Marisa Geyer, Aris Karastergiou at Oxford University Collaborators: Members of LOFAR PWG

PHASE SPACE

ANOMALOUS PULSAR SCATTERING AT LOFAR FREQUENCIES THE LABYRINTH OF THE UNEXPECTED UNFORESEEN TREASURES IN IMPOSSIBLE REGIONS OF

Marisa Geyer, Aris Karastergiou at Oxford University Collaborators: Members of LOFAR PWG

ANOMALOUS PULSAR SCATTERING AT LOFAR FREQUENCIES THE LABYRINTH OF THE UNEXPECTED

UNFORESEEN TREASURES IN IMPOSSIBLE REGIONS OF PHASE SPACE

CONTENTS

- 1. OVERVIEW PULSAR SCATTERING
- 2. THEORETICALLY EXPECTED RESULTS
- 3. FITTING TECHNIQUES
- 4. ANALYSIS OF LOFAR DATA
- **5. IMPLICATIONS AND DISCUSSION**

PULSAR SCATTERING THEORY

- Multi-path propagation of radio waves due to electron density gradients in the ISM
- Observe scattering tails in average pulse profiles at low frequencies

PULSAR SCATTERING THEORY – THIN SCREEN MODEL

 Scattering takes place at single location along the line of sight

PULSAR SCATTERING – BROADENING FUNCTIONS

Isotropic Scattering	Anisotropic Scattering
Scattering screen scatters isotropically	Distribution scattering angles shows directionality
Simple case: circularly symmetric Gaussian distribution in a	Simple case: asymmetric Gaussian distribution distribution $\sigma_X \neq \sigma_y$
$f_t = \tau^{-1} e^{-t/\tau} U(t)$ $\tau = D'_s \sigma_a^2 / c$ $D'_s = D_s (1 - \frac{D_s}{D}),$ plasma scattering, $\sigma_a \propto \nu^{-2}$ leads to $\tau \propto \nu^{-4}$	$f_t = \frac{1}{\sqrt{\tau_x \tau_y}} e^{-\frac{t}{2}(\frac{1}{\tau_x} + \frac{1}{\tau_y})} I(0, \frac{t}{2}(\frac{1}{\tau_x} - \frac{1}{\tau_y}))$ in the extreme case 1D scattering $f_t = e^{-t/\tau} / (\sqrt{\pi t \tau}) U(t)$

PULSAR SCATTERING – BROADENING FUNCTIONS

EXTERNAL EVIDENCE FOR ANISOTROPIC SCATTERING

- VLBI image of PSR B0834+06 at 327 MHz
- Brisken et al. 2010

- Organized patterns in dynamic spectra
- Parabolic arcs in secondary (power) spectra
- Enhanced for elongated (anisotropic) images

8

THEORETICAL EXPECTATIONS

- Gaussian scattering: $\tau \propto \nu^{-4}$
- Kolmogorov Turbulence: $\tau \propto \nu^{-4.4}$ LITERATURE MEASURED α VALUES
- Löhmer et al. 2001: $\alpha = 3.44$ (9 sources, at high DMs)
- Lewandowski et al. 2013: α = 2.77 4.59 (25 sources)
- Lewandowski et al. 2015: **α** = 2.61 5.61 (60 sources)
- Smirnova et al. 2014 using RadioAstron: B0950+08, α = 3.00

FITTING TECHNIQUE – 'TRAIN MODELS'

3. FITTING TECHNIQUES

FITTING TECHNIQUE – 'TRAIN MODELS'

- Train Method simplest, fastest
- Deals effectively with high levels of scattering where pulses are smeared into one another
- Keeps track of flux 'lost' due to high levels of scattering

FITTING TECHNIQUE – 'TRAIN + DC MODEL'

30

25

20

15

10

Ő.34

0.36

- Fits for underlying Gaussian parameters (mu, sigma, A)
- Fits for scattering timescale tau

Freq: 60 MHz

1.3

1.4

1.2

 τ (sec)

Train

Train + DC

Best check

1.5

1.6

- Add DC offset
- It works

30

25

20

15

10

5

0.9

1.0

1.1

counts

Geyer , Karastergiou MNRAS (2016) 462 (3)

LOFAR SOURCES

- Selected 13 slow (non-ms) pulsars
- Observed with LOFAR Core stations
- Scattered at HBA frequencies (110 190 MHz)
- LOFAR: Provides a large bandwidth at low frequencies (80MHz/150MHz)
- Simple profile shapes (approximated by single Gaussian component)
- ▶ DM range: 50 220 pc cm⁻³
- Selected from Commissioning data, Census data (190, DEC > 8) and some overlapping Cycle 5 LOFAR timing data

PSR J0614+2229 (B0611+22)

- RED FIT: Isotropic model, BLUE FIT: Extreme Anisotropic (1D) model
- scattering indices (α) are lower than theoretical models predict
- often closer to theoretical values for anisotropic models
- recover the flux lost due to scattering

PSR J1922+2110 (B1920+21)

measure DM corrections due to scattering effects

most often an overestimation

RESULTS TABLE

Pulsar	Isotropic Scattering			Extreme (1D) Anisotropic Scattering		
	$\tau_{150}~({\rm ms})$	α	$\Delta DM \ (pc \ cm^{-3})$	τ_{150} (ms)	α	$\Delta {\rm DM}~({\rm pc~cm^{-3}})$
J0040+5716	40 ± 2	2.2 ± 0.2	0.0378 ± 0.0024	86 ± 8	2.7 ± 0.3	0.0143 ± 0.0022
J0117+5914 (Co)	7 ± 0	2.2 ± 0.1	0.0082 ± 0.0009	14 ± 1	3.5 ± 0.4	0.0041 ± 0.0011
J0117+5914 (Ce)	$8 \perp 1$	1.9 ± 0.2	0.0064 ± 0.0006	$16 \perp 2$	2.6 ± 0.2	0.0038 ± 0.0006
J0543 + 2329	10 ± 1	2.6 ± 0.2	0.0155 ± 0.0020	17 ± 2	2.7 ± 0.3	0.0031 ± 0.0020
J0614+2229 (Co)	15 ± 1	1.9 ± 0.1	0.0030 ± 0.0007	44 ± 4	2.4 ± 0.3	-0.0033 ± 0.0006
J0614+2229 (Cy)	15 ± 0	2.1 ± 0.1	-0.0053 ± 0.0006	44 ± 3	3.1 ± 0.3	-0.0109 ± 0.0008
J0742 - 2822	20 ± 2	3.8 ± 0.4	0.0013 ± 0.0027			
J1851 + 1259	6 ± 1	4.0 ± 0.4	0.0264 ± 0.0022	10 ± 1	4.7 ± 0.4	0.0158 ± 0.0017
J1909+1102	42 ± 3	3.5 ± 0.4	0.0351 ± 0.0085	120 ± 27	6.4 ± 0.7	-0.0276 ± 0.0077
J1913-0440 (Co)	9 ± 0	2.7 ± 0.2	0.0240 ± 0.0009	16 ± 1	3.5 ± 0.3	0.0161 ± 0.0011
J1913-0440 (Cy)	7 ± 0	3.3 ± 0.1	0.0457 ± 0.0003	12 ± 0	4.1 ± 0.2	0.0381 ± 0.0003
J1917 + 1353	11 ± 1	2.8 ± 0.4	-0.1004 ± 0.0025	21 ± 2	3.6 ± 0.6	-0.1167 ± 0.0028
J1922+2110	42 + 2	2.0 ± 0.2	0.0829 ± 0.0025	85 ± 6	3.3 ± 0.4	0.0663 ± 0.0023
J1935 + 1616	20 ± 1	3.4 ± 0.2	-0.0635 ± 0.0030	$46 \perp 4$	3.9 ± 0.5	-0.0836 ± 0.0038
J2257 + 5909	31 ± 2	2.6 ± 0.4	-0.0317 ± 0.0058	68 ± 9	3.4 ± 0.6	-0.0530 ± 0.0050
J2305 + 3100	9 ± 0	1.5 ± 0.1	0.0184 ± 0.0035	11 ± 0	2.0 ± 0.1	0.0144 ± 0.0023
$\langle lpha angle$		2.7 ± 0.2			3.5 ± 0.4	

ORIGIN OF LOW SCATTERING INDICES?

Löhmer 2001 suggested lower α with an increase in DM

We see low α at low DMs

Truncated screens - can reproduce the α distribution with ~100 AU screens

The dominance of truncated screen could decrease with increase in distance/DM

SIDE NOTE: 'TRUNCATED PROFILES'

Simulated midway screen 120 AU, distance 1.5 kpc

Pulsars appear much less scattered

4. IMPLICATIONS AND DISCUSSION

- Does our data require anisotrop scattering models?
- Not strictly
- Tempting in some cases (4 pulsars):
 - goodness of fit (χ^2 , KS) slightly better for anisotropic model
 - anisotropic ΔDM corrections between epochs lead to more similar DMs
 - α values isotropic and anisotropic models are well separated
 - anisotropic α values closer to theoretical values

Geyer et al. MNRAS (2016) 462 (3)

ANISOTROPY REQUIRED?

- Does our data require anisotropic scattering models?
- Not strictly
- It definitely is a mechanism that can cause perceived low α values
- Simulated data: shown that fitting anisotropic data (e.g. A = 3) with isotropic model lead low α values
- Existing evidence for anisotropy e.g Brisken pulsar, parabolic arcs in secondary spectra

Geyer et al. MNRAS (2016) 462 (3)

EVOLUTION OF SPECTRAL INDICES WITH FREQUENCY?

- τ at 1 GHz vs DM
- Compare Bhat 2004
- Our data (along with Lewandowski et al. 2013 and 2015) promote higher τ at low DM
- For Bhat relation to hold at 1GHz, α must change with frequency
- Implications?

NEXT...

- Time domain analysis is not the most sensitive to analyzing IISM properties
- But even in time domain we see anomalous effects
- Interferometric imaging, including space-ground experiments, could be key in investigating the typical sizes of scattering surfaces
- Scintillation results are required for precise scattering measurements at higher frequencies to aid the investigation of the frequency dependence of α. (Break in power law?)
- Best tests for anisotropy come from high resolution dynamic spectra
- Test whether estimated flux loss is regained in pulsar imaging ongoing work (Will not be so, if flat spectra are due to inner scale instead)

THE END