

Australia's National Science Agency

Low-frequency VLBI

George Heald

with key contributions from Grant Hampson

ATUC Open Session, 8 November 2021

Outline

- Science case
 - Outline and external inputs
 - Community input and motivations
- Recap of Australian opportunity
 - **LAMBDA**: Low-frequency Australian Megametre-Baseline Demonstrator Array
- Technical developments
 - Bluering developments
 - Test system
 - Site preparation at Narrabri
 - Observing plans and goals
- Upcoming "VLBI in the SKA Era" CSIRO Cutting Edge Symposium

Science case

"Bread and butter" VLBI; increasing LBA capability Unique/emerging science leveraging expanded frequency range New capability from flexible/responsive/always-on observing

- High resolution (\$kpc scale at all z) mapping of AGN and other radio sources detected with MWA, ASKAP
 - NB: EMU, POSSUM, FLASH, VAST all getting rolling now!
 2/3 of ASKAP sky inaccessible at low freq with long baselines
 - MWA science results have already prompted LBA proposals
- Pulsar astrometry, distances, proper motions, scintillometry
- Gravitational lens discovery / imaging

Sub-arcsecond resolution via IPS with MWA

- Interplanetary scintillation with MWA selects source structure on ~0.3" scale
- About 10% of MWA sources scintillate
- Three source types identified:
 CSS, peak- and flat-spectrum (blazars)
- Deeper sample expected from GLEAM-X !

Imaging IPS sources

- International LOFAR provides ~0.3" imaging resolution at 150 MHz
- MWA IPS sources detected in LBCS, with consistent flux density

- Direct imaging at ~0.3" resolution supplements IPS analysis
- MWA as a clear candidate pathway
 - **Estimate**: All MWA IPS sources would be detected with excellent broadband sensitivity *per baseline* with LAMBDA
 - Extrapolation from S³ simulation and IPS (Chhetri+ 2018): ~5 compact src / sq deg with high image S/N in imaging survey

Two LOFAR sources @0.3" resolution (Morabito+ 2021)

Science case

"Bread and butter" VLBI; increasing LBA capability Unique/emerging science leveraging expanded frequency range New capability from flexible/responsive/always-on observing

- High resolution (\$kpc scale at all z) mapping of AGN and other radio sources detected with MWA, ASKAP
 - NB: EMU, POSSUM, FLASH, VAST all getting rolling now!
 2/3 of ASKAP sky inaccessible at low freq with long baselines
 - MWA science results have already prompted LBA proposals
- Pulsar astrometry, distances, proper motions, scintillometry
- Gravitational lens discovery / imaging
- Resolving stellar systems, distinguishing planet from host star (e.g. Sun-Jupiter system to D ~ 50 pc)

Science case

"Bread and butter" VLBI; increasing LBA capability Unique/emerging science leveraging expanded frequency range New capability from flexible/responsive/always-on observing

- High resolution (\$kpc scale at all z) mapping of AGN and other radio sources detected with MWA, ASKAP
 - NB: EMU, POSSUM, FLASH, VAST all getting rolling now!
 2/3 of ASKAP sky inaccessible at low freq with long baselines
 - MWA science results have already prompted LBA proposals
- Pulsar astrometry, distances, proper motions, scintillometry
- Gravitational lens discovery / imaging
- Resolving stellar systems, distinguishing planet from host star (e.g. Sun-Jupiter system to D ~ 50 pc)
- FRB followup and host imaging with optical resolution
- Single-/multi- station mode: pulsar monitoring/timing, determination of high-precision ISM properties, SETI

Plans for direct community input

- Elements of science case, technical and operational requirements will be discussed at the upcoming "VLBI in the SKA Era" symposium, hosted by CSIRO and sponsored by SKAO
- Symposium will include discussion time targeted toward topics of direct relevance to our developing plans in Australia for VLBI with SKA1-LOW, and Global VLBI
- Specific plans coming soon for LAMBDA science case workshop (likely one-day event, preceding SKA-VLBI symposium)
- Discussions welcome to plan toward LIEF bid for pathfinder project delivering LAMBDA capability - contact me!

Motivation to go beyond current LBA

- SKA1-LOW (Bmax=65 km) will be limited to angular resolution
 ≥3-20" but capable of participating in VLBI networks
- Low-frequency VLBI is feasible (e.g. LOFAR): typical isoplanatic patch ~ 1° and coherence timescale ~ 1-2 min (at 140 MHz; LBCS)
 - Intermediate baselines are essential for imaging work
- Australia is well situated to develop this capability for the Southern hemisphere (~ 4000 km E-W extent, existing VLBI network, home of MWA and SKA1-LOW)
 - Potential to link to NZ, uGMRT, FAST, Japan, South Africa, ...

Community motivation: LOFAR, JUMPING JIVE

- Special issue of A&A this year
- Press release with international coverage (including ABC News)
- 8 papers, including completion of Long Baseline Calibrator Survey (LBCS), high resolution imaging of radio galaxies and LIRGs, grav lenses

Report on SKA-VLBI Key Science Projects

WP10: VLBI with the SKA

Report of 2019 SKA-VLBI meeting includes specific call to add low-freq capability to existing LBA locations
Seven SKA-LOW VLBI science cases elaborated, ranging from YSOs, pulsars, exoplanets to AGN, HI absorption

What would it take to get started?

- A minimally useful demonstrator array would comprise:
 - Phased-array stations of proven antennas (flexible, well understood, and robust)

- Flexible backend system to deliver station beam data (correlation either in real time over network, or from recorded data)
- Sufficient number of stations for useful uv coverage (at least 4, ideally 6, at established sites)
- Large enough stations to ensure sufficient calibration (estimates from Curtin's EDA: scale of SKA1-LOW stations is sufficient, using knowledge from LOFAR LBCS; Jackson+ 2016)
- A small number of large stations, using existing infrastructure
- Emphasis on flexibility and scalability

LAMBDA project - indicative uv coverage

Initial locations selected to coincide with existing LBA sites for power, network

Plots courtesy of Cormac Reynolds (CSIRO) and Yun Yu (SHAO)

Example uv coverage: 70 mas @ 300 MHz

CSIRO

LAMBDA project - future expandability

aarnei

Future locations: follow fiber backbone in WA / across Australia?

(Note importance of intermediate-scale baselines for good imaging quality)

LAMBDA project - as part of Global VLBI

Potential to link with uGMRT, East Asian VLBI Network, ...

Plots courtesy of Cormac Reynolds (CSIRO) and Yun Yu (SHAO)

Bluering developments

Work by G. Hampson, W. Cheng, D. Humphrey, J. Bunton, P. Roberts, K. Bengston, R. Beresford, Y. Chen, R.Chekkala, G. Babich (... total ~ 1 FTE for this project)

- Key strengths of this approach: scalability and flexibility
- Designed 18-layer Razorback PCB containing a 16 x 2GSPS RFSOC along with all the support circuitry integrated (clocks, power, memory)
 - System can be used for any array of antennas
 - Potential for on board 300MHz beamforming, pulsar folding, and correlation
- Designed Taipan RF module for MWA like antennas
- Written firmware for filterbanks and 100G packetisation
- Designed liquid cooling solution which duals as RFI shield (close to SKA spec)
- Written embedded software to control and monitor Razorback board
- Capture server built, software yet to be written to write to memory/disk
- Commencing integration of all the parts
- Learning tool engineers/students access to sky signals RFI

Test system

- 4x4 tile of MWA dipoles
- Dual-pol, 16-bit digitisation
- Located near ATCA posts
- Mesh ground plane

1 PPS & 10 MHz reference signal from ATCA system

Razorback

Irukandji (timing, also used for CryoPAF)

Bluering server - 64 cores (@2.3 GHz) - 768 GB RAM - 32TB SSD storage

Data written as CODIF Post processing on server

Site prep at Narrabri

Work by Ron Beresford (Marsfield) & Brian Madden + Peter Mirtschin (Narrabri)

- Slab for rack with multiple access conduits for mains and fiber cable
- Power distribution panel with RCD protection and buried conduit to slab.
- Available vacant station post with 4 SM fibers, can be EW or NS spur but avoids vehicle traffic.
- Aiming for first-light in January 2022

Site prep at Narrabri

Work by Ron Beresford (Marsfield) & Brian Madden + Peter Mirtschin (Narrabri)

- Slab for rack with multiple access conduits for mains and fiber cable
- Power distribution panel with RCD protection and buried conduit to slab.
- Available vacant station post with 4 SM fibers, can be EW or NS spur but avoids vehicle traffic.
- Aiming for first-light in January 2022

Observing plans and goals

- Observe for 64sec "snapshot" (fill 512 GB RAM buffer)
 - ~50 MHz bandwidth
- Record voltages to processing server (~4-5 min dump time)
- Repeat ~64x (fill 32 TB SSD storage array) observe for about 5h
- Frequency band can be flexibly adjusted between snapshots
 - Opportunity for 4 50-MHz bands, possibly rotate through these 16x
 - Experimenting with RFI avoidance / filtering / suppression
- **Primary practical outcome**: Verification that post-processing leads to pulsar detections via beamformed time series
 - Expecting to be able to detect ~20+ known pulsars with this system
- Pave the way for expanded / enhanced system later on
- Possible publication describing system and illustrating data

VLBI in the SKA Era

14-18 February 2022

J #SKAVLBI2022

Website and registration: https://whova.com/web/vlbis_202111/

Abstract deadline: 19 November 2021