

Radio Astronomy Technologies at CSIRO

Tasso Tzioumis | 8 November 2021

Australia's National Science Agency

ATNF Technologies Capabilities

- Antennas & Receivers (Front-end) (~15→18): RF technologies (Feeds; OMTs; LNAs; RF Electronics; Cryogenic systems; Mechanical design; ...)
 - Workshop (~5→6): Mechanical systems (Machining; Fitting; Production;...)
- Signal processing (Back-end) (~19→22): Digital technologies (RFoF; Samplers/Digitisers; Timing systems; Beamformers; Correlators;...) -<u>Digital Signal Processing</u> & FPGAs
- Scientific Computing (~13): Control and monitoring systems; calibration strategies and algorithms; data processing (e.g ASKAPsoft).
- Engineering Generalists (~5): System Scientists/Engineers; System integrators; New Ideas; ...
- (SKA Construction Group Manage SKA1-LOW construction contracts.
 - Contact negotiations in progress.)
- ****** Produce fully integrated radio telescope systems!
 - Concept; design; construction; testing; commissioning; operation; science.

Next generation Radio Astronomy Technologies

Scalable!

- CSIRO Astronomy Research and Development
 - Phased Array Feed systems (PAFs)
 - Ultra Wide Band systems (UWBs)
 - FPGA-based Digital Signal Processing (DSP systems)
 - COTS-based back-end systems (GPU, ALVEO-FPGA, Switch)
- Complementary R&D activities
 - Space systems?
 - CSIROSat-1 (Cubesat)
 - (Commercialisation)
 - New spin-out company QUASAR for satellite tracking with PAFs (April 2021)
 - Leveraging cryoPAF technologies.
 - Balance Impact on ATNF & New resources
- **R&D effort:** Sustain at about 25-30% of engineering effort
 - In-project R&D most of our projects are novel and unique
 - Focused R&D new ideas & exploiting new disruptive technologies

New R&D

Technology		2020	2021	2022	2023	2024	2025	2026 +
	Ultra Wide Band Feed Systems	0.7 – 5.0 GHz systems PKS MPI						
				4.0 -	- 30 GHz systems	PKS ngVLA		
Sold and and and and and and and and and an	Phased Array Feed Systems					np Rocket Phased A (0.7 – 2.0 GHz)	Array Systems ASKAP	
		Cryogenic Rocket Phased Array Systems* (0.7 – 2.0 GHz) PKS FAST					enic Phased Array (20GHz and above	
						hased Array System 20.0 GHz) ATCA (
	Digital Signal Processing	RFSoC Technologies (low frequency, large volume) VLBI-Low MWA SETI Commercial						
		RF System on a Chip Technologies - scalable and fully digitized systems* (high frequency, high bandwidth — low volume) PKS ATCA TID						
			COTS Techn	ologies (FPGA; GPU;	P4 switches) – beam		processing* P ATCA SKA	
333	Image and Data Processing							
			RFI mitigation	n, real time processir	ng, big data analytics	, archiving and end	user curation	All ATNF facilities
			I.					
	Underpinning Technology Development	Antennas, feeds and RF design and EM modelling, cryogenic systems, ultra-low noise amplifiers (LNA) and electronics design, precision machining and manufacture (including exotic materials), power supply systems and thermal design All ATNF facilities						
		[Embedded sof	tware and computin	g, networking, high p	precision timing, fib	re optic systems	All ATNF facilitie
To accommodate	the commercialisat	tion project inside CAS	SS, the Technologies P	Program will resource de	edicated training and kno	wledge translation ac	ross to the team recru	uited into Quasar.

*To accommodate the commercialisation project inside CASS, the Technologies Program will resource dedicated training and knowledge translation across to the team recruited into Quasar. Shaded boxes indicate technologies feeding into Quasar.

Parkes cryo-Cooled Phased Array Feed

Funded and construction underway

- 700 MHz 1950 MHz
- ~20-25 K System Temperature
- ~3 x Multibeam footprint with Nyquist sampling
- Combined 10-30 fold survey speed increase
- ~1.5 deg² FoV
- Up to 70 x 2 pol beams
 - Less beams needed at low frequencies
 - Multiple modes many commensal
- Construction underway
 - Structural Thermal Model complete
 - Dewar under vacuum and cold
 - RF electronics boards screened
- RFSoC board for digitisation at front-end (screened)
 - "Jimble" board under testing. (Rev3)
 - Output of up to ~920 MHz BW available
- COTS beamformer designed and under testing
 - using ALVEO technologies & P4 Tofino switches
- Processed BW depends on digital and GPU cluster sizes
- Funded 600 MHz. Seeking extra ~\$200k to full 920 MHz
- Extensive Parkes infrastructure upgrades
 - He-lines; Optical fibres; Co-axial cables; GPU cluster update.
- Production underway. On telescope in 2022.
- Operational 2023

Parkes Ultra-Wideband -Low 'UWL'

- 700MHz 4 GHz, ~20 K System Temperature, Linear polarization feeds, Digitisation at focus
- Installed in 2018 main low-freq system at Parkes
- Publications flowing
- Observational Developments:
 - Commensal observing modes
 - Scanning
 - New observing modes (e.g., fold multiple pulsars simultaneously)
- Technical Developments:
 - RFI mitigation tools (adaptive RFI mitigation, impulsive RFI mitigation, flag tables)
 - Calibration schemes (pseudo-random noise etc.)
- Update digitisation with RFSoC board (Jimble)
 - Oversampled filterbanks
- UWB-L feed (1-5 GHz) for MPIfR in construction
- UWB-L RF and Digital system for Tid under discussion

Parkes Ultra-Wideband-Mid/High 'UWM/H'

Seeking funding

- 4 GHz ~25 GHz
- ~20 K System Temperature
- Linear polarization feeds
- Digitisation at focus shares digitisers and backend infrastructure with UWL
- Essentially 'just' the frontend frontend, RF electronics and conversion required
- Single feed for entire range would have sub-optimal feed illumination – engineering preference is for 2 feeds, 4-15GHz, ~15-27 GHz, or ~4-18GHz, ~18-32 GHz
- Will replace most high-freq feeds at Parkes
 - $m{\cdot} \,\,
 ightarrow$ All systems available on the antenna
- ARC LIEF proposal submitted!! Result in Jan'22?
 - Critical future development @ Parkes.

RFSOC based digital back-ends

RFSoC - more than an FPGA

Four major parts to RFSOC:

- 1. Digital-RF subsystem (ADC/DAC)
- 2. Programmable logic (FPGA core fabric)
- 3. Processor System (ARM Cortex + DDR)
- 4. SerDes interfaces (high speed serial IO)

JIMBLE

CSIRO RFSoC boards

Synchronisation board

BLUERING

- 8 x 2 GHz inputs; 12 bit outputs
- Optical outputs only (100 Gbps channels)
- Designed to be screened install near feed.
- Adopted for cryoPAF, UWL, BIGCAT
- Versatile and programmable
- JIMBLE testing Rev3
- CryoPAF; BIGCAT; UWBs; (Quasar)

- 16 x 1 GHz inputs; 12-bit outputs
- Optical outputs
- Option for daughter RF input boards
- Great for low-freq arrays LBA-Low?
- Protype built and tested going to Rev3
- Test R&D array under development
 - MWA tile(s) @ Narrabri Proof of Concept
- LBA-Low & (MWA; SETI) under discussion

COTS digital back-ends (ALVEO & P4 Switch)

- Xilinx Alveo U50 HBM Board.
- Very small & low power – 20 in server!
- 8GB HBM; 5952 DSP; 1x100GbE
- FPGA-based accelerator boards

- Faster and cheaper than own FPGA boards
- Many variants and prices cheaper than FPGA chip!
- Adopted and under testing for cryoPAF
- Adopted for SKA1-LOW BF-Cor
- U280 version for <u>ASKAP coherent FRB detector (CRACO)</u>

- Bare metal h/w switch
- Fully user programmable
- P4 Tofino
- Versatile for one-way traffic
- System under testing in CSIRO.

GPU & ALVEO - BIGCAT & CRACO

- GPU computer clusters at Parkes collaboration with Swinburne
- The UWL uses the "Medusa" cluster & Breakthrough Listen a cluster for SETI
- The cryoPAF ALVEO beamformer will also feed into an updated Medusa GPU cluster. **ATCA**
- **BIGCAT** (Broadband Integrated GPU Correlator for the Australia Telescope)
 - 8 GHz of BW (x2 current capability)
 - Use "Jimble" RFSoC digitizer board (8 x 2GHz) and 12-bit.
 - Aging CABB correlator to be replaced with GPU cluster
 - Flexible and versatile new modes ightarrow New science
 - Funded via ARC LIEF proposal and construction underway

ASKAP

- CRACO Coherent FRB detection @ ASKAP Funded ARC LIEF!!
 - Sub-arcsecond localization & many more FRBs
 - Using ALVEO technology utilises ASKAP correlator and all beams
 - Pilot/prototype R&D small cluster + firmware/software development
 - Construction & Commissioning within 1 year. (Contact: Keith Bannister)

Possible Future ATNF developments?

• Consistent with Roadmap!!

- RFI mitigation for all ATNF observatories
 - Coordination and enhancement of effort. Underway. (George Hobbs talk)
 - R&D difficult. New Ph.D. student just started.
- Future possible LIEF projects (next 2-3 years) (~\$1-3m)
 - LBA-Low: (MWA; SKA) (George Heald talk)
 - Prototype and test technologies with stations at Parkes and ATCA.
 - First science with MWA and also GMRT and FAST.
 - -High sensitivity VLBI at Low Frequencies
 - ASKAP tied array always part of ASKAP plans but not funded
 - -High sensitivity VLBI station. Greatly enhance LBA.

- Full LBA-Low implementation
 - Work with MWA & SKA1-Low
- Upgrade of ASKAP beyond current surveys
 - Rocket PAF upgrade to improve sensitivity??
 - Different PAFs at higher frequencies?
 - Need to start thinking where to go Science case
- New ideas!!? MUST be driven by Science cases
 - Exploration follows by Ron Ekers.

Thank you

Astronomy and Space Science Tasso Tzioumis Program Director, Technologies for Radio Astronomy P: +61 2 9372 4350 E: tasso.Tzioumis@csiro.au

Australia's National Science Agency