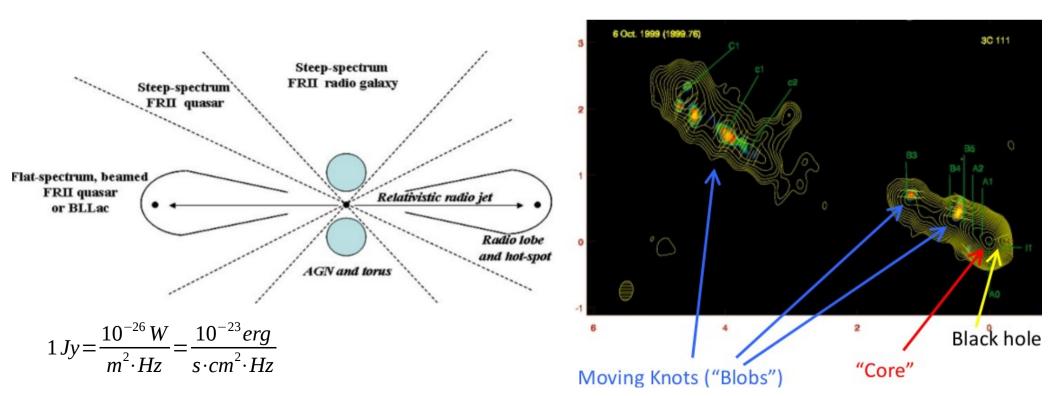
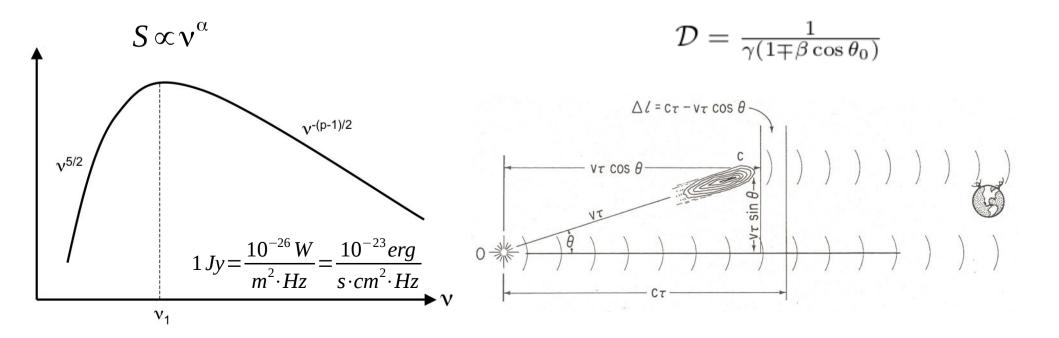
Multi-frequency polarimetry of a complete sample of faint PACO sources.


Vincenzo Galluzzi DiFA (University of Bologna) INAF-IRA (Bologna)

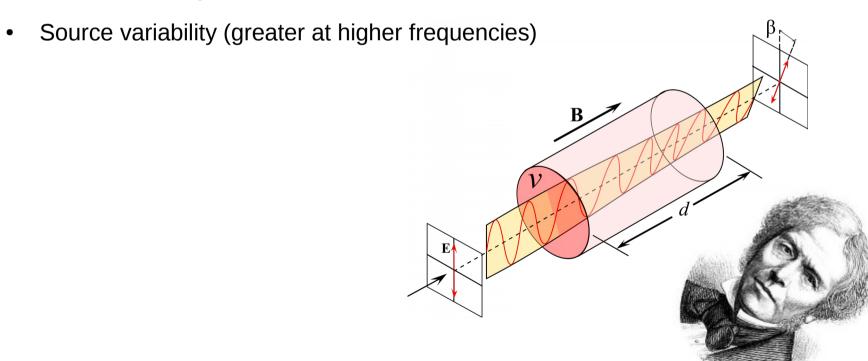
Marcella Massardi INAF-IRA & Italian ARC


The state-of-the-art

- The high frequency bright flux density (> 0.1 Jy) population is dominated by compact Doppler-boosted sources.
- Self-absorbed synchrotron emissions from knot-like structures closer and closer to the AGN.
- Polarized signal typically is a few percent of the total intensity (~ 2.5 % at 20 GHz).
- Spectral indices in total intensity and polarization are similar on average.
- There are several sources for which the spectral behaviour is different in polarization.
- Polarization properties of extragalactic radio sources at high frequencies (> 20 GHz) are still poorly constrained.

The state-of-the-art

- The high frequency bright flux density (> 0.1 Jy) population is dominated by compact Doppler-boosted sources.
- Self-absorbed synchrotron emissions from knot-like structures closer and closer to the AGN.
- Polarized signal typically is a few percent of the total intensity (~ 2.5 % at 20 GHz).
- Spectral indices in total intensity and polarization are similar on average.
- There are several sources for which the spectral behaviour is different in polarization.
- Polarization properties of extragalactic radio sources at high frequencies (> 20 GHz) are still poorly constrained.

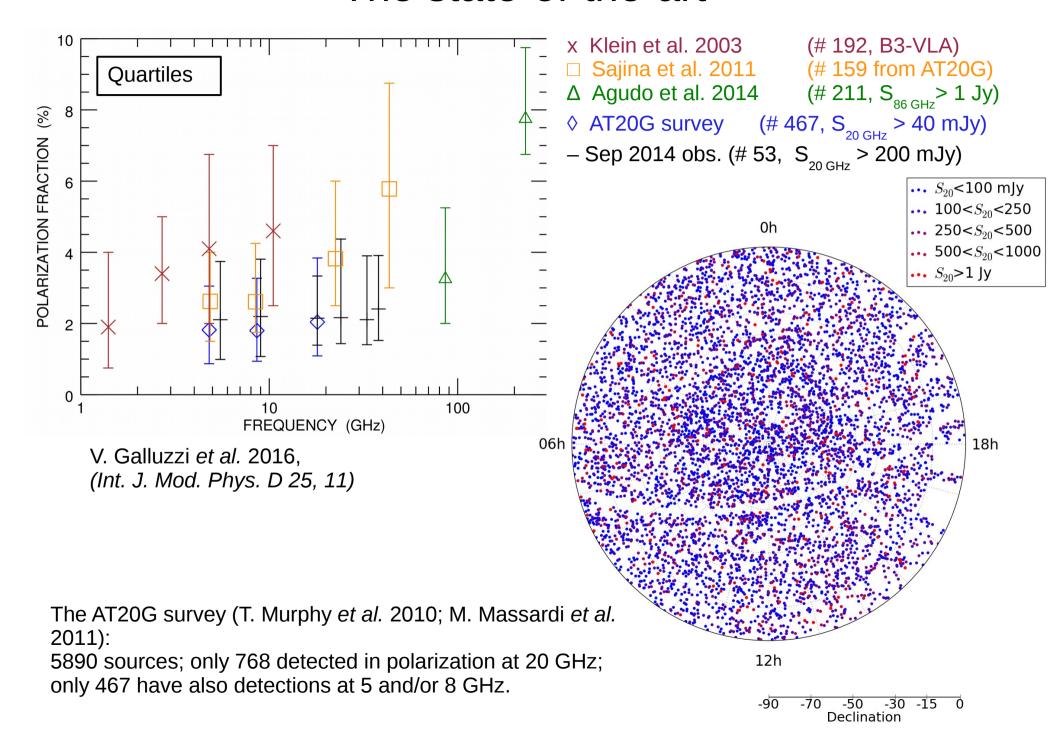


Polarimetric observations

Polarized signal is a tiny fraction of total intensity emission (down to ≈ 1 mJy)

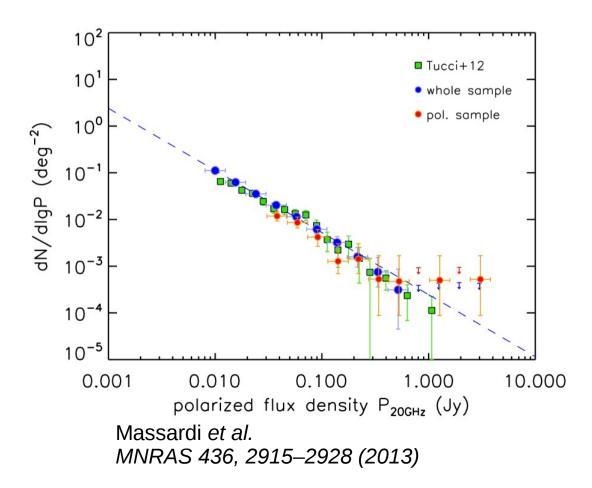
$$\sigma_{th} = \frac{2k_BT_{sys}}{A_{eff}\left[N(N-1)\Delta\nu\,\tau P\right]^{1/2}} \qquad \text{e.g., for a 2.5 \% we need a factor \sim2.0x10³ more in τ!}$$

- Depolarizations: beam dep., intra-band dep., Faraday rot. by electrons plasma
- Leakage calibration
- Polarization angle calibration

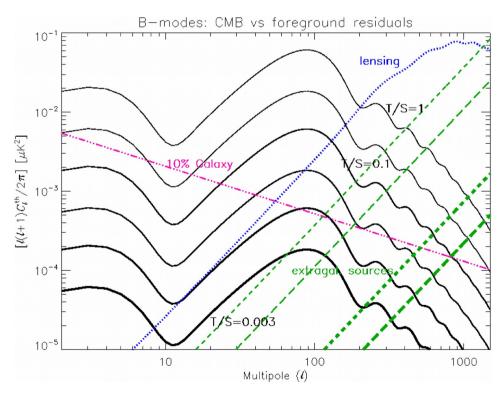

The state-of-the-art

References	Frequency (GHz)	# sources	Notes
Eichendorf & Reinhardt (1979) ¹⁷	[0.4, 15]	510	compilation of multi-frequency data
Tabara & Inoue $(1980)^{18}$	[0.4, 10.7]	1510	compilation of multi-frequency data
Simard-Normandin et al. $(1981)^{19,20}$	[1.6, 10.5]	555	compilation of multi-frequency data
Perley $(1982)^{21}$	1.5, 4.9	404	compilation of multi-frequency data
Rudnick <i>et al.</i> $(1985)^{22}$	[1.4, 90]	20	compilation of multi-frequency data
Aller <i>et al.</i> $(1992)^{23}$	4.8, 8.0, 14.5	62	90% complete sample with $S_{5\mathrm{GHz}} > 1.3\mathrm{Jy}$
Okudaira <i>et al.</i> $(1993)^{24}$	10	99	flat-spectrum sources with $S_{5\mathrm{GHz}} > 0.8\mathrm{Jy}$
Nartallo et al. $(1998)^{25}$	273	26	compilation of flat-spectrum radio sources
Condon et al. (1998) - $NVSS^{26}$	1.4	$\sim 2 \times 10^6$	100% complete survey down to $S_{1.4\mathrm{GHz}} > 2.5\mathrm{mJy}$
Aller <i>et al.</i> $(1999)^{27}$	4.8, 8.0, 14.5	41	BLLac sources
Fanti <i>et al.</i> $(2001)^{28}$	4.9, 8.5	87	CSS sample with $S_{0.4\mathrm{GHz}} > 0.8\mathrm{Jy}$
Lister $(2001)^{29}$	43	32	90% complete sample with $S_{5\mathrm{GHz}} > 1.3\mathrm{Jy}$
Klein et al $(2003)^{30}$	1.4, 2.7, 4.8, 10.5	192	compilation of detections of the B3-VLA survey
Ricci <i>et al.</i> $(2004)^{31}$	18.5	250	complete sample with $S_{5\mathrm{GHz}} > 1\mathrm{Jy}$
Jackson <i>et al.</i> $(2007)^{32}$	8.4	~ 16000	JVAS-CLASS surveys
Massardi <i>et al.</i> (2008) AT20G-BSS ¹¹	4.8, 8.6, 20	320	AT20G bright sample
Lopez-Caniego et al. $(2009)^{33}$	23, 33, 41	22	polarization detections in WMAP maps
Jackson <i>et al.</i> $(2010)^{34}$	8.4, 22, 43	230	WMAP sources follow-up
Murphy et al. (2010) $AT20G^9$	4.8, 8.6, 20	5890	93% complete survey with $S_{20\mathrm{GHz}} > 40\mathrm{mJy}$
Trippe <i>et al.</i> $(2010)^{35}$	[80, 267]	86	complete sample with $S_{90\mathrm{GHz}} > 0.2\mathrm{Jy}$
Battye <i>et al.</i> $(2011)^{36}$	8.4, 22, 43	230	WMAP sources follow-up
Sajina <i>et al.</i> $(2011)^{12}$	4.8, 8.4, 22, 43	159	AT20G sources follow-up
Massardi <i>et al.</i> $(2013)^{37}$	4.8, 8.6, 18	193	complete sample with $S_{20\mathrm{GHz}} > 500\mathrm{mJy}$
Agudo <i>et al.</i> $(2014)^{38}$	86, 229	211	complete sample of flat-spectrum sources with $S_{86\mathrm{GHz}} > 1\mathrm{Jy}$
Farnes <i>et al.</i> $(2014)^{39}$	[0.4, 100]	951	Compilation of multi-frequency data
Planck Collaboration (2015) ⁸	30, 44, 70	122, 30, 34	polarization detections in Planck LFI maps (PCCS2)
	100, 143, 217, 353	20, 25, 11, 1	polarization detections in Planck HFI maps (PCCS2)

Compilations (no close observations at different frequencies, no completeness) Spectral selection (no completeness)


High flux density treshold, i.e. ≈ 1 Jy (WMAP, PLANCK catalogues) Complete sample with high frequency obs.

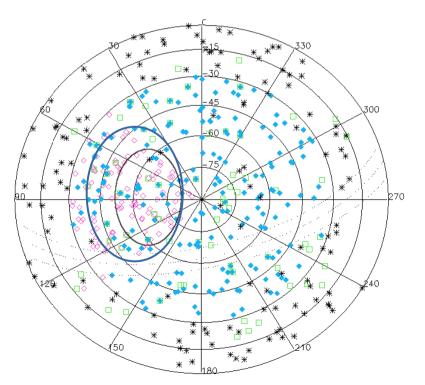
The state-of-the-art

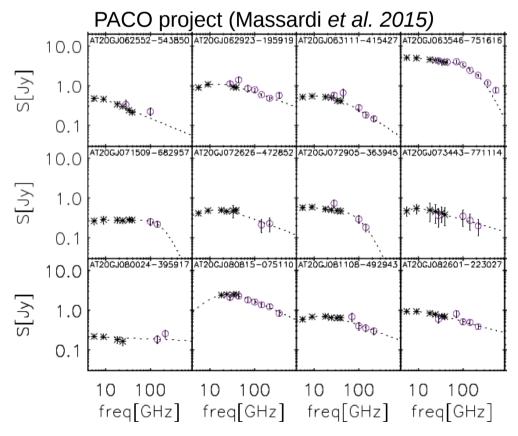

Polarimetric observations: goals

- Characterize the polarization properties (e.g. the fractional polarization trend with frequency and Faraday depolarization at lower frequencies) of radio source populations.
- Statistically study the geometry of the emission regions, i.e. properties of magnetic fields and matter distributions of the surrounding and outflowing matter.
- Estimate and remove foreground contamination from the polarised CMB angular power spectrum.

Polarimetric observations: goals

- Characterize the polarization properties (e.g. the fractional polarization trend with frequency and Faraday depolarization at lower frequencies) of radio source populations.
- Statistically study the geometry of the emission regions, i.e. properties of magnetic fields and matter distributions of the surrounding and outflowing matter.
- Estimate and remove foreground contamination from the polarised CMB angular power spectrum.

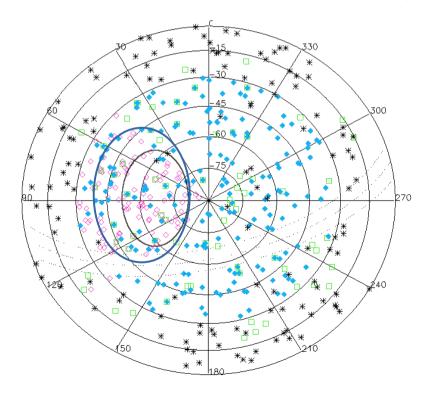



From Massardi, Galluzzi, Paladino and Burigana, Int. J. Mod. Phys. D 25 (2016) 1640009

ATCA observations

Epoch	Time allocated	frequencies	# objects	region
Sep. 2014	21 h	[5.5;38] GHz	53	b < - 75°
MarApr. 2016	26 h	[5.5;38] GHz	54	-75° ≤ b < -65°
	14 h	2.1 GHz	107	b < - 65°

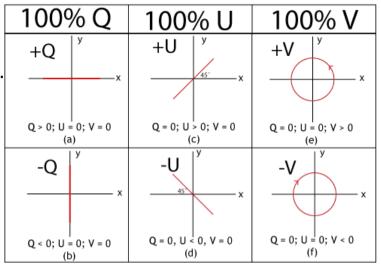
- Spatial configuration: H214 (hybrid and compact). Resolution $\lambda/b_{max} \approx 5 \div 36$ arcsec (without CA06); 0.5÷4 arcsec (with CA06).
- Integration on source: at least 3 min (e.g. 2X1.5 min, at least 2 cuts at different hour angles).
- Sensitivity: ≈ 0.7 mJy (≈ 1 mJy for 2.1 GHz).



ATCA observations

Epoch	Time allocated	frequencies	# objects	region
Sep. 2014	21 h	[5.5;38] GHz	53	b < - 75°
MarApr. 2016	26 h	[5.5;38] GHz	54	-75° ≤ b < -65°
	14 h	2.1 GHz	107	b < - 65°

- Spatial configuration: H214 (hybrid and compact). Resolution $\lambda/b_{max} \approx 5 \div 36$ arcsec (without CA06); 0.5÷4 arcsec (with CA06).
- Integration on source: at least 3 min (e.g. 2X1.5 min, at least 2 cuts at different hour angles).
- Sensitivity: ≈ 0.7 mJy (≈ 1 mJy for 2.1 GHz).

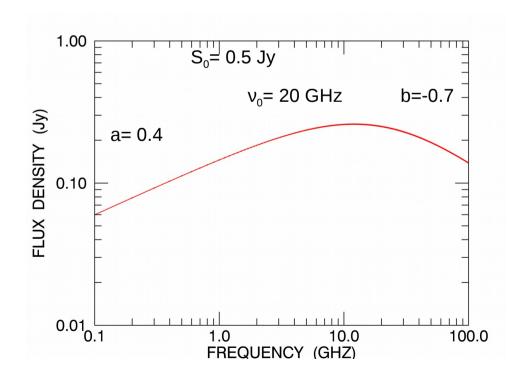


ATCA obs (Sep 2014, Mar-Apr 2016)

- Observations consider all the Stokes parameters I,Q,U,V.
- Total intensity flux I with associated error $\sigma_I = \sigma_V$ (+ 2.5% I).
- Polarized flux density:

$$P = \sqrt{Q^2 + U^2 - \sigma_V^2}$$
 $\sigma_P = \sqrt{\frac{Q^2 \sigma_Q^2 + U^2 \sigma_U^2}{Q^2 + U^2}}$ (+10% P)

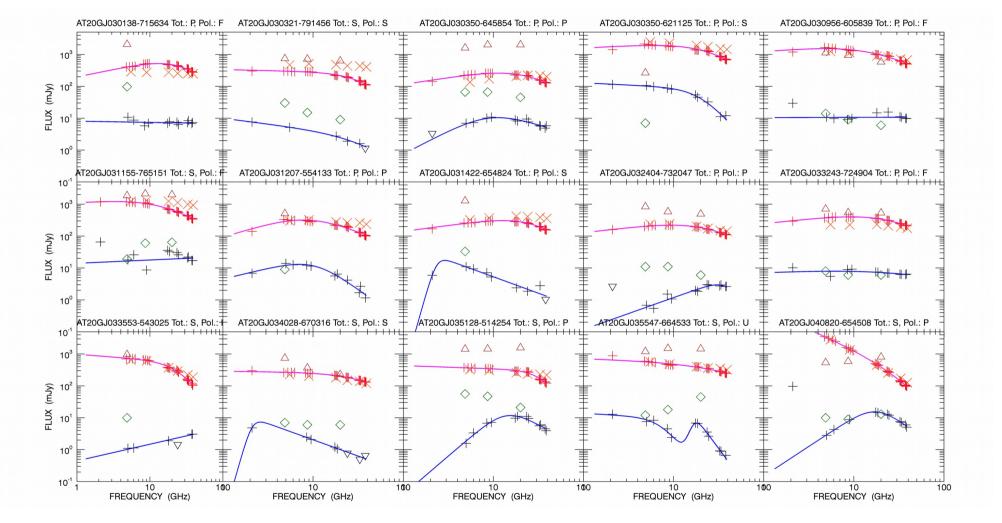
- Overall detection rate in polarimetry is about 90% at 5 σ .


- Double power law for fitting spectra both in total intensity and in polarization:
 - Total intensity: 4X512 MHz chuncks;
 - Polarization: 2X1 GHz chuncks.

$$S(\nu) = \frac{S_0}{\left(\frac{\nu}{\nu_0}\right)^{-a} + \left(\frac{\nu}{\nu_0}\right)^{-b}}$$

Success rates:

85% total intensity ($\chi^2 \approx 1.15$);


70% polarization ($\chi^2 \approx 1.86$).

ATCA obs (Sep 2014, Mar-Apr 2016)

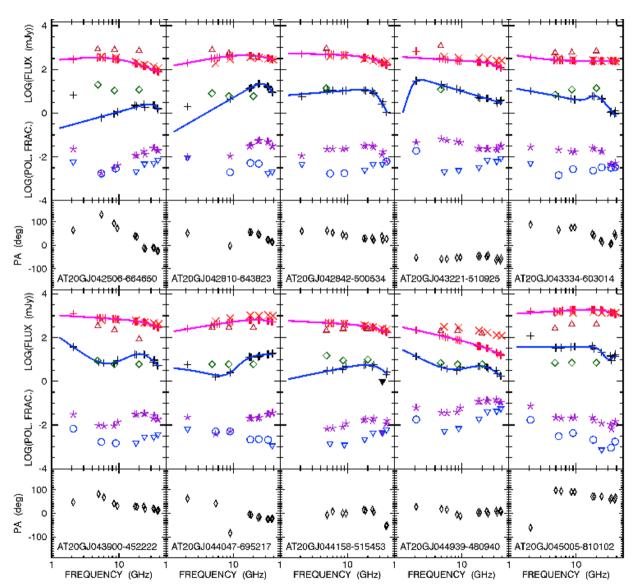
Spectra in total intensity and polarization

(error bars are smaller than plot symbols)

+ Tot. int. Sep2014

DENSITY (mJy)

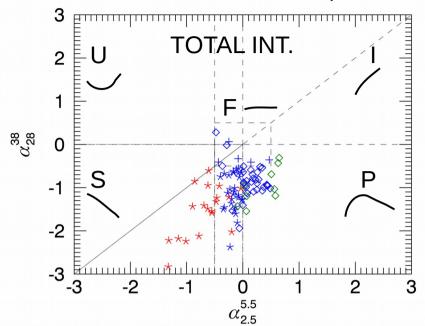
DENSITY (mJy)

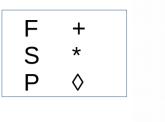

- Δ Tot. int. AT20G (best epoch in 2004-2008)
- x Tot. int. PACO (Jul 2009-Aug 2010)
- Tot. int. fitting curve

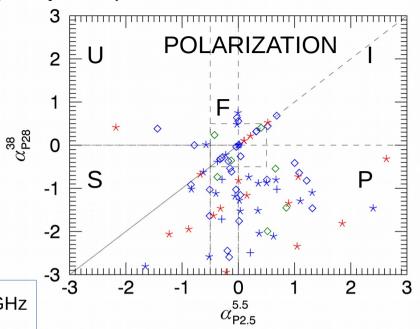
- + Pol. Sep2014
- ♦ Pol. AT20G (best epoch in 2004-2008)
- ∇ Upper limits Pol.
- Pol. fitting curve

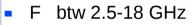
ATCA obs (Sep 2014, Mar-Apr 2016)

Spectra in total intensity and polarization; pol. fraction and PA

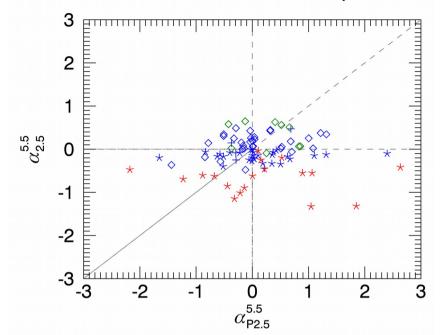

(error bars are smaller than plot symbols)

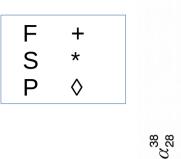


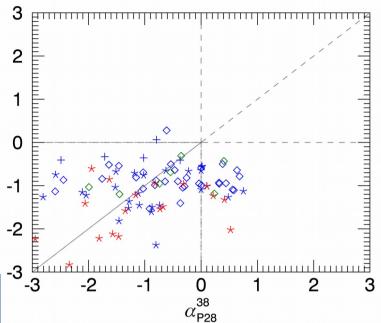

- + Tot. int.
- + Pol.
- ∪ Upper limits Pol.
- Δ Tot. Int. AT20G (best epoch in 2004-2008)
- ♦ Pol. AT20G (best epoch in 2004-2008)
- x Tot. int. PACO (Jul 2009-Aug 2010)
- Tot. int. fitting curve
- Pol. fitting curve
- * (Linear) Pol. fraction
- o (Circular) Pol. fraction
- ♦ Polarisation Angle


Color-color plots

(error bars are smaller than plot symbols)

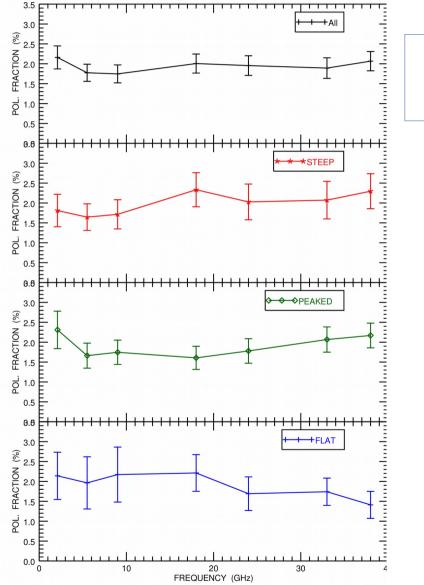


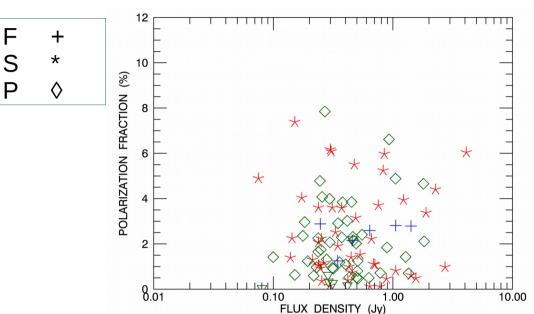

- S btw 2.5-18 GHz
- I btw 2.5-18 GHz


Tot. Int. \rightarrow	(I)	(P)	(F)	(S)	(U)	
Pol. Int. \downarrow						
(I)	0	4	0	1	0	5
(P)	0	17	3	21	0	41
(F)	0	14	1	6	0	21
(S)	0	10	2	13	0	25
(U)	0	5	0	4	0	9
(NA)	0	1	0	2	0	3
	0	41	6	46	0	

Colour-colour plots

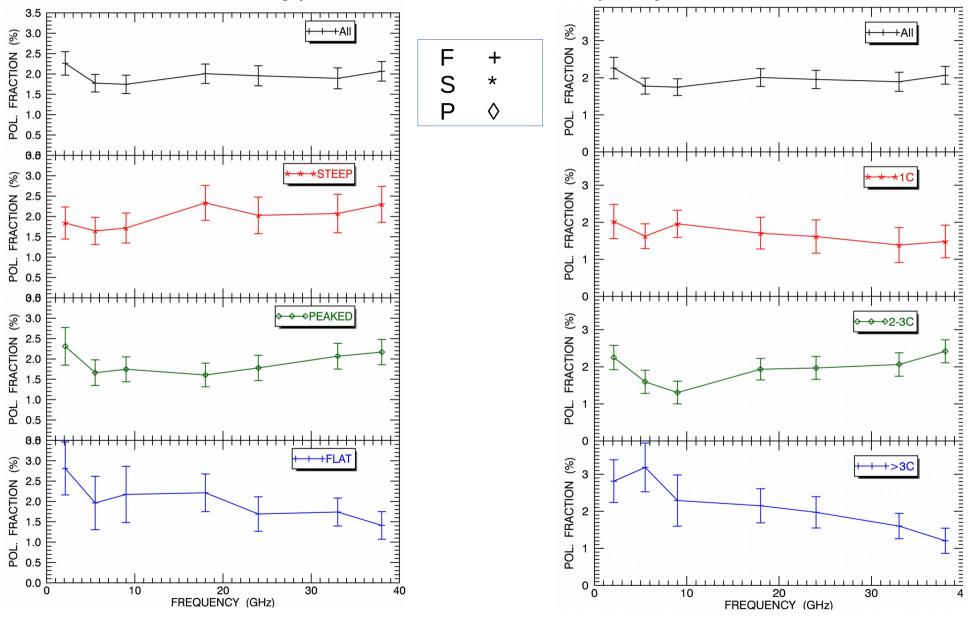
(error bars are smaller than plot symbols)

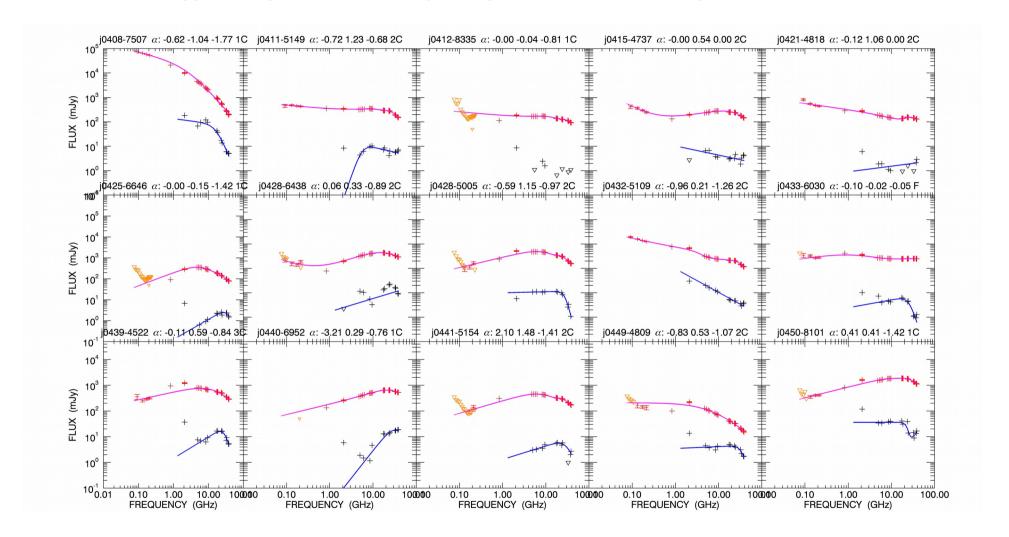



Tot. Int. \rightarrow	(I)	(P)	(F)	(S)	(U)	
Pol. Int. \downarrow						
(I)	0	4	0	1	0	5
(P)	0	17	3	21	0	41
(F)	0	14	1	6	0	21
(S)	0	10	2	13	0	25
(U)	0	5	0	4	0	9
(NA)	0	1	0	2	0	3
	0	41	6	46	0	

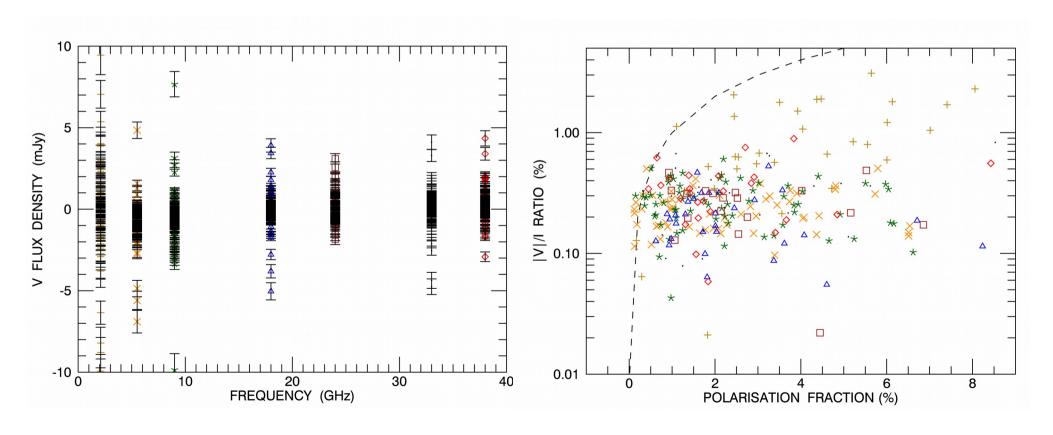
Tot. Int.	2.5 - 5.5	5.5 - 10	10 - 18	18 - 28	$28 - 38 \mathrm{GHz}$
All	-0.06	-0.13	-0.23	-0.55	-0.95
Steep	-0.23	-0.31	-0.43	-0.75	-1.24
Peaked	0.23	0.07	-0.08	-0.42	-0.88
Flat	0.00	-0.05	-0.15	-0.21	-0.30
Pol. Int.	2.5 - 5.5	5.5 - 10	10 - 18	18 - 28	90 20 CII-
1 01. 1110.	2.5 - 5.5	5.5 - 10	10 - 10	10 - 20	$28 - 38 \mathrm{GHz}$
All	$\frac{2.5 - 5.5}{0.04}$	$\frac{0.3 - 10}{-0.03}$	$\frac{10 - 18}{-0.08}$	-0.54	-0.82
All	0.04	-0.03	-0.08	-0.54	-0.82

(Linear) Polarization fractions


Agudo et al. (2010) between 15 – 90 GHz and Sajina et al. (2011) between 5 – 40 GHz find indications of increasing polarization fraction with frequency.


(Linear) Polarization fractions

Agudo et al. (2010) between 15 – 90 GHz and Sajina et al. (2011) between 5 – 40 GHz find indications of increasing polarization fraction with frequency.


GLEAM (MWA) + C2922 (ATCA)

 69% of C2922 objects are in GLEAM (GaLactic and Extragalactic All-sky Murchinson Widefield Array) survey at 200 MHz (Hurley-Walker et al. 2017)

(Circular) Polarization fractions

- Intrinsic circular polarization is typically very weak, i.e. ≤ 0.1 %, a direct proxy for magnetic field strenght.
- Detection rate at ≈ 35% at all the observed frequencies, with peaks of more than 50% at 5.5 and 9 GHz:
- 5.5 GHz \rightarrow (0.17+-0.02)% 9 GHz \rightarrow (0.20+-0.02)%
- These higher values probably due to Faraday conversion.

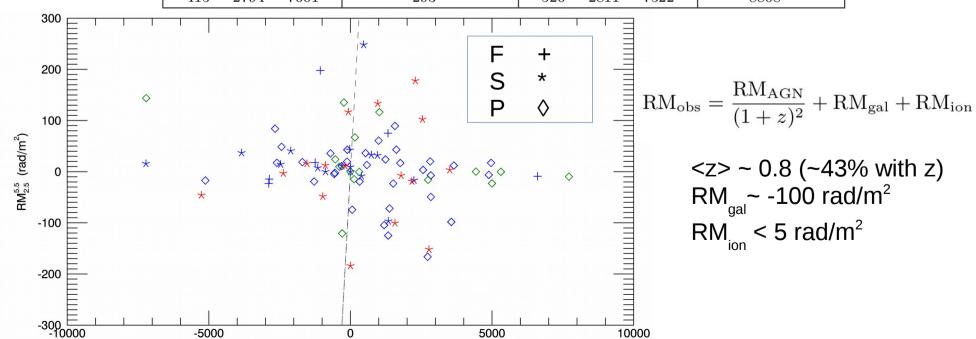
Polarization angle


Measure of the relative polarization angle from Q and U flux densities:

$$\phi = \frac{1}{2} \arctan\left(\frac{U}{Q}\right)$$
 $\sigma_{\phi}^2 = \frac{Q^2 \sigma_U^2 + U^2 \sigma_Q^2}{4(Q^2 + U^2)^2} + \sigma_{\phi, cal}^2.$

- Statistical error associated to PA is ≈1-2% at all frequencies.
- Calibration procedures are expected to contribute for an additional ≈ 3 deg to the global error (the latter is an order of magnitude higher).
 - → Hence, we can assess a resulting accuracy of 3 deg about relative PA measured.
- Polarimetric studies on radio source population can provide potential calibrators for the PA to reduce the calibration error at sub-degree scale.
- They are useful for CMB experiments and for further studies constraining Cosmic Polarization Rotation (CPR) in radio and sub-mm bands.

Quijote CMB experiment (11-40 GHz)



Polarization angle

- Only 6 objects can be fit by the linear RM relation over the 2.1-38GHz range
- We identify two regimes, i.e. cm and mm-wavelenghts and perform separate linear fit (~57% cm. ~69% mm)

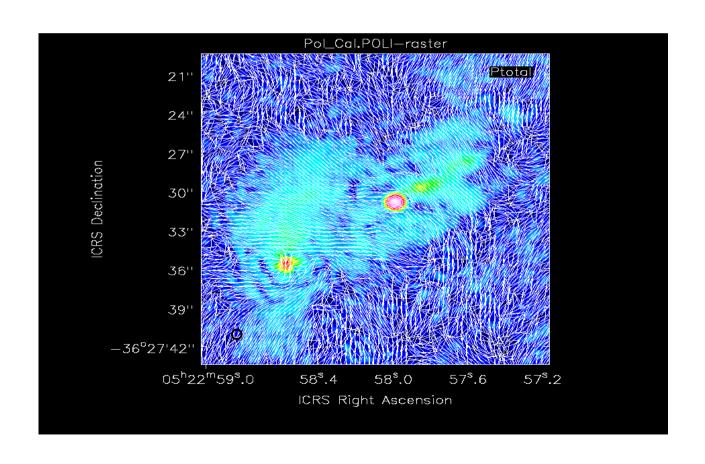
All	sample	(58)		1C (15)			2-3C (34)			>3C (8)		
I	med	III	I	med	III	I	med	III	I	med	III	
20	34	53	23	43	89	17	32	52	-	34	-	
All sample (26)			1C (7)		2-3C (15)			>3C (4)				
I	med	III	I	med	III	I	med	III	I	med	III	
217	362	719	_	310	-	160	354	648	-	755	-	
All sample (72)			1C (15)		2-3C (47)				>30	C (8)		

All sample (72)	1C (15)	2-3C (47)	>3C(8)		
I med III	I med III	I med III	I med III		
196 639 1439	283 689 1129	241 630 1359	- 1426 -		
All sample (33)	1C (5)	2-3C (23)	> 3C(4)		
I med III	I med III	I med III	I med III		
415 2794 7601	- 293 -	526 2811 7522	- 8808 -		

RM₂₈ (rad/m²)

Variability

 Variability estimated via the index btw Sep 2014 – PACO (65 epochs in Jul 2009- Aug 2010) and Sep 2014-AT20G (best epoch in 2004-2008)


$$V.I. = \frac{100}{\langle S \rangle} \sqrt{\frac{\sum_{i=1}^{n} (S_i - \langle S \rangle)^2 - \sum_{i=1}^{n} \sigma_i^2}{n}}$$

- Increase of variability index both with frequency and time lag for total intensity.
- Given a time lag of 8 yr, the variability in polarization is greater by a factor ≈1.5 wrt total intensity.

Sel.	$\begin{array}{c} \text{Time lag} \\ \text{(yr)} \end{array}$	5.5	9	Band 18	(GHz) 24	33	38
All	4-5	14 ± 2	14 ± 2	15 ± 2	17 ± 2	21 ± 2	22 ± 2
	8	36 ± 3	32 ± 3	36 ± 3			
Steep	4-5	13 ± 3	14 ± 3	15 ± 2	17 ± 3	23 ± 3	25 ± 3
	8	35 ± 4	33 ± 5	38 ± 5			
Peaked	4-5	16 ± 2	15 ± 2	14 ± 2	16 ± 2	16 ± 3	17 ± 2
	8	38 ± 6	28 ± 6	28 ± 5			
All (pol.)	8	50 ± 7	57 ± 6	52 ± 6			

ALMA Data

- Observed proposal for ALMA-Cycle 3 to measure the polarization of the PACO faint sample at 100GHz to even higher sensitivity (down to 0.03 mJy).
- Only 32 sources selected from the original 53 (obs. in Sep. 2014) drawn from the faint PACO sample.

Conclusions

- High sensitivity ($\sigma_P \approx 0.7$ mJy) polarimetric observations of a complete sample of 107 extragalactic radio sources (det. rate $\approx 91\%$).
- Continuum spectra of over 70 % of sources well fitted by a double power law, both in total intensity and polarization.
- Polarized emission cannot be simply inferred from total intensity for several sources (bimodal behaviour for steep sources in polarization).
- Spectra both in total intensity and polarization generally steepen at $v \gtrsim 30$ GHz.
- No significant trend of the fractional polarization with either flux density or frequency was found.
- Polarization angle accuracy limited by calibration error at ≈ 3 deg.
- Evidence of Faraday rotation in only 6 cases over the whole 2.1-38 GHz range.
- Mean variability index in total intensity of steep-spectrum sources increases with frequency for 4-5 year lag, while no significant trend shows up for peaked-spectrum and for 8 year lag. In polarisation higher variability by a factor ≈ 1.5 wrt total intensity.