

ASKAP Upgrade Pathways

Aidan Hotan and John Bunton

Motivation and constraints

- Upgrades will be needed to ensure ASKAP's future in the SKA era
 - ASKAP's instrument design (Mk II hardware) is already 10 years old
 - ASKAP has a unique role and much of its potential has yet to be realised
- ASKAP has a dedicated survey mission for the next 5+ years
 - Large scale disruptive upgrades should be avoided during this time
 - Rolling upgrades to specific subsystems may be a good alternative
- The nature of upgrades is changing with technology
 - Software and firmware need continuous improvement during operations
 - Development and testing practices are key to avoiding downtime

Shelved upgrades that could be revisited

- Add another correlator block for 48 MHz of additional bandwidth
 - Difficult or impossible to source new redback boards
 - Increased data rate would add to processing capacity issues
 - Only a minor improvement in sensitivity
- Implement split band mode in existing control system software
 - Could be used for more efficient spectral line surveys
 - EMU prefers the low band and POSSUM benefits more from EMU+WALLABY
 - Better to get a head-start on integration of next-gen digital systems

What makes ASKAP unique in the SKA era?

- Field of view and low RFI at 20cm radio wavelengths
- Integrated supercomputing and science-ready data products
- Highly efficient autonomous end-to-end operations model

- The above combine to maximise all-sky survey capabilities
 - Multiplies theoretical survey speed beyond collecting area and field of view
 - Demonstrated as a unique role with the Rapid ASKAP Continuum Survey

Transient & synoptic science, multi-messenger, rapid response, radio sky model, finding rare objects & the unknown

S. Weinreb and J. Shi, "Low Noise Amplifier With 7-K Noise at 1.4 GHz and 25 °C," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 4, pp. 2345-2351, April 2021, doi: 10.1109/TMTT.2021.3061459.

Phase 1: Improve ASKAP's sensitivity

- Upgrade PAF low-noise amplifiers (by far the best option)
 - High impact, relatively low cost and complexity
 - 12K LNA + 15K practical penalties = 27K Tsys (c.f. 75K for ADE hardware)
 - 2.8x survey speed increase
 - Overall cost of approximately \$2M
 - Minimises the sensitivity gap to SKA-mid with no additional data rate
- Install transparent feed legs (probably not worth the cost)
 - Low impact, high cost, medium complexity
- Increase antenna diameter (probably not worth the complexity)
 - High impact, high cost, high complexity

Phase 1: Rolling upgrades during surveys

- Develop and test upgraded LNA board for existing PAF/domino
 - Take one antenna out of the array and isolate for single-dish field tests
 - 2 years of R&D to develop and test a new LNA board?
- Refurbish one antenna at a time during ongoing surveys
 - Bring PAF to workshop, replace all LNA boards
 - Upgrade TEC cooling system to maintain temperature/gain stability
 - Replace any degrading components e.g. RFoF laser diodes
 - Inspect and replace chequerboard conformal coating
 - Upgrade antenna drive systems, replace degraded panels
- 3 to 4 years at a rate of one antenna per month, but no deadline

Rolling upgrade

- Bring ASKAP up to the performance that surveys were originally planned around (50K Tsys or better)
- Start with inner or outer antennas depending on science goals
- Sensitivity and baseline weighting will change during the surveys, but we can adjust the observing strategy to compensate
 - e.g. progressively drop integration time and use the saving to cover more area

Phase 2: Upgrade ASKAP's digital systems

- Full digital hardware upgrade after the first surveys finish
 - Necessary to replace aging components in the existing system
 - Ensures cross-compatibility and shared effort across ATNF engineering
 - Easier to control, manage and maintain than a hybrid of new and old
- Include flexibility and power to implement advanced modes
 - Adaptive beamforming, split bands, fast transients, tied array, etc.
- Match bandwidth to existing PAF front-end filters (600 MHz)
 - Throttle output bandwidth until computing capacity is available
- More expensive (tens of millions?) and more disruptive

Phase 3: Upgrade ingest, processing & archiving

- Replace ingest cluster and upgrade to match increased correlator output
- Expand dedicated supercomputing capacity for ops and post-processing
- Expand and secure archive capacity for current and new surveys
- Implement new data formats to replace MS & FITS if appropriate
- Review service provider arrangements to reduce risk?
 - Currently not under direct control of timelines, procurement etc.
- Not strongly coupled to other phases if we design carefully
- At least 5 years away given Setonix is being commissioned now

Large scale future expansion options

- Adding more antennas would improve image quality and sensitivity while maintaining field of view
 - Requires analysis of existing infrastructure (roads, power, fibre, etc.) to see what could be done and at what cost
 - Could increase diameter of existing antennas as part of this upgrade
- Cryogenic PAFs
 - Perhaps not needed if we can get to 27K uncooled?

Continuous improvement is essential

- Meet our initial goals before increasing system complexity
 - Make all required modes available joint deconvolution, fast imaging, etc.
 - Improve image quality sky model, advanced processing and calibration
- Develop new features and improvements
 - Deploy an upgraded processing pipeline framework with more feedback
 - Integrate CINTEL into the operations workflow to maximise efficiency
 - Investigate advanced beamforming, holography and improved pointing correction
 - Deploy CP-view, CARTA, new archive services based on science needs
- Adapt to changing software/hardware ecosystems
 - Upgrade code and libraries, servers, operating systems, build & deployment methods
 - Maintain and expand ASKAPsoft's parallel performance, extend to GPU hardware

Key points and priorities

- Meet all outstanding requirements and secure archive space to complete the first full survey campaign
 - Support ongoing development and operations
- Improve sensitivity with rolling PAF upgrades
 - Reach or exceed the original survey specifications
- Plan more disruptive upgrades and future surveys according to emerging results, starting with digital signal processing