Future Developments

Ron Ekers 8 Nov 2021

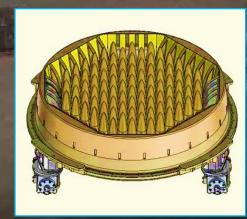
CSIRO SPACE & ASTRONOMY

www.csiro.au

Summary

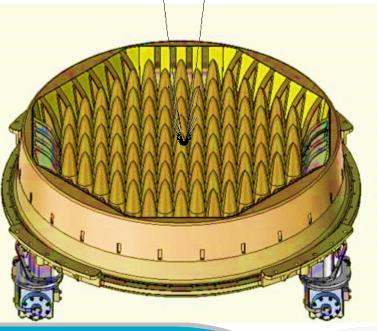
- All sky cryo-PAF
- All sky cryo-PAF interferometer
- ASKAP Tsys (uncooled next gen PAF)
- Other ASKAP upgrades

➢ John Bunton


- ASKAP 12 to 15m dish extension (\$3M) speed x1.56
- ASKAP PAFs to 72 beams (\$) speed x2.4-3

➢Keith Bannister

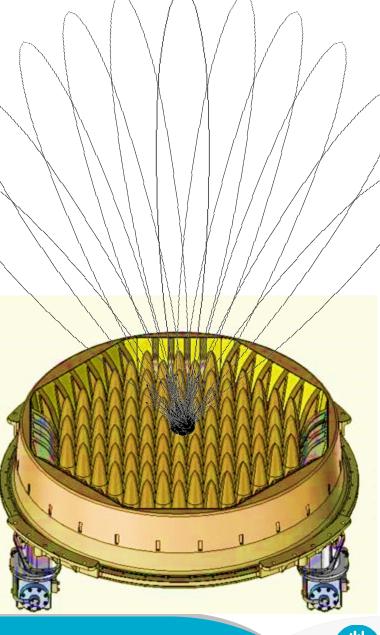
- transparent leg up grade for another 15%
- ASKAP resolution enhancement (for FRB astrometry)


Parkes Cryo-PAF

3 ASKAP - future developments

PAF all-sky dishless monitor

- Combine all 98 elements to make each beam
 - ➢ Total collecting area sum of all elements

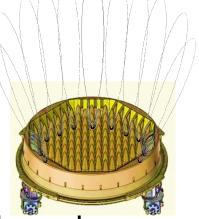


PAF all-sky dishless monitor

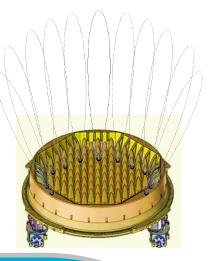
- Combine all 98 elements to make each beam
 - > Total collecting area sum of all elements
- Form 72 separate beams covering whole hemisphere

➢ FoV 30x larger than CHIME!

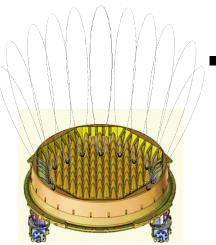
- 72 FRB processing channels
- FRB detection rate 1-10/week
 Rare FRBs (very energetic or very close)
 Galactic magnetar, M81 globular cluster


Parkes Cryo-PAF specifications

System	Specification	Notes
Frequency	0.7 – 2.0 GHz	
Elements	98	
Polarizations	2	
Bandwidth	1250 MHz	processor limited
Tsys	15K	19K on dish
Efficiency	80%	60% on dish
Effective area	0.7 Sqm	Reduced by projection
Number of beams	72	
FoV	10,368 sod	25% of sky



PAF all-sky VLBI for astrometry


Need 3 PAFs

- Separated by 100km gives positions to 0.1"
 - Just need buffers and trigger for voltage dump of one beam on the ancillary systems
- Ultimate SETI transient detection and <u>confirmation</u> system

ASKAP upgrades – why wait till 29302 uncooled PAF <30K (current 60-80K) >Survey speed > x4 for all ASKAP projects >Loose 1 year now and gain 7-8 years in survey speed

>\$30M full project costs(Tasso)

No impact on data rate, backend or system design

- Even more improvements possible
 Transparent leg project 15% (Keith Bannister)
 Dish diameter increase to 15m
 - x1.6 survey speed (John Bunton)
 - Hardware cost \$3M (John Bunton)
- Comparable (x0.6) with SKA mid in survey mode at 1GHz!
 Offload the oversubscribed SKA mid (for only \$30M!)
 Re-establish the case for SKA survey
 - Better polarization performance

ASKAP backend upgrades

Corellator and beamformer
 Bandwidth to 1.2GHz
 Number of beams to 72
 A factor of 8 in survey speed !
 Big hit in data rate and system redesign
 \$3.5M hardware ciosts

- Becomes comparable (x0.6) with SKA mid in survey mode at 1GHz
 - Offload the oversubscribed SKA mid (for only \$30M!)
 - ➢ Re-establish the case for SKA survey

