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1. OVERVIEW PULSAR SCATTERING

PULSAR SCATTERING THEORY
▸ Multi-path propagation of radio waves due to electron density gradients in the ISM 

▸ Observe scattering tails in average pulse profiles at low frequencies 

▸ Require description of distribution in scattering angles and time delays and their 
frequency dependencies
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1. OVERVIEW PULSAR SCATTERING

PULSAR SCATTERING THEORY - THIN SCREEN MODEL
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▸ Scattering takes place 
at single location  
along the line of sight



1. OVERVIEW PULSAR SCATTERING

PULSAR SCATTERING - BROADENING FUNCTIONS 

Isotropic Scattering Anisotropic Scattering
Scattering screen scatters 

isotropically 
Distribution scattering angles shows 

directionality

Simple case: circularly symmetric 
Gaussian distribution in a

Simple case: asymmetric Gaussian distribution 
distribution  σx  ≠  σy

 

plasma scattering, 𝞼a ∝ 𝝂-2  
leads to  𝝉 ∝ 𝝂-4  
  

in the extreme case 1D scattering
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at 150MHz, midway screen at 1.5kpc



TEXT

EXTERNAL EVIDENCE FOR ANISOTROPIC SCATTERING
▸ VLBI image of PSR B0834+06 at  

327 MHz 

▸ Brisken et al. 2010 
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Fringe frequency
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▸ Organized patterns in dynamic spectra 

▸ Parabolic arcs in secondary (power) spectra 

▸ Enhanced for elongated (anisotropic) images 

▸ Stinebring et al. 2001,  Walker et al. 2004



2. THEORETICALLY EXPECTED RESULTS

THEORETICAL EXPECTATIONS
▸ Gaussian scattering:  𝝉 ∝ 𝝂-4  

▸ Kolmogorov Turbulence: 𝝉 ∝ 𝝂-4.4 

▸ Löhmer et al. 2001: 𝝰 = 3.44 (9 sources, at high DMs) 

▸ Lewandowski et al. 2013: 𝝰 = 2.77 - 4.59 (25 sources) 

▸ Lewandowski et al. 2015: 𝝰 = 2.61 - 5.61 (60 sources)  

▸ Smirnova et al. 2014 using RadioAstron: B0950+08, 𝝰 = 3.00 

LITERATURE MEASURED 𝝰 VALUES
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P(q) = Cne/(Ko2 + q2^)beta/2   exp(-q2/4ki2)




3. FITTING TECHNIQUES

FITTING TECHNIQUE - ‘TRAIN MODELS’
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3. FITTING TECHNIQUES 11
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▸ Train Method - simplest, fastest 

▸ Deals effectively with high levels of 
scattering where pulses are smeared 
into one another 

▸ Keeps track of flux ‘lost’ due to high 
levels of scattering

FITTING TECHNIQUE - ‘TRAIN MODELS’
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3. FITTING TECHNIQUES

FITTING TECHNIQUE - ‘TRAIN + DC MODEL’

▸ Fits for underlying Gaussian  
parameters (mu, sigma, A) 

▸ Fits for scattering timescale tau 

▸ Add DC offset 

▸ It works
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3. FITTING TECHNIQUES AND ANALYSIS OF LOFAR DATA

LOFAR SOURCES

▸ Selected 13 slow (non-ms) pulsars 

▸ Observed with LOFAR Core stations 

▸ Scattered at HBA frequencies (110 - 190 MHz) 

▸ LOFAR: Provides a large bandwidth at low frequencies (80MHz/150MHz) 

▸ Simple profile shapes  (approximated by single Gaussian component) 

▸ DM range: 50 - 220 pc cm-3 

▸ Selected from Commissioning data, Census data (190, DEC > 8) and some 
overlapping Cycle 5 LOFAR  timing data

13



3. LOFAR ANALYSIS AND RESULTS

PSR J0614+2229 (B0611+22)

▸ RED FIT: Isotropic model, BLUE FIT: Extreme Anisotropic (1D) model 

▸ scattering indices (𝝰) are lower than theoretical models predict 

▸ often closer to theoretical values for anisotropic models 

▸ recover the flux lost due to scattering
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3. LOFAR ANALYSIS AND RESULTS

PSR J1922+2110 (B1920+21)

▸  

▸ measure DM corrections due to scattering effects 

▸ most often an overestimation
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3. LOFAR ANALYSIS AND RESULTS

RESULTS TABLE

166.4 - only 6 datapoints, 2 lowest have 
massive error bars for ANISO!



4. IMPLICATIONS AND DISCUSSION

ORIGIN OF LOW SCATTERING INDICES?
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Löhmer 2001 suggested lower 𝝰 with  
an increase in DM  

We see low 𝝰 at low DMs

Truncated screens - can reproduce the 
𝝰 distribution with ~100 AU screens 

The dominance of truncated screen could  
decrease with increase in distance/DM 
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TEXT

SIDE NOTE: ‘TRUNCATED PROFILES’
▸ Simulated midway screen 120 AU, distance 1.5 kpc 

▸ Pulsars appear much less scattered
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4. IMPLICATIONS AND DISCUSSION

ANISOTROPY REQUIRED?
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Simulated

▸ Does our data require anisotropic  
scattering models?  

▸ Not strictly  

▸ Tempting in some cases (4 pulsars):  

▸ goodness of fit (𝟀2 , KS) slightly better for 
anisotropic model 

▸ anisotropic 𝝙DM corrections between epochs 
lead to more similar DMs 

▸  𝝰 values isotropic and anisotropic models are 
well separated 

▸ anisotropic 𝝰 values closer to theoretical values



4. IMPLICATIONS AND DISCUSSION

ANISOTROPY REQUIRED?
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▸ Does our data require anisotropic  
scattering models?  

▸ Not strictly  

▸ It definitely is a mechanism that can cause 
perceived low 𝝰 values 

▸ Simulated data: shown that fitting anisotropic 
data (e.g. A = 3) with isotropic model lead  
low 𝝰 values 

▸ Existing evidence for anisotropy - e.g Brisken 
pulsar,  parabolic arcs in secondary spectra



4. IMPLICATIONS AND DISCUSSION

EVOLUTION OF SPECTRAL INDICES WITH FREQUENCY?

▸ 𝝉 at 1 GHz vs DM 

▸ Compare Bhat 2004 

▸ Our data (along with 
Lewandowski et al. 2013 
and 2015) promote 
higher 𝝉 at low DM 

▸ For Bhat relation to hold 
at 1GHz, 𝝰 must change 
with frequency 

▸ Implications?
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TEXT

NEXT…
▸ Time domain analysis is not the most sensitive to analyzing IISM properties 

▸ But even in time domain we see anomalous effects 

▸ Interferometric imaging, including space-ground experiments, could be key in 
investigating the typical sizes of scattering surfaces 

▸ Scintillation results are required for precise scattering measurements at higher 
frequencies to aid the investigation of the frequency dependence of 𝝰.  (Break 
in power law?) 

▸ Best tests for anisotropy come from high resolution dynamic spectra 

▸ Test whether estimated flux loss is regained in pulsar imaging - ongoing work  
(Will not be so, if flat spectra are due to inner scale instead)
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THE END
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