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Learning Perspective
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Background

The next generation of radio telescopes will have unprecedented sensitivity and time-resolution offering exciting new capabilities in time-domain 
science. However, this will result in very large numbers of potential pulsar and transient event candidates and the associated data rates will be 
technically challenging in terms of data storage and signal processing. Automated detection and classification techniques are therefore required and 
must be optimized to allow high-throughput data processing in real time. 

Automated detection methods exploit the signal feature space to identify data representations which maximize separation between noise and 
candidate events. Features can be extracted from diagnostic plots resulting from various stages of the signal processing pipeline. In particular, 
parameters derived from the dispersion measure search stage and the final integrated pulse profile are commonly used in classification algorithms.  

Automated detection methods have reduced the amount of 
processing time required for pulsar discoveries, however, most are 
only applied at the final candidate selection stage. This leaves scope 
to re-examine earlier modules in the signal processing chain and 
identify areas which could be optimised by modern machine 
learning techniques. Extending algorithms to integrate physics 
more fully into the models is also a current challenge, as is the 
ever-present issue of scalability, particularly for the next 
generation of radio telescopes.
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Publication Method Details

Faulkner 2004 Graphical Selection Tool 128 new pulsars
Keith 2009 Graphical Selection Tool and 

Scoring Algorithm
28 new pulsars

Eatough 2010 ANN 8 to 12 features, 1 new pulsar
Bates 2012 ANN up to 22 features

Lee 2013 Scoring Algorithm 6 `quality factors’  
47 new pulsars

Morello 2014 ANN Feature-based

Zhu 2014 ANN, CNN and SVM Image-based 
Algorithms combined in Deep 
Neural Network

Lyon 2016 Hellinger Decision Tree Feature-based

Devine 2016 ANN, SVM, Direct Rule Learner, 
Standard Tree Learner, Hybrid Rule-
and-Tree Learner and Ensemble Tree 
Learner

Algorithms combined 
optimally for binary and multi-
class classification

Bethapudi 2017 ANN, Adaboost, GBC and XGBoost Comparative Study of 4 
Algorithms

Factors affecting the received signal:

Intrinsic Properties

• Emission Mechanism 

• Rotational Properties 

Hardware Effects
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• Analogue to Digital 
Conversion 

• Polyphase Filtering 

• Optional Detection, 
Integration, Decimation 
or Normalisation Stages

Propagation through the ISM
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• Plasma dispersion 

• Scattering 

• Scintillation

 The evolution of automated candidate selection techniques.

Signal Processing Pipeline

Important Considerations: 

• How does each stage affect the signal? 

• Which features can be extracted for classification?
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