

Radio Astronomy Technologies at CSIRO

Tasso Tzioumis | 13 April 2021

Australia's National Science Agency

ATNF Technologies Capabilities

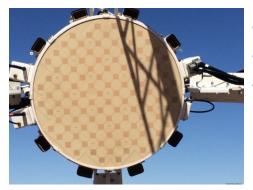
- Antennas & Receivers (Front-end) (~15): RF technologies (Feeds; OMTs; LNAs; RF Electronics; Cryogenic systems; Mechanical design; ...)
 - Workshop (~5): Mechanical systems (Machining; Fitting; Production;...)
- Signal processing (Back-end) (~19): Digital technologies (RFoF; Samplers/Digitisers; Timing systems; Beamformers; Correlators;...) -<u>Digital Signal Processing</u> & FPGAs
- Scientific Computing (~13): Control and monitoring systems; calibration strategies and algorithms; data processing (e.g ASKAPsoft).
- Engineering Generalists (~5): System Scientists/Engineers; System integrators; New Ideas; ...
- ** Produce fully integrated radio telescope systems!
 - Concept; design; construction; testing; commissioning; operation; science.

Directions for ATNF Engineering

- •** Broad directions largely unchanged
- ASKAP & SKA: Priorities for the Engineering Program.
 - Significant number of people and effort at present.
- Development projects for all ATNF facilities.
 - Budgetary constraints <a>C Priorities
- Strategic developments develop capabilities.
- External contracts maintain capabilities.
- <u>** Critical capabilities in maintaining and developing radio</u> <u>astronomy observatories **</u>

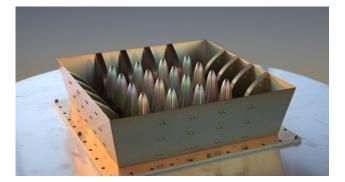
Next generation Radio Astronomy Technologies

Scalable!


New R&D

- CSIRO Astronomy Research and Developments
 - Phased Array Feed systems (PAFs)
 - Ultra Wide Band systems (UWBs)
 - FPGA-based Digital Signal Processing (DSP systems)
 - COTS-based back-end systems (GPU, ALVEO-FPGA, Switch

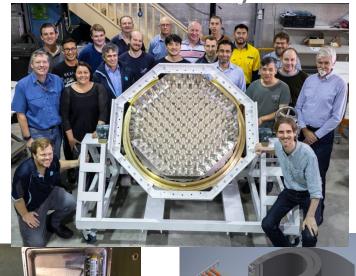
Complementary R&D activities

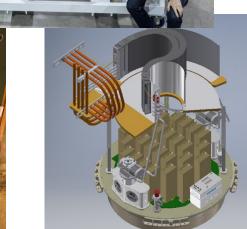

- (Space systems?)
 - CSIROSat-1 (Cubesat)
- (Commercialisation)
 - New spin-out company for satellite tracking with PAFs (April 2021)
 - Leveraging cryoPAF technologies.
- Balance Impact on ATNF & New resources

Phased Array Feeds – Large Field-of-View (FoV)

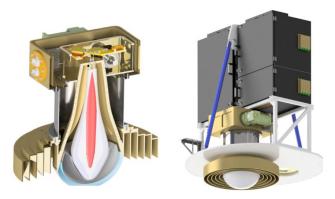
- Surveys
- Imaging
- FRB searches & localisation

- ASKAP Chequerboard PAF
 - 36 x 12m antennas
 - 94 x 2 pols PAF
 - 36 x 2 pols beams
 - 30 deg² FoV
 - 700-1800 MHz; 300 MHz BW
 - Tsys ~60-70K (uncooled)



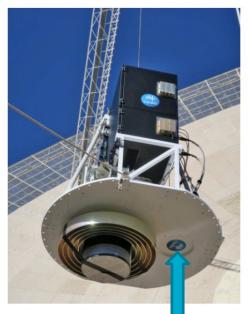

- Next generation "Rocket" PAF
 - "rocket" elements; "edge" elements
 - Superb LNA matching
 - Wider BW (~3:1)
 - Cryo-Cooled for Tsys < 20K

Parkes cryo-Cooled Phased Array Feed



Funded and construction underway

- 700 MHz 1950 MHz
- ~20-25 K System Temperature
- ~3 x Multibeam footprint with Nyquist sampling
- Combined 10-30 fold survey speed increase
- ~1.5 deg² FoV
- Up to 70 x 2 pol beams
 - Less beams needed at low frequencies
 - Multiple modes many commensal
- Construction underway
 - Structural Thermal Model complete
 - Dewar under vacuum and cold
 - RF electronics boards screened
- RFSoC board for digitisation at front-end (screened)
 - "Jimble" board tested. (Rev2)
 - Up to ~920 MHz BW available
- COTS beamformer designed and under testing
 - using ALVEO technologies & P4 Tofino switches
- Processed BW depends on digital and GPU cluster sizes
 - Funded 600 MHz. Seeking extra \$200k to full 920 MHz
- Timelines in Jimi's talk.

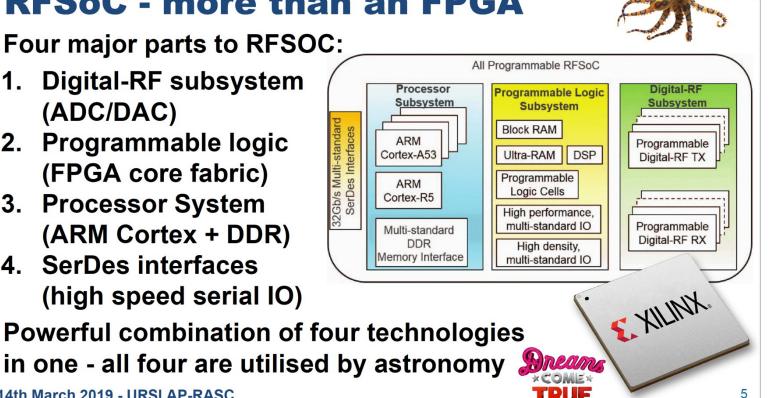

Parkes Ultra-Wideband -Low 'UWL'

- 700MHz 4 GHz, ~20 K System Temperature, Linear polarization feeds, Digitisation at focus
- Installed in 2018 main low-freq system at Parkes
- Publications flowing
- Observational Developments:
 - Commensal observing modes
 - Scanning
 - New observing modes (e.g., fold multiple pulsars simultaneously)
- Technical Developments:
 - RFI mitigation tools (adaptive RFI mitigation, impulsive RFI mitigation, flag tables)
 - Calibration schemes (pseudo-random noise etc.)
- Update digitisation with **RFSoC** board (Jimble)
 - Oversampled filterbanks
- Arecibo failed no UWI
- UWB-L feed (1-5 GHz) for MPIfR in construction
- UWB-L RF and Digital system for Tid under discussion

Parkes Ultra-Wideband-Mid/High 'UWM/H'

Seeking funding

- 4 GHz ~25 GHz
- ~20 K System Temperature
- Linear polarization feeds
- Digitisation at focus shares digitisers and backend infrastructure with UWL
- Essentially 'just' the frontend frontend, RF electronics and conversion required
- Single feed for entire range would have sub-optimal feed illumination – engineering preference is for 2 feeds, 4-15GHz, ~15-27 GHz, or ~4-18GHz, ~18-32 GHz
- Will replace most high-freq feeds at Parkes
 - C All systems available on the antenna
- ARC LIEF proposal submitted!!
 - See Jimi's presentation

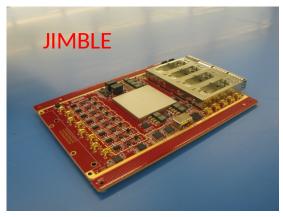


RFSOC based digital back-ends

RFSoC - more than an FPGA

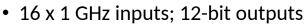
Four major parts to RFSOC:

- 1. Digital-RF subsystem (ADC/DAC)
- 2. Programmable logic (FPGA core fabric)
- 3. Processor System (ARM Cortex + DDR)
- 4. SerDes interfaces (high speed serial IO)



Bluering

9 | ATUC April 2021 14th March 2019 - URSI AP-RASC


CSIRO RFSoC boards

BLUERING

IRUKANDJI Synchronisation board In Construction

- 8 x 2 GHz inputs; 12 bit outputs
- Optical outputs only (100 Gbps channels)
- Designed to be screened install near feed.
- Adopted for cryoPAF, UWL, BIGCAT
- Versatile and programmable
- JIMBLE testing Rev2
- CryoPAF; BIGCAT; UWBs; (Sat tracking)

- Optical outputs
- Option for daughter RF input boards
- Great for low-freq arrays LBA-Low?
 - See G. Heald's talk
- Protype built and tested going to Rev3
- Test R&D array under development
 - MWA tile(s) @ Narrabri Proof of Concept
- LBA-Low & (MWA; SETI) under discussion

COTS digital back-ends (ALVEO & P4 Switch)

- Xilinx Alveo U50 HBM Board.
- Very small & low power – 20 in server!
- 8GB HBM; 5952 DSP; 1x100GbE
- FPGA-based accelerator boards

- Faster and cheaper than own FPGA boards
- Many variants and prices cheaper than FPGA chip!
- Adopted and under testing for cryoPAF
- Adopted for SKA1-LOW BF-Cor
- U280 version for <u>ASKAP coherent FRB detector (CRACO)</u>

- Bare metal h/w switch
- Fully user programmable
- P4 Tofino
- Versatile for one-way traffic
- System under testing in CSIRO.

GPU & ALVEO - BIGCAT & CRACO

- GPU computer clusters at Parkes collaboration with Swinburne
- The UWL uses the "Medusa" cluster & Breakthrough Listen a cluster for SETI
- The cryoPAF ALVEO beamformer will also feed into an updated Medusa GPU cluster. **ATCA**
- **BIGCAT** (Broadband Integrated GPU Correlator for the Australia Telescope)
 - 8 GHz of BW (x2 current capability)
 - Use "Jimble" RFSoC digitizer board (8 x 2GHz) and 12-bit.
 - Aging CABB correlator to be replaced with GPU cluster
 - Funded via ARC LIEF proposal and construction underway (contact: Chris Phillips)

ASKAP

- CRACO Coherent FRB detection @ ASKAP Funded ARC LIEF!!
 - Sub-arcsecond localization & many more FRBs
 - Using ALVEO technology utilises ASKAP correlator and all beams
 - Pilot/prototype R&D small cluster + firmware/software development
 - Construction & Commissioning within 1 year. (Contact: Keith Bannister)

Roadmap and future

Technology		2020	2021	2022	2023	2024	2025	2026 +
	Ultra Wide Band Feed Systems	0.7 – 5.0 GHz syster		^{ns} AO PKS		4.0 – 30 GHz feeds (dual reflector) <mark>SKA</mark>		
				4.0 -	30 GHz systems	PKS		
R bar	Phased Array Feed Systems				Cooled/rc	oom temp Rocket Ph (0.7 – 2.0 GF		Contraction of the second s
		Cryogenic	Rocket Phased Arr (0.7 – 2.0 GHz)	ay Systems* PKS			enic Phased Array F (20GHz and above)	ATCA
			C	ryogenic Rocket Pha: (4.0 – 20.		ATCA		
	Digital Signal Processing		n a Chip Technolog ency – large volum					
		RF System on a Chip Technologies - scalable and fully digitized systems* (high frequency, high bandwidth – low volume) PKS ATCA ASKAP AO						
			COTS Tec	<mark>hnologies (FPGA, GP</mark>	P <mark>U, Switch) – beam</mark>	forming and signal p	PKS SKA A	SKAP
Image and Data Processing		RFI mitigation, real time processing, big data analytics, archiving and end user curation. All ATNF facilities						
	Underpinning Technology Development		10 III III III III III III III III III I	nd EM modelling, cr acture (including exo			and the second	
enticinger - Martine	Development	(<i>"</i> г	,		'

*To accommodate the proposed commercialisation program inside CASS, the technologies program must resource dedicated training and knowledge translation across to the team recruited into the proposed venture

Possible Future ATNF developments?

Consistent with Roadmap!!

• RFI mitigation for all ATNF observatories

- Coordination and enhancement of effort. Underway.
- R&D difficult. New Ph.D. with Syd Uni just started.
- Future possible LIEF projects (next 2-3 years)
 - LBA-Low: (George Heald talk)
 - Prototype and test technologies with stations at Parkes and ATCA.
 - First science with MWA and also GMRT and FAST.
 - High sensitivity VLBI at Low Frequencies
 - ASKAP tied array always part of ASKAP plans but not funded
 - High sensitivity VLBI station. Greatly enhance LBA.
 - Suggestions from Community??
 - ATNF can do technical evaluation.

- Full LBA-Low implementation
 - Work with MWA & SKA1-Low
- Upgrade of ASKAP beyond current surveys
 - Rocket PAF upgrade to improve sensitivity??
 - Different PAFs at higher frequencies?
 - Need to start thinking where to go Science case
- FAST Array (China) proposal under development
 - 6 x FAST dishes C Full Square Kilometre sensitivity!!
 - PAF receivers Collaboration with CASS in R&D?

Thank you

Astronomy and Space Science Tasso Tzioumis Program Director, Technologies for Radio Astronomy P: +61 2 9372 4350 E: tasso.Tzioumis@csiro.au