Fast radio bursts: ASKAP and beyond

Ryan Shannon (Swinburne)

Fast Radio Bursts (FRBs)

-requency

Time

Dispersed radio pulses that arise at cosmological distances

- Frequent: emission at other wavelengths must be faint or unusual, rate inconsistent with known cataclysmic progenitors
- Greater than 10⁵ per day over the sky at FAST sensitivity
- Rapid progress is being made in the field
 - Wide-field telescopes
 - Capability to localize bursts to arcsec precision (hosts, *z*)
 - Detailed study of repeating sources: concordance model (is the model correct?)

Parkes FRB 150807: Ravi, Shannon et al. Science 2016

Fast Radio Bursts (FRBs)

Erequency

Time

What produces them?

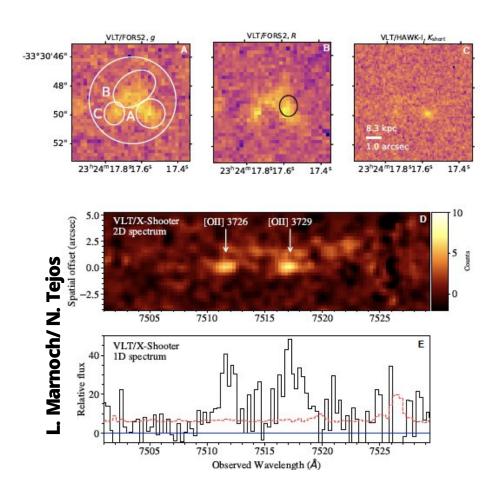
- Magnetars, black holes, shocks?
- Is there more than one source

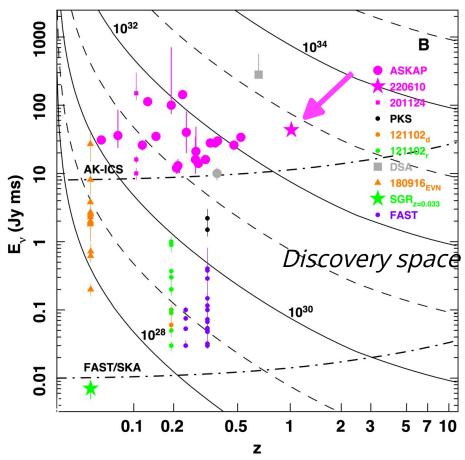
What causes the FRB emission?

- Motivation for theory

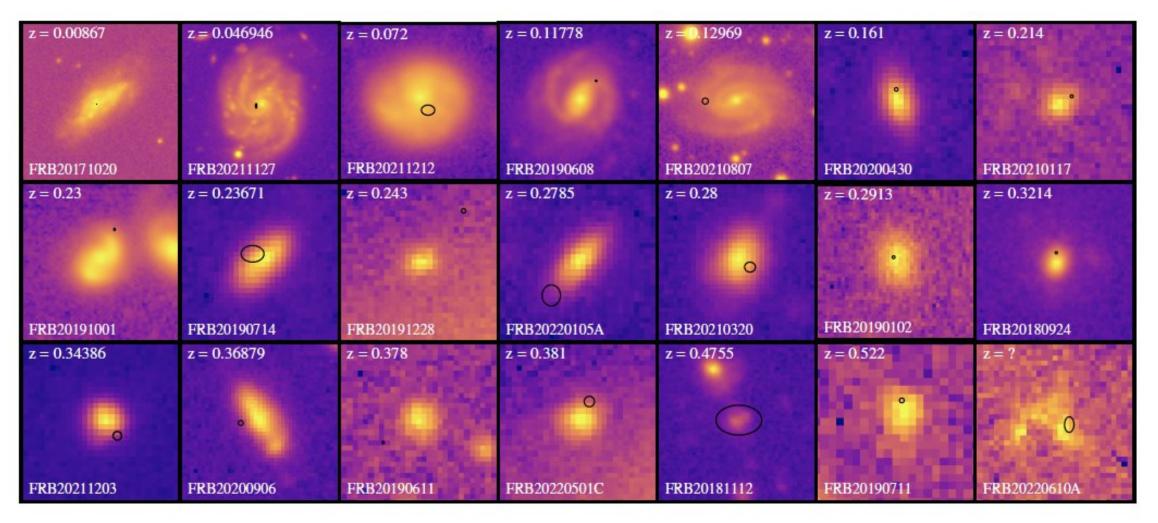
How can we use them as tools?

- Almost perfect impulses
- Reverse engineer the Universe

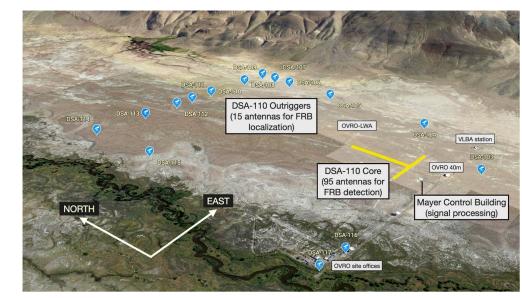

 As astronomers we want to do everything, but recognize there isn't a a budget for everything.

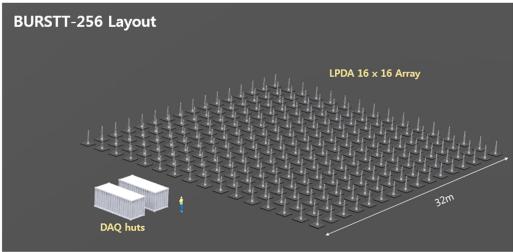

Parkes FRB 150807: Ravi, Shannon et al. Science 2016

A "High"-z FRB


ASKAP FRB 20220610A DM ~ 1450 pc cm⁻³ and z = 1.0016

Luminous FRBs exist at z >1! Burst properties in contrast to repeating FRB sources! Ryder et al., submitted to *Science* (no twitter)


Credit: Lachlan Marnoch



FRB landscape

- Hundreds of millions of dollars DSA-110 being invested in FRB (or FRB++) experiments
- Facilities Capable of detecting and localizing FRBs at high rates under
 - construction/funded/proposed:
 - CHIME/CHORD: (McGill/DRAO)
 - DSA-110/2000: (Caltech)
 - BURSTT: All sky dense aperture array: (ASIAA)
- Most investment in the Northern Hemisphere

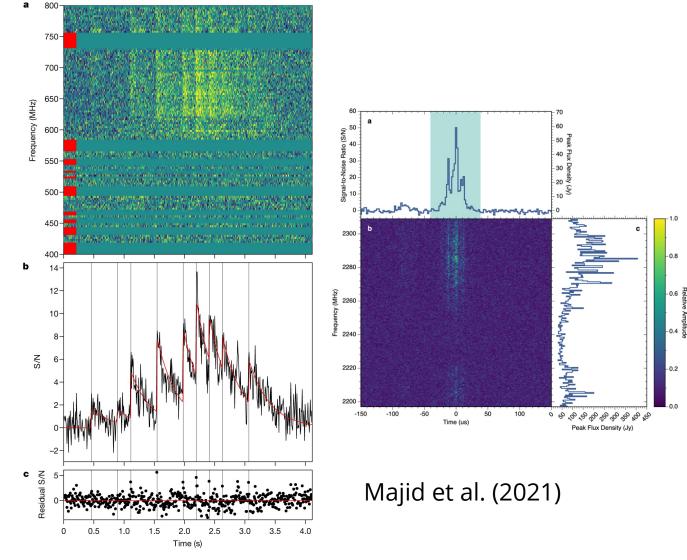
Lin et al. (2022)

Expected FRB rates

SWIN BUR * NE *	
SWINBURNE UNIVERSITY OF TECHNOLOGY	

System	Sensitivity (Jy ms)	Rate (FRB day-1)
ASKAP Fly's Eye	24	0.13
ASKAP ICS-24	5	0.16
CRACO-24	1	1.6
CHIME-predicted	0.6	28.9
CHIME-reported	5*	1.4
DSA-110	0.9	0.66
CHORD		3-20
DSA-2000		3-10
BURSTT		30-70

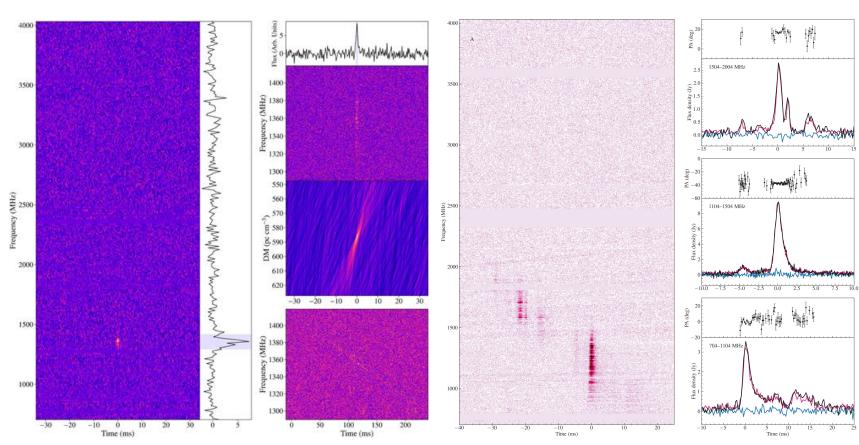
Extrapolated from ASKAP fly's eye rate


Connor & Ravi (2022) population modelling

What are possible discovery axes to investigate? Where can Australia have a niche?

Time resolution

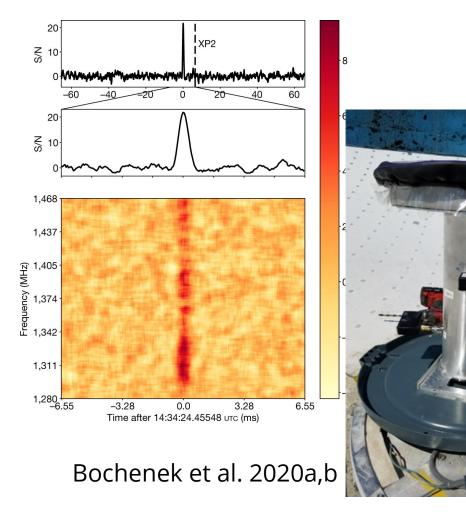
- High time resolution
 - How narrow can FRBs be
 - Scatter broadening
 - Pre-dedispersion?
- Lower time resolution:
 - CHIME pulse trains
 - Long period magnetars (see Natasha's talk)
 - "Easier" (except RFI)



CHIME/FRB et al. (2022)

Frequency and bandwidth

- Higher frequency
 - Propagation effects weaker
 - Dedispersion becomes cheaper
 - Unexplored domain
 - Spectral index/activity?
- Lower frequency
 - Easier to get field of view
 - Stronger propagation effects
- Ultrawide band systems
 - If FRBs are band limited (are they?) run multiple searches for free
 - Study of pulsar emission mechanism



Kumar et al. (2021) UWL repetition of ASKAP localized FRB Kumar et al. in prep: UWL repetition of CHIME repeating FRB "Sad orchestra"

Field view and sensitivity

- Wider field of view
 - Rare, bright events
 - SGR 1935 (Milky Way "FRB") is in the Northern Hemisphere because that is where the wide field of view instruments were discovered
- Sensitivity
 - More distant events: explore in detail the Macquart relation
 - HEII reionisation

Commensal versus targeted

- Commensal
 - FRBs can come from anywhere
 - Ride along for free
- Targeted
 - Specific science questions may benefit from deep follow up
 - "IGM tomography"
 - Lensed FRBs
 - Depends on field of view of instrument
 - 30 deg² is Virgo size but not much else
- Multimessenger/prompt emission
 - Account for large event rate

Possible future instrumentation

- Upgrades to ASKAP
 - More sensitive PAFs
 - New FRBs backends and digital signal processing
- Dedicated FRB facilities
 - Complement other facilities
 - Budget constraints/SKA
- International collaboration
 BURSTT outriggers
- SKA

Australia's role

- Novel instrumentation to open up new parameter spaces
- Risky and ambitious projects
- Flexible systems
 - Upgrade paths for for \$10⁸-\$10⁹ facilities long and expensive

UNIVERSITY (

- Systems that can be reconfigured to search different parts of parameter space
- Dense L-band aperture arrays at MRO
 - Aperture arrays vs phased array feeds

Conclusions

- Lead times to develop facilities/capabilities long
- Need to start thinking now even though CRACO isn't yet commissioned
- "Australia offers a culture of academic freedom, openness to ideas, and an amazing willingness to pursue goals that are ambitious. And the results speak for themselves – we have achieved tremendous success in our endeavour, largely because we gave things a go that the rest of the world didn't dare to try,"
 - Michelle Simmons Australia Day Address (2017)

