

Technologies for Radio Astronomy

Mark Bowen | Acting Theme Leader – Technologies for Radio Astronomy

October 2012

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

Outline

Current Projects

- CABB
- ATCA C/X Upgrade
- FAST

Parkes – Future Receiver Systems

- Wideband Receiver Systems
- PAFs

Compact Array Broadband Backend

Status

- Last ATUC meeting it was asked, do we stop zoom development after
 64MHz delivery and fix CABB's bugs first?
- 64 MHz zoom modes have been delivered. The new zoom mode has had a very positive reception from observers, although setting up is still time-consuming and calibration is a more complicated process than with the 1 MHz modes.
- Reconfigures to all modes except 1 MHz zooms are now routinely done by DAs and observers; 1 MHz zooms are still left to Robin and Jamie.
- Dick Ferris, Tim Bateman and Warwick Wilson found a solution to a bus calibration problem and the more complex memory calibration problem is being tackled using an enhanced emulation system built up in Marsfield over the past months.

ATCA 4 – 12GHz Receiver

Status

- Australian Astronomy Ltd. funded program upgrade funding continues until June 2013.
- The manufacture of hardware and components for the production receivers is ongoing.
- The first two receivers (production) were installed on the ATCA during Aug Sep 2012.
- The next two receivers (3 and 4) are currently in the Marsfield laboratories undergoing modification.
- Installation of receivers 3 and 4 is scheduled for end of November 2012.
- The plan is to have all ATCA receivers (excluding spare) completed in Feb – Mar 2013.

4 – 12GHz Receiver - Performance

4.0 – 12.25GHz Feed Horn Development

Status

- Existing C/X feed horn does not work above 10.8GHz.
- Two prototype 4.0 12.25GHz feed horns were delivered by BAE Systems in Jul – Aug 2012.
- Feed tested on the ICT Centre antenna range during Aug – Sep 2012.
- Single feed installed on the ATCA (CA03) for evaluation during September 2012.
- Preliminary Tsys results (up to 12GHz) are promising.
- Evaluation of beam patterns, polarisation performance, sensitivity, etc. underway.
- Evaluation of performance above 12GHz requires modification to CABB.

Prototype 4 – 12.25GHz Feed - Performance

CAO3 4cm Feed Horn Comparison

FAST Multi-beam Receiver - Feasibility Study

Background

- Joint feasibility study involving NAOC, JBCA and CSIRO.
- CSIRO and JBCA developing a cryogenic LNA and OMT.
- CASS working in collaboration with CSIRO ICT Centre for feed and Ortho-mode Transducer design.

CASS conducting a design study for the cryogenic receiver system.

FAST Multi-beam Receiver - Feasibility Study

Status

- ICTC feed electromagnetic design almost complete.
- CASS LNA and cryostat design underway.
- CASS prototype LNA assembled and under test.

Parkes Technology Upgrades

Initial stage of developing a long term plan – Options:

Wideband Receivers

- 700 MHz to 4 GHz
- 4 12 GHz (16GHz) (18GHz) (20GHz) (24GHz)?

PAFs

- Frequency coverage comparable to ASKAP Mk II PAF.
- Room temperature or Cryogenic?

Wideband Receiver Development

Status

- A feasibility study to determine the design, performance and compromises and address some of the challenges commenced.
- Preliminary feed designs for 3:1, 5:1 or 6:1 bandwidths are well advanced.
- Preliminary results of modeling appear challenge the assumption that scaling a single feed design would produce the best scientific and operational outcome.
- Development of preliminary project plan and scoping work commenced.
- Discussion CASS scientific staff and broader user community underway.
- Manpower, existing project commitments are constraints (ASKAP, ATCA cm upgrade, CABB, SKA).

Ahmed Akgiray and Sander Weinreb

3.3:1 Bandwidth Quad Ridge Horn

5:1 Bandwidth Quad Ridge Horn

6.7:1 Bandwidth Quad Ridge Horn

Wideband Receiver Development

What have we learnt?

- The beam symmetry, polarisation performance, illumination characteristics of wide band feeds are not as good as "traditional" feed horns.
- A simple scaling of a single design is possible but unlikely to be optimal.
- A mix of wideband (6:1) and ~octave band (2:1, 3:1) feeds may be the way to achieve the best science and operational outcomes.
- It should be possible to include more than one band in a single large receiver package (subject to physical limitations).
- Modelling indicates that we have designs that should have better polarisation and illumination properties than current quad-ridged feed designs.
- Cryogenic cooling of the feed is still a viable option.
- The feed development remains the largest risk.

Project planning and management

Project Outline

1. Project planning, project management and system engineering

- Determine project scope and definition.
- Perform preliminary project planning in sufficient detail and depth to allow management and definition of scoping activities.
- Complete preliminary manpower requirements and cost estimates in sufficient depth to allow management and definition of scoping activities.
- Determine user requirements, measures of effectiveness and system requirements in sufficient detail and depth to enable trade-off analysis and feasibility study.
- Manage preliminary research and definition of scoping activities
- Develop detailed project plan(s).
- Modify project plans, system requirements and measures of effectiveness as necessary to incorporate outcome of consultative processes

Consultation and alignment with plans

RFI Survey and Analysis

2. Consultation with user community and alignment with operational plan

- Conduct regular briefings and consult user community (eg. CASS Astrophysics and ATUC)
- Present results of trade off analysis and system design activities at all stages of project development
- Evaluate alignment with long, medium and short term operational plans for Parkes and CASS
- Accept input and feedback and use it to inform project processes

3. RFI survey and analysis

- Survey current RFI environment
- Survey future RFI emissions (ACMA databases, etc.)
- Analyse results of RFI survey in sufficient detail to provide input into RF system design

4. Preliminary feed design

- EM analysis sufficiently mature to prove one or more feed concepts
- Designs developed in sufficient detail to enable preliminary mechanical design and FEA analysis of feed/receiver system

5. Preliminary system design

- Define possible observing bands and determine engineering and science implications
- Assess existing Parkes receiver fleet frequency coverage, science output, estimated lifetime, ...
- Trade off analysis bandwidth, polarisation, Tsys, beamshape, efficiency, sensitivity, ...
- Investigate the feasibility of including more than one band in a single receiver package.
- Evaluate alignment with Parkes long term plans

Preliminary receiver design

Preliminary RF chain and back end design

6. Preliminary receiver and vacuum dewar design

- Mechanical design of receiver in sufficient depth to enable the performance of: preliminary FEA, heat load modelling, vacuum leak rate estimation, etc.
- Define dewar RF and electrical interfaces in sufficient depth to enable FEA and other analyses.
- FEA of vacuum dewar, vacuum window and feed to assess feasibility of mechanical design.
- Perform preliminary thermal analysis and assess ability to cool feed/LNAs

7. Preliminary RF chain and backend design

- Evaluate possible wideband sampler architectures and systems in sufficient depth to allow preliminary RF chain design – Sampled bandwidth, direct sampling ...
- Evaluate possible RF chain architectures and develop designs RF over fibre, conversion system, sample at the focus ...
- Evaluate alignment with long term operational plans for Parkes

Wideband Receiver Development

Questions

- What RF bands and bandwidths best meet the current and future needs of science with Parkes?
- What performance trade-offs are the user community prepared to accept?
- The relative importance of those trade-offs what is of greater value bandwidth, sensitivity, polarisation?
- The relative priorities which receiver do we build first?
- Backend development does it replace existing backends and/or Parkes conversion system?
- Is it desirable to include more than one band in a single large receiver package? If so which bands?
- How do we carry out the development in alignment with the Parkes operations strategy?
- Funding?

Phased Array Feeds

Status

- A feasibility study to determine the design, performance and compromises and address some of the challenges commenced.
- The feasibility of incorporating BETA and/or ADE PAF structures into Parkes focus cabin is being examined.
- Project scoping work has commenced.
- Discussion CASS scientific staff and broader user community underway.
- Manpower, existing project commitments are constraints (ASKAP, ATCA cm upgrade, CABB, SKA).

Phased Array Feeds

What have we learnt?

- The questions that the user community need to answer are fundamental and have a significant impact upon the project.
- There is no desire to install a PAF that has the limited bandwidth of the Mk.1 receiver increased performance demonstrated using 5 x 4 PAF.
- The Mk.1 and Mk.2 (BETA and ADE) PAF receivers will NOT fit on the Parkes telescope without significant changes.
- The focus cabin is a controlled environment potentially makes the PAF receiver simpler.

Phased Array Feeds

Questions

- Does it need to replace the centre beam of the current L-band multibeam receiver?
- How good does the PAF need to be (cryogenic or room temperature)?
- Is it acceptable to install a PAF on Parkes to gain experience?
- Is the development in alignment with the Parkes operations strategy?
- What is the driver for installing a PAF on Parkes?
 - Does it enable new or ground breaking science?
 - An upgrade path for ASKAP PAF systems towards the SKA?
- A high-frequency PAF?
- Funding and timing ASKAP delivery?

Technologies for Radio Astronomy

The Future

- The current size of the technologies theme means that it can only support one significant project at any given time.
- Current ATCA C/X receiver upgrade project scheduled for completion in June 2013.
- The C/X upgrade team will be available to commence development of receiver systems for Parkes.
- Backend capability will also be required but ASKAP is likely to still require this expertise.
- Boundaries between analogue and digital systems; hardware and firmware are blurring.
- A system engineered approach is becoming much more important.

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

