
The Labyrinths of SKA 
Processing

Tim Cornwell 
SKA Science Data Processing consortium



30,000 ft view of SKA 
pipeline processing



Algorithm Reference Library 

• Algorithm Reference 
Library 

• All major Calibration and 
Imaging algorithms 

• Data models = 6 classes 

• Components = O(240) 
state-free functions 

• ~ 6000K LOC



The things we do to data

Gain Table Block Visibility Image

Apply

Solve

Invert

Predict

Sky
component

FindInsert

Configuration

Create

Smooth/interpolate Predict

Average



Why is SKA processing 
hard?

• We know how to do most SKA calibration and imaging 

• Why not do SKA calibration and imaging single threaded? 

• Because a single project would take hundreds of days 

• Alternative is to distribute processing over thousands of 
nodes 

• Incur a large complexity problem 

• But we are not alone in that…





Linear algebra



ARL and Directed Acyclic 
Graphs

• DAGs are major part of SKA processing plans 

• Dask is a python package for distributed processing, 
including DAGs 

• Idioms supported: arrays, frames, bags, delayed 

• Use “delayed” function to construct DAGs 

• SKA will select substantial DAG packages e.g. Apache 
Spark 

• Dask good to build quasi-realistic graphs



Graph of predict 
for 1 visibility set,
• Flows from bottom to top 

• Boxs are data 

• Circles are functions 

• Ingest visibility 

• Get the Local Sky Model for this visibility 

• Predict the visibility 

• Directed Acyclic Graph



Dask.delayed



Wrapping Invert into graph



1 ingest, 3 major 
cycles, continuum 

pipeline



Processing graph
• Not SDP (yet)! 

• From tutorial: https://github.com/dask/dask-tutorial

https://github.com/dask/dask-tutorial


7 way ingest, 3 major 
cycles, continuum pipeline





11 inputs, 5 cycles



Summary
• DAGs help describe and deploy SKA processing 

• Python + jupyter + dask + laptop/desktop = fast development 

• Python + dask + cluster = way to learn about real graph 
processing at scale 

• We expect to push upwards in graph complexity 

• Currently at 5,000 - 10,000 vertices 

• Understand performance, memory use, network bandwidth, 
schedulers


