-Griffiths

- Pulsars:
 - Searching


Sensitivity and Big Dishes

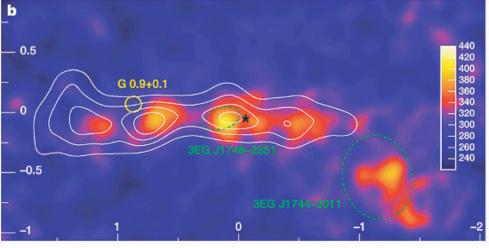
- Point Sources:
 - $-F_v$ ∞ D⁻²; θ ∞ D⁻¹ in same int. time
- Extended Sources:
 - $-I_v$ Fixed; θ∝D⁻¹ in same int. time
- Galactic molecular clouds:
 - Extended but partially fill the beam
 - ⇒Some where in between
 - i.e. Gains of a factor 3 in resolution, upto a factor 10 in sensitivity

Parkes as a gamma-ray telescope?!



Cover in mylar sheeting!

Gamma Rays and Dense Molecular Gas


CMZ

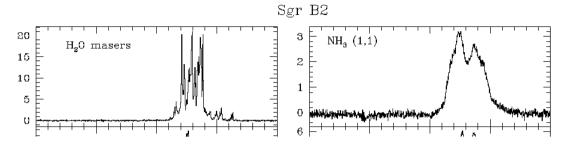
Discovery of very-high-energy γ-rays from the Galactic Centre ridge

Aharonian et al, Nature, 2006, 439, 695

CS contours γ-rays image

What about Ammonia at 12mm?!

HOPS – The H₂O southern Galactic Plane Survey

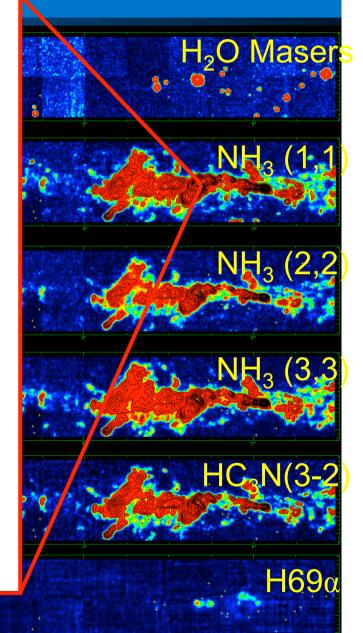

Andrew Walsh, JCU
Michael Burton, UNSW
Graeme White, JCU
Steven Longmore, CfA, USA
Cormac Purcell, Manchester
Nadia Lo, UNSW
Kate Brooks, ATNF
Chris Phillips, ATNF
Shari Breen, Utas
Lyshia Quinn, Manchester

Maxim Voronkov, ATNF
Maria Cunningham, UNSW
Paul Jones, UNSW
James Urquhart, ATNF
Melvin Hoare, U. Leeds
Mark Thompson, U. Hertfordshire
Lisa Harvey-Smith, Sydney Uni
Tui Britton, ATNF
Luke Hindson, U. Hertfordshire

http://www.jcu.edu.au/astronomy/awalsh/HOPS/

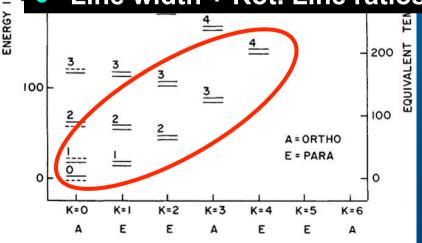
Image Courtesy: Cormac Purcell

1=359-010

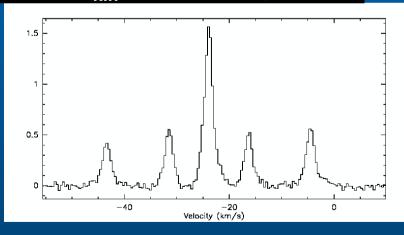


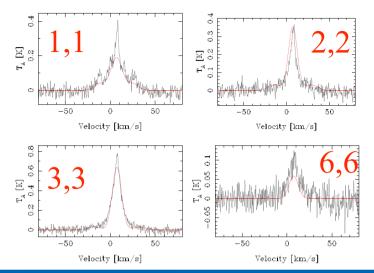
~540 H₂O Masers in 100 sq deg.

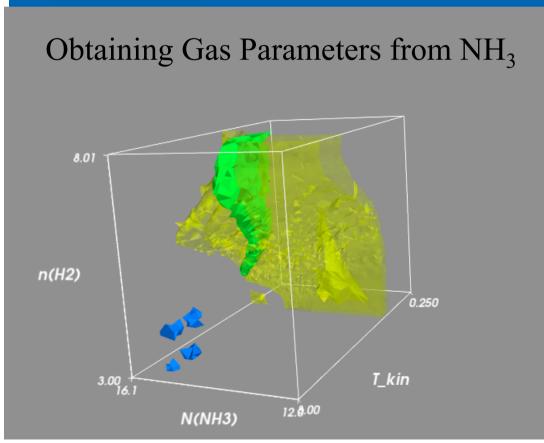
- Reaches 1.5 Jy
- 2/3rd new
- MMB achieved 0.4 Jy for CH₃OH
 - How many more??

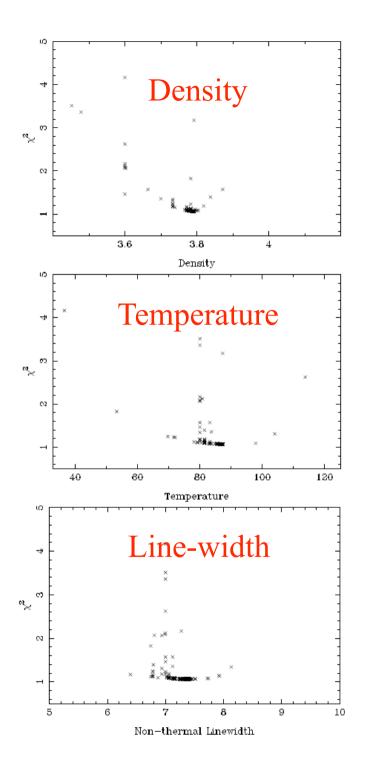

Lots (!) of NH₃ (1,1) detections

- Only $1/3^{rd}$ seen in (2,2) line.
 - Needed for T-characterisation
- Extended emission but small overall filling factor

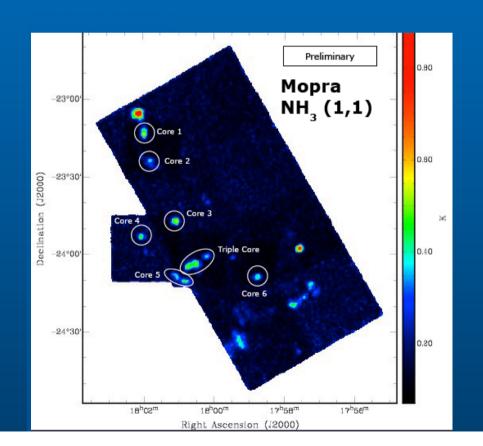


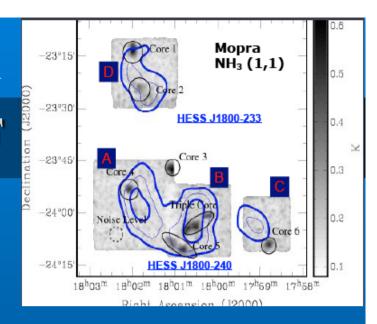

Some Ammonia Physics

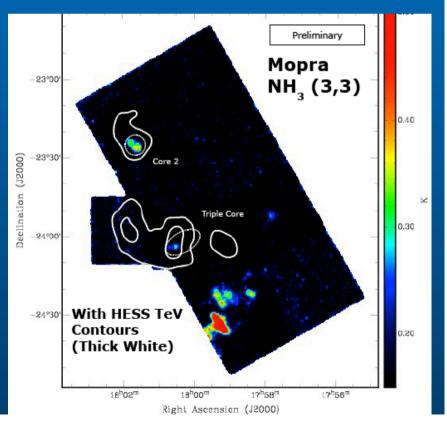

- Inversion transitions from tunnelling
 - Fine structure from quadrupole splitting
 - Metastable (J,K)=(1,1), (2,2)... transitions
 - Populations determined by collisions
- Optical depth from hyperfine line ratios
- Line width + Rot. Line ratios + LVG → T_{kin} and Density



Ę

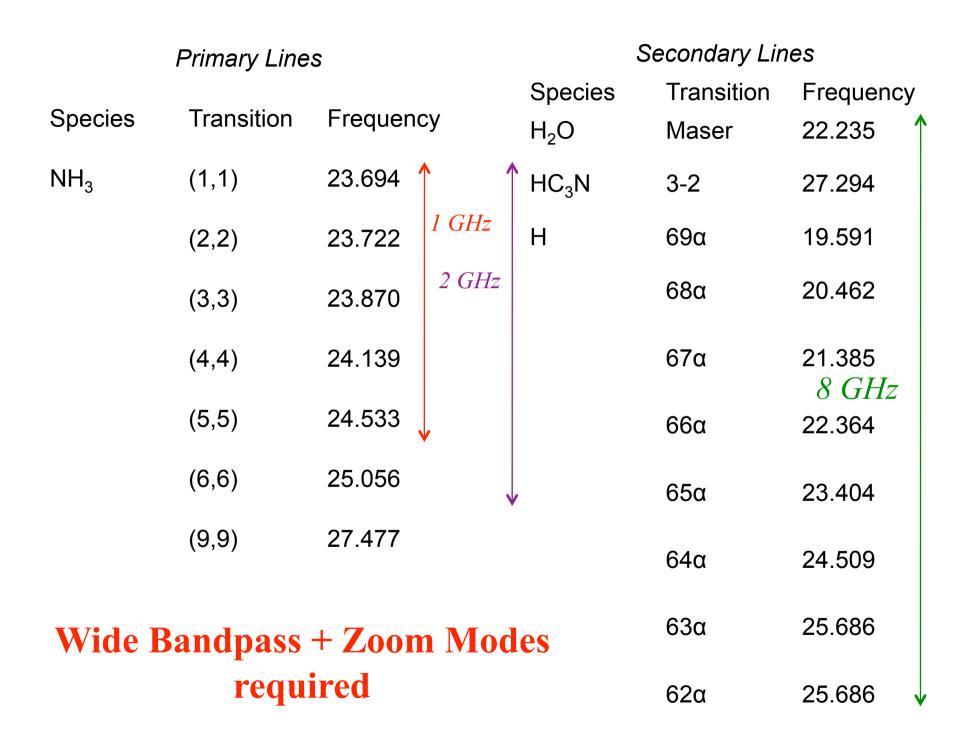


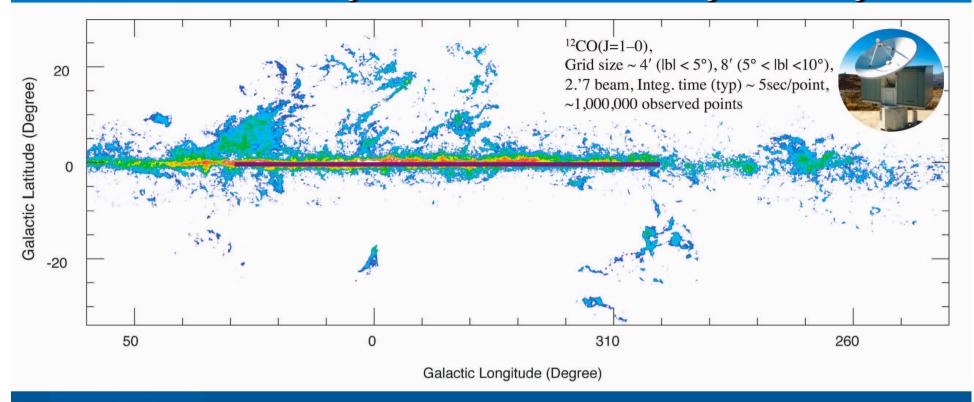



Nicholas, Rowell et al: W28 Mopra Program

γ-rays, SNRs & MSF

Big Dish wins for the high-J lines





Comparing the Dishes

Telescope	D	FWHM @ 12.7mm	Tsys	Ap. Eff	Gain	Bandwidth	Point Source Line	Extended Source Line
	m	arcmin	K		K/Jy	MHz		
Mopra	22	2.4	70	0.6	0.08	8,000	1.00	1.00
Parkes	55	1.0	60	0.5	0.43	1,000	0.16	0.86
Tidbinbilla	70	0.7	40	0.5	0.70	280	0.07	0.57

Focal Plane Arrays for Southern Sky Surveys

HOPS took ~20 weeks to map 100°x1° with 2.5 arcmin beam

An even bigger project with a smaller beam!

A Science Program

- The Dense, Cold Molecular Medium of the Galaxy: characterising the environment where star formation occurs
 - (n, T, V, N) through Ammonia Lines
 - Big Dishes bring the sensitivity needed for higher-J lines plus the spatial resolution
- Ancillary investigations for free:
 - Water Masers, Organic Cores (HC₃N)
 - HII regions across the galaxy

The Needs

- Wide-band pass spectrometer with Zoom Modes
 - 1 or 2 GHz: NH₃ Only
 - 8 GHz: the lot!
 - Be sure we're getting the best T_{svs} the sites offer
- Large Area of Sky:
 - No multibeam: zoom into HOPS-peaks
 - With a 12m multibeam: "Super-HOPS"
- The Telescope
 - Parkes good, Tid better if can be equipped
 - Australian-led survey with our National Facilities
 - Our contribution to ALMA science participation
 - Consider 10% dedicated usage of Tid?
 - Single observing mode

The End