Tracking Space Weather events with ASKAP and Parkes

John Morgan Angelica Waszewski Rajan Chhetri Mark Cheung Ron Ekers ATUC, 2022-Nov-8

Radio Observations are key

- (almost) The only methods for remotely sensing the solar wind in interplanetary space
- Heliosphere is a foreground for all astrophysical radio sources
- Modern wide-field interferometers are extremely well-suited to these observations

Interplanetary Scintillation

- IPS is not just useful for Heliosphere measurements
 - We can do astrophysics too!
- IPS is not the only radio probe of the heliosphere
 - Scatter broadening
 - Phase scintillation (LBA, Guifré Molera Calves and students, UTas)
 - Faraday rotation measurements
- We can also measure the ionosphere
- There is also radio imaging of the Sun

Pure Science

- General properties of the Heliosphere
- How do CMEs propagate?
- What are their properties
- Proof-of-concept observations

- → Quiet Heliosphere
- → Non Earthbound CMEs
- → Latency less important

Applied

- Improving Space Weather Forecast accuracy at the Earth
 - Is CME Earthbound?
 - When will it arrive
 - What is the magnetic field orientation?

- → Latency more important
 - Result ~10 hours post observation or better
 - Somewhat trickier to observe Earthbound CMEs from Earth.

IPS With the MWA

8°×6°

0.5s interval

Scintillation pattern encodes velocity,

turbulence parameters (on ~100km scales), radio source structure etc.

Changes in scintillation index reflect changes in density

ASKAP

Best suited to IPS observations at <20° (due to higher frequency)

- Covers elongations between Coronagraph and MWA
- Similarly to the MWA, could cover most solar angles with approx. 10x5-minute pointings

ASKAP Update - CRACO test on 1934-638

270s of data ~100ms resolution

IPS at 1GHz, 90° from the Sun!

With thanks to Vivek Gupta, Keith Bannister and the CRAFT Team

CryoPAF?

- 2-4 square degrees
- 30-50 sources detectable (0.5-1 per PAF beam)

Remote sensing of magnetic fields with polarimetry

Oberoi & Lonsdale doi.org/jdtr

• IPS tells us where to look

 Wide-band, low-frequency polarimetry gives us the precision

 MWA may allow us to track ionospheric variations as well

• Still many challenges remaining!

Conclusions

- We can use MWA IPS to track CMEs!
- Use of ASKAP for IPS measurements has been proven
- Potential for future science campaigns with both instruments
- Potential for triggering on white light detections near the Sun

Potential for monitoring Sun and Solar wind

