Technologies for Radio Astronomy

CSIRO Astronomy and Space Science

Tasso Tzioumis
Facilities Program Director – Technologies
June 2016

Directions for ATNF Engineering

(Update since last ATUC meeting)

- Broad directions largely unchanged (June 2016)
- ASKAP & SKA: Core business of the Engineering Program.
 - Most of the program's people and effort at present.
- Development projects for all ATNF facilities. Budget??
- Strategic developments develop capabilities.
- External contracts maintain capabilities.

Available resources & allocations

- FY 2015-16: ~50 FTEs!! → Current allocations:
 - ASKAP : ~ 20 FTE → Ongoing commitment
 - ASKAP production → Secondments (2); Terms and casuals (4)
 - Most/all would finish at end of 2016.
 - SKA: ~ 10 FTE → Re-structure after SKA re-baseline → CSP
 - + additional ~3 FTE internal for PAF developments
 - FAST: ~ 6 FTE (deliver system End 2016!!) + Workshop time
 - UWB: ~2-3 FTE (complete 2017)
- FY 2016-17 Planned: → Similar allocations:
 - ASKAP: ~ 15 FTE
 - SKA: ~10 FTE (+ 1.5 FTE on PAF internally)
 - FAST: 4 FTE end in 2016
 - UWB: 5 FTE. Pick-up momentum once FAST ends

Engineering papers published

- Chippendale, A.P.; Hampson, G.A.; Brown, A.J.; Beresford, R.; Barker, S.; Broadhurst, S.; Brothers, M.; Cantrall, C.; Cheng, W.; Doherty, P.; and 7 co-authors. "ASKAP Mk II Phased-Array Feed: From the laboratory to the observatory". *Radio Science Conference (URSI AT-RASC), 2015 1st URSI Atlantic,* Gran Canaria, Spain, 16-24 May, 2015, 1 p (December 2015).
- Chippendale, A.; Brown, A.J.; Beresford, R.J.; Hampson, G.A.; Macleod, A.; Shaw, R.D.; Brothers, M.L.; Cantrall, C.; Forsyth, A.R.; Hay, S.G.; Leach, M. "Measured sensitivity of the first mark II phased array feed on an ASKAP antenna". *International Conference on Electromagnetics in Advanced Applications*, Turin, Italy, 7-11 September, 2015, 541-544 (December 2015).
- Dunning, A.; Bowen, M.; Bourne, M., Hayman, D.; Smith, S.L. "An ultra-wideband dielectrically loaded quad-ridged feed horn for radio astronomy". *International Conference on Electromagnetics in Advanced Applications*, Turin, Italy, 7-11 September, 2015, 787-790 (December 2015).
- Hellbourg, G.; Chippendale, A.P.; Tuthill, J.; Jeffs, B.D. ""Statistical performance of reference antenna based spatial RFI mitigation for radio astronomy". 2015 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Vancouver, Canada, 19-24 July, 2015, 1518-1519 (December 2015).

CABB

- Formal CSIRO commitment to new functionality ceased Sept 2014
 - Now ALL tasks covered by post-retirement fellows!!
 - Adequate spares for operations and short-term support.
 - Unlikely that 16 MHz would be completed!
 - ATCA CABB upgrade?: GPU cluster based
 - Leverage on GPU developments at Parkes
 - Software correlation would allow unlimited zooms?
 - Digital systems from UWB and SKA developments
 - Hardware: ~\$0.5M for replacing CABB
 - Scalable for more bandwidth.
 - >~\$1M+ for realistic project
 - External funding!!

FAST — 19 beam 1.3 GHz receiver

- Fully externally funded.
- Contract with FAST signed Jan 2016!
 - 30% initial payment received in March!
 - Contract delivery ~13 months
 - Prefer by Sept 2016 → Dec 2016?
- Construction well underway
 - New CNC machine in workshop
- Strategic relationship with China!
 - MUST nurture & develop!?
- Resource requirements & conflicts
 - Recruitments for FAST
 - Fund ASKAP production team

 release key staff for FAST
 - → Planned delays in UWB delivery.

Ultra-wideband Receiver for Parkes

- Observed band 700 4000 MHz; Tsys < 20K over most of band
- ARC LIEF grant: \$370k awarded for 2015 ~40% of direct costs
- Institutions: CSIRO, Curtin, MPIfR, Melbourne, Monash, NAO/CAS, Swinburne, Sydney, Western Australia
 - Contribute ~ 60% of direct costs
 - CSIRO in-kind ~9 FTE total (over ~2-3 years)
- Lead Institution is Swinburne. Managing external funds.
 - Collaboration agreement signed June 2015
 - Project plan in place October 2015 → Funds available
 - BUT: Slow-down in delivery due to commitments to ASKAP, SKA, FAST.

UWB Project plan summary & Progress

- Digital systems: Under development (Paul Roberts)
 - Pre-production system (4 ch) by Nov 2016 @ Parkes
 - Utilise in RFI test/development system.
 - Use as debug and software development platform for full UWB
 - Explore use as backend for older Receivers & VLBI system.
- RF: LNA design/fabrication/testing end 2016. Production early 2017
 - Prototype development underway
- Mechanical: Design 2016; Manufacture early 2017 (Dewar)
- RF and C/M: design late 2016; production early 2017
- Computing/software: Develop by Swinburne in 2016
 - GPUs and Switch @ Parkes installed in January 2016
 - In use by Bonn PAF. Available for further system development
- Integration/Install/Commission: Mid 2017
- Towards a single digital back-end for ALL Parkes systems!
 - GPUs and Switch already available!!

Prototype UWB Feed Progress

- Prototype feed developed at CSIRO
- Feed tested in June 2015
 - Room temperature only
- → Paper published! Patents by CSIRO.
- Next steps: Cryo testing.
 - Waiting for available workshop time.

Technological Challenges for UWB system

- Cryogenic cooling Materials
- Vacuum window
- Wideband LNA development fab run in July
- System integration in 2017
 - Mitigate delays by early digital and software developments in 2016.

UWB Feed Installed in Antenna Test Range Credit: Alex Dunning

ADE PAF system for MPIfR → Parkes

- Contract for standard ASKAP PAF for Effelsberg telescope.
- RFI environment at Effelsberg & Parkes → mods to PAF filtering
 - Funded by MPIfR
- Modified beamformer outputs → Ethernet output
- Strategic use of PAF. Single-dish demonstration → Bonn PAF at Parkes
- Commissioning/Early science
- Collaborative Project:
 - CASS- MPIfR
 - Open to community. NOT NF
 - Proposals Dec15 for APR2016
 - Must bring resources
 - FRBs primary targets
 - PAF to Bonn in Oct 2016

Bonn PAF at Parkes –Timelines

- Install/Commission: Planned for OCT2015 semester
 - Bonn PAF filter modifications Dec 2015 → Done in Jan 2016
 - Test digital/GPU system in Sydney Dec 2015
 - Parkes preparations: Early in semester
 - Fibre wiring ~ 2 week shutdown: Started 23/11/15!! ✓
 - Racks mods; Install GPUs and Back-end Jan 2016 ✓ (end)
 - PAF Install: 8-17 Feb 2016. Replace MB system for 8 months.
 - Control computer via TOSS. Jan 2016
 - Engineering Commissioning: Feb-Mar 2016
 - Extensive beamforming tests and developments.
- 2-3 engineers/scientists external support
 - Germany and Jodrell Bank 3 MPIfR engineer visit Dec & Feb
 - Joint CSIRO/MPIfR post-doc Started 1 Nov 2015 (full time) ✓
- Science Commission & Scientific Observations: APR2016 semester
 - Ethernet Firmware mods end March (harder than hoped)
 - Software by Bonn & Jodrell Bank: Still Commissioning!
 - First results on pulsars.
- PAF to Bonn after Sept 2016

PAF Performance measurements on Parkes

Results yet to be published.... (Aaron Chippendale et al)

PAF spectrum at Parkes

PAF R & D the "Rocket" PAF

- PAF R&D under SKA-survey
 - Continues as an Advanced Instrumentation Program (AIP)
 - Pre-construction AIP consortium at next SKA Board meeting
 - As Observatory Development Program (ODP) in SKA construction phase
- Key technology for CASS world leader! → "Rocket" PAF (Alex Dunning)

- ■Complete picture of the 5×4 test PAF array with the new "rocket" design, where the new central and edge element designs are visible.
- May be more amenable to cryo cooling
- → Cryo PAF system with <20K Tsys!!</p>
- Superb for single-dish large telescopes!
- Cooled PAF for Parkes??
 - ~\$2M+. Funding??

Rocket PAF performance (5x4 prototype)

Future technical Projects (2018+) SKA & ASKAP

- SKA Construction/Verification/Commissioning. Start??
 - Expect key Australian role. CASS in CSP-Low follow-up
- ASKAP enhancements
 - Tied-array: In ASKAP specs but NOT funded!
 - Expert group report. ~\$400k + 5.5 FTE (Firmware+Software)
 - Transients: (Cf CRAFT)
 - Add transient mode. Firmware only. ~5FTE effort. NOT Commensal.
- ASKAP upgrades. (mainly sensitivity improvements)
 - "Transparent" legs. Reduce scatter. Improve Tsys by 10-20K.
 - Initial investigations now.
 - Estimated cost ~\$1.5M h/w + Labour!! Funding?
 - "Skirts": Reduce spillover. Better illumination. ~10K to Tsys?
 - New PAFs (keep back-end) e.g. "Rocket" PAF.
 - ~15K in Tsys + Better illumination. BUT many \$\$M?
- Air shower detection by ASKAP (Ekers proposal..)

Future Projects & External Contracts

- NOTE: Most single-dish cryo systems cost >\$2M!!
- **UWB high** (4-25 GHz) for Parkes. Considered in ATUC before.
 - Leverage on SKA & UWB(low); use UWB GPU cluster & software
 - ~\$1.5-2M; timeline ~2-3 years
 - External funds AAL; LIEF; Collaborators
- External contracts: Maintain/develop capabilities. Strategic.
 - Present UWB systems. Strong interest from collaborators!
 - 2-3 contracts in 2017+ timescale?
 - PAFs
 - Current generation to Jodrell Bank. NOW
 - Cryo PAFs for large singe-dishes. ~20K Tsys
 - 1st system for Parkes. Collaborative funding. Start in 2017-18?
 - Good external candidates (MPIfR; JB; FAST;)

Future technical Projects (2018+) PAFs & Others

SKA PAF R&D

- SKA PAF test array. Up to 4 antennas. Under ODP?
- Rocket PAF → Cryo PAF systems . <20K Tsys
- Higher frequency PAFs: SKA; Arrays; Single-dish
- mm PAFs e.g. for ALMA (cf NRAO)
- Dual band PAFs
- MMIC packaging
- 16-25 GHz PAF on ATCA. Transformative for surveys!
- Aperture array applications:
 - SETI; Array of PAFs; Needs Massive digital and GPU resources.
 - Filled aperture array at ~100 MHz. All sky coverage.

Other technologies

- RF-over-fiber developments
- UWB in other bands
- Signal processing FPGA platforms

Summary (from ATSC presentation)

CASS Engineering/Technologies:

- World-class radio-astronomy instrumentation
- Pioneering cutting-edge technologies: PAF; UWB; DSP; RFoF
 - For world-wide radio-astronomy facilities
- International reputation Key player in SKA
- --> MUST maintain/enhance/develop
 - Need vibrant world-class radio-astronomy unit
 - (Science+Engineering+Software)
 - CSIRO instruments (ASKAP; Parkes; ATCA) provide impetus/platforms/passion
- Extensive "sales" and collaborations in radio-astronomy
 - Trusted advisor and partner
- Exploring plans for possible wider "commercialisation"
 - Must NOT Risk losing R&D focus in radio-astronomy

Thank you

Astronomy & Space Science Tasso Tzioumis

t +61 2 9372 4350

E Tasso.Tzioumis@csiro.au

w www.csiro.au/cass

