BIGCAT Update + Science Commissioning plans

Elizabeth Mahony – BIGCAT Project Scientist Chris Phillips – BIGCAT Project Lead Jamie Stevens – ATCA Senior Systems Scientist

Australia's National Science Agency

BIGCAT Overview

- BIGCAT: Broadband Integrated GPU Correlator for ATca
 - Replacement of CABB digitisers and correlator with a hybrid FPGA+GPU backend
- Key aspects of BIGCAT:
 - Double instantaneous bandwidth to ~8 GHz
 - Spectral resolution of at least 0.6 kHz
 - Improved reliability
 - More flexibility:
 - Many more options wrt. frequency resolution and integration times
 - Ability to change quickly between different observing modes
 - More adaptable to automated observing (e.g. rapid ToO follow-up)
 - Retain standard CABB features (e.g. mosaicing)

BIGCAT Overview

BIGCAT Overview

- What will change (from observer's view):
 - 4 x 2 GHz IFs
 - No CACOR
 - No re-booting blocks (no prog!)
 - New CAOBS
 - New Scheduler
 - New file format (RPFITS -> ASDM)
 - New archive (ATOA transitioning to CASDA)
- What won't change:
 - Antennas
 - Receivers

Al interpretation of BIGCAT (thanks to Bing/Copilot + Stefan) Giant cat + extra antennas not part of upgrade

Archiving BIGCAT data

- BIGCAT files will use ASDM data format (ALMA Science Data Model)
 - MS filesystem (CASA compatible)
 - *atlod* in miriad will be updated to read in ASDM files
- Data will be archived in CASDA (see Minh's talk later today)
 - Estimating 0.5PB per year to archive
 - Max data rate of 100 Mbytes/sec
 - This will equate to some limit on spectral line modes available (e.g. high spectral resolution will require trade-off in bandwidth)
 - Observations will be identified with a SBID
 - Users will have the ability to extract and download portions of the data (e.g. a single IF/subband).
 - This functionality will not be available immediately

Recent updates

- Servers installed @ Marsfield
- First jimble installed and tested at ATCA (Dec. 2023)
- RF testing currently underway on-site (this week)
- BIGCAT scheduler almost complete
 - Web-based + built-in simulator
 - Currently being testing within commissioning team
- New staff hired to work on BIGCAT
 - Ian Morrison (GPU software engineer)
 - Stefan Osłowski (software engineer)
 - Chandra Murugeshan (commissioning scientist)

Recent updates – as of this morning

- Prototype RF hardware and one Jimble installed on 2 antenna in 1.5 days. Much faster than predicted.
- Observed 12.2 GHz Optus satellite and can clearly see signal
 - first time 12.2 GHz has worked on ATCA
 - Cross correlated the signal on 2 antenna.
- Observed the 22 GHz masers from Orion-KL (autocorrelations)
- Observed 6.7 + 12.2 GHz masers simultaneously (autocorrelations)

Recent updates – BIGCAT scheduler

Image credit: Xinyu Wu

BIGCAT commissioning timeline

CSIRC

Commissioning targets

Commissioning team has defined several ATCA verification fields – observed with CABB (proposal code C3550)

Target	Receiver/corr	Array	Functionality tested
IC4296	16cm, cont.	H214, 6D	Cont. imaging – extended emission
HIPASS J0732-77 ESO 245-G005	16cm + zooms 16cm + zooms	H214 6D	cm spectral line, diffuse emission cm spectral line + high resolution imaging
Various masers	12mm, 7mm + zooms	H214	mm spectral line, high spectral resolution
PSR J0742-2822	4cm, cont.	any	polarimetry
eCDFS	4cm, cont.	6D	Mosaicking mode
1934-638	all	any	Long track of 1934
Phase ref. pair	16cm, vlbi	any	VLBI/tied-array mode

BIGCAT observing modes

- Observing modes tested during initial science commissioning period:
 - Continuum + polarization
 - mosaicking
 - High spectral resolution mode
 - Basic VLBI mode (needs Parkes time during commissioning)
 - Automated rapid-response mode
- Additional modes to be commissioned once ATCA available to users:
 - 8 GHz bandwidth
 - Pulsar binning
 - Advanced VLBI
 - SSA/spacecraft tracking
 - Sub-arrays

Join the commissioning team

Everyone welcome!

email me: elizabeth.mahony@csiro.au

Responsibilities

• Carry out observations of commissioning fields

- Process data quickly
- Prompt feedback of any issues
- Contribute to documentation + tutorials

Rewards

- Select commissioning targets
- Be one of the first BIGCAT users
- Become an expert BIGCAT user

