Transparent feed legs

Improving the ASKAP survey speed Keith Bannister - CASS ATUC - 24 Nov 2016

Continuum Survey Speed

$$SS_s = \Omega Bn_p \left(\frac{AN\eta_a\eta_c\sigma_s}{2kT_{sys}}\right)^2$$

General

$$SS_s \propto Bn_p \left(\frac{DNN_b \eta_a \eta_c \sigma_s}{2k(T_{rec} + T_{scat})}\right)^2$$

Dishes

SS = Survey Speed Omega = Field of View B = Bandwidth np np = Number of polarisations A = antenna area N = number of antennas eta_a = Antenna Efficiency Eta_c = Correlator efficiency sigma_s = Desired continuum sensitivity k = Boltzmann's constant Tsys = System Temperature Trec = Receiver Temperature Tsca = Scattering Temperature D = Antenna Diameter

SEFD Measurement is tricky - measurements are ongoing

Upgrade Menu

Parameter	Current	Upgraded	Method	Delta SS	
Trec (K)	40	20	Rocket PAF	4.0	
Tscat (K)	20	16	Transparent	2.0	
eta_a	0.7	0.8	Legs		
D (m)	12	15	Petals	1.6	
B (MHz)	300	384	More Correlator	1.2	
Totals				~15	

Improving Tsys and eta_a with Transparent Legs

Transparent wha?

- Scattering of ground radiation off the quadrupod feed legs increases ASKAP Tsys/eta ~ 15-20K (see Stuart Hay's PAFs & beams talk 15 Sep 2015)
- Transparent (i.e. non-conducting) feed legs could help
- Early in the ASKAP project, ATNF investigated transparent feed legs as a method reducing side lobe confusion.
- MJK contacted ISOTRUSS for a sample and tested its transparency at 1.6 and 4.1 GHz using ATCA holography (see Mike Kesteven's P&B talk 16 Feb 2016).
- The sample was much heavier than what we would have used. Nonetheless its performance at 1.6 GHz was encouraging
- We abandoned the idea when we got a price for a 3rd axis (sky mount). It was perceived at the time that this would be a simpler option and more likely to succeed, at least as far as side lobe confusion goes.

ADE PAF in Aperture Array

ADE PAF on Dish

Modelling results

Stuart Hay (Data 61)

Strut Geometry and Regions on Far-field Sphere

-40

-20

0

 $\phi_{\rm 1,a}$ (deg)

20

40

-40

-20

20

0

 $\phi_{\rm 1,a}$ (deg)

40

Red Region

0.724GHz FoV at zenith Max-SNR weights

No struts

Region 5 power pattern (dB)

Ν

Region 5 power pattern (dB)

Green Region

0.724GHz FoV at zenith Max-SNR weights

No struts Region 2 power pattern (dB)

Blue Region

y polarized beam

x polarized beam

Region 1 power pattern (dB) 0 0 -40 -40 -30 -30 -10 -10 -20 -20 -20 -20 -10 -10 $\phi_{1,\mathrm{b}}$ (deg) $\phi_{1,\mathrm{b}}$ (deg) -30 -30 0 0 -40 -40 10 10 20 20 -50 -50 30 30 -60 -60 40 40 -70 -70 -20 -20 -40 0 20 40 -40 0 20 40 $\phi_{1,a}$ (deg) $\phi_{1,a}$ (deg)

ISOTRUSS

93m tower in Spanish Fork, Utah - isotruss.com

One of the worlds lightest and strongest bikes - isotruss.com

12x stronger than steel and 1/12 the weight - isotruss.com

Useful for climbing. And also waving - isotruss.com

ISOTRUSS

And driving on. - Open Air Composites

Tubes

"Budget estimate (non binding) AUD\$1.5M ± 20% of tubes and centre (focal point) end-fitting only supply"

EM Simulation of Tubes

Alex Dunning

Foam Sandwiches

Reflection

Alex Dunning

Foam sandwich tube: "Grillage" model

Design

	Support Tube Preliminary Laminates						Thickness	Ply Weight
QTY	Ply Name	Fibre Angle	Description	Process	FVF	FWF	(mm)	(g/m²)
1	EDB125 Ehfv	±45*	Stitched double bias E-glass	vacuum consolidated epoxy	0.46	0.64	0.11	222
1	UT-E300 Ehfv	0*	Unidirectional E-glass	vacuum infused epoxy	0.47	0.65	0.25	448
1	Corecell M60		SAN foam core 🛛 🥐 🥖				5.00	325
1	UT-E300 Ehfv	0*	Unidirectional E-glass	vacuum infused epoxy	0.47	0.65	0.25	448
1	EDB125 Ehfv	±45*	Stitched double bias E-glass	vacuum consolidated epoxy	0.46	0.64	0.11	222
1	resin grams= 1000	-	core prime	infusion	-	-	0.00	1000
			\sim			Totals	5.7	2664.9
	0 5 0 Material De		\sim					

Manager 1 December 1 0.5 0

McConaghy Sample

Approximate Material Costs

- Solid Tubes: AUD $$1.5M \pm 20\%$
- Foam Sandwich tubes: \$400k

Future work

- Measure samples in the antenna range
- Finalise simulation work
- Far sidelobe holography using ASKAP-12
- Compare measurements with simulations
- Single-antenna prototype???