
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Acta Astronautica 60 (2007) 775 –779
www.elsevier.com/locate/actaastro

Academy transactions note

Advantages of Karhunen–Loève transform over fast Fourier
transform for planetary radar and space debris detection

Claudio Maccone∗

International Academy of Astronautics, Via Martorelli 43, Torino (TO) 10155, Italy

Available online 27 October 2006

Abstract

The present article describes that the range of any radiotelescope (and radar in general) may be increased by virtue of software,
if one replaces the fast Fourier transform by the Karhunen–Loève transform. The range increases with the inverse of the fourth
root of the signal-to-noise ratio when this ratio decreases. Thus, the range on any radiotelescope (and radar) may be increased
without changing the hardware at all, but by changing the software only. This improvement in the range of the radiotelescope is
currently implemented at the 32-m antenna located at Medicina, near Bologna, in Italy, for both SETI and general radioastronomy.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction: two examples of bistatic planetary
radars

Since the 1990s, several planetary radar experiments
have been carried out all over the world (for instance,
see Refs. [1–4]). In order to further improve these sys-
tems, a somewhat innovative idea is proposed in this
paper: increasing the distance where the planetary radar
can still reach (i.e. the range) by virtue of a pure soft-
ware trick: the replacement of the good old fast Fourier
transform (FFT) by virtue of the more recent and math-
ematically superior Karhunen–Loève transform (KLT)
[5]. What the KLT is, in mathematical terms, will be
briefly described in Sections 3 and 4 of this paper.
At the moment, we start by showing that, upon keep-
ing the whole hardware just the same, the range r of
any antenna increases inversely to the fourth root of
the decreasing signal-to-noise ratio (SNR). This result
follows at once from the equation yielding the cross
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section �min that can be detected by any bistatic radar
(for a proof of this equation, see, for instance, the web
site: http://wps.cfc.forces.gc.ca/papers/csc/csc29/mds/
hudson.htm)

�min = 4�r2
1 r2

2 �2kT sysSNR

PtStSrt
. (1.1)

In this equation one has �min the minimal detectable
radar cross section; r1 the distance between the trans-
mitting antenna and the target in space (i.e. space debris
or even a small asteroid passing nearby); r2 the dis-
tance between the receiving antenna and the target in
space; � the wavelength of the radio beam emitted by
the transmitting radiotelescope (or radar); k the Boltz-
mann constant =1.380658×10−23 J/K; Tsys the system
temperature of the receiving antenna; SNR the signal-
to-noise ratio at the receiving antenna; Pt the power
of the transmitting antenna; St the effective area of the
transmitting antenna; Sr the effective area of the receiv-
ing antenna; and t the integration time at the receiving
antenna.

As a practical, numerical example of Eq. (1.1), let us
consider the important case when the small object that
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we want to detect is located in geostationary Earth orbit
(GEO), namely

r1 = 35,786 km = rGEO,

r2 = 35,786 km = rGEO.
(1.2)

Next, suppose for a moment that the remaining numbers
in Eq. (1.1) are those that applied in 2001 to the first
Italian planetary radar experiment described in Ref. [4].
Then, the transmitting antenna was the 70-m dish lo-
cated at Evpatoria in Crimea (now part of the Ukraine),
with typical data (in C-band, in which the transmission
occurred):

St = SEvpatoria = 2520 m2,

Pt = PEvpatoria = 150 kW,

�Evpatoria = 5010.024 MHz,

�Evpatoria = 5.984 cm.

(1.3)

The receiving antenna was the 32-m dish located at
Medicina (near Bologna, in Italy), with typical data (no-
tice that the dish effective area changes according to the
frequency, C-band in this case):

Sr = SMedicina_in_C_band = 466 m2,

Tsys = TMedicina = 50 K,

tMedicina = 10 s,

SNRMedicina = 10.

(1.4)

Then, by replacing Eqs. (1.2)–(1.4) into Eq. (1.1), one
gets the minimal cross section �min that would be de-
tectable in GEO by virtue of the Evpatoria–Medicina
bistatic radar

�min = 2.892 × 10−4 m2 (1.5)

corresponding to an object having the size

dmin =
√

4�min

�
= 1.919 cm ≈ 2 cm. (1.6)

In other words, the Evpatoria–Medicina bistatic radar
would be capable of detecting space debris objects like
a bolt (∼ 2 cm) in GEO.

Even smaller objects one would detect in GEO by
virtue of a Goldstone–Medicina bistatic radar. In fact,
the Goldstone antenna in the Mojave desert (Califor-
nia, USA), has the typical data for a transmission in

X-band:

St = SGoldstone = 2694 m2,

Pt = PGoldstone = 460 kW,

�Goldstone = 8560.0 MHz,

�Goldstone = 3.502 cm.

(1.7)

The Medicina data in this case are slightly different, for
a smaller effective area applies to the X-band receiver:

Sr = SMedicina_in_X_band = 389.3 m2,

Tsys = TMedicina = 50 K,

tMedicina = 10 s,

SNRMedicina = 10.

(1.8)

The conclusion is that the smallest detectable object in
GEO by virtue of the Goldstone–Medicina bistatic radar
would have a size smaller than 1 cm, namely

dmin =
√

4�min

�
= 0.679 cm ≈ 0.7 cm. (1.9)

2. Range vs. SNR in radiotelescopes and radars

We can now propose the leading idea of this paper:
the range of any radiotelescope and/or radar may be
increased by changing the software only (that is, without
changing anything in the hardware at all) if one replaces
the good old FFT by virtue of the newer KLT.

Consider Eq. (1.1) again. Upon replacing

r1 = r2 = r (2.1)

and then solving for r, one gets immediately the ex-
pression of the range r as a function of the SNR at the
receiving station:

r(SNR) = 4

√
�minPtStSrt

4��2kT sys

1
4
√

SNR
. (2.2)

In other words, upon keeping everything else unchanged
(the hardware), the range increases as the inverse of the
root to order four (i.e. the fourth root) of the SNR at
the receiving station.

The KLT does just that: it lowers the SNR of the fee-
blest detectable signals, when replaced in the software
instead of the FFT.

Fig. 1 shows the increase in the range of the
Evpatoria–Medicina planetary radar (as described in
Section 1) when the KLT is used instead of the FFT in
the filtering software at Medicina, which is what the
Medicina Radiotelescope Team (of which this author
is an external co-worker) has been doing since the late
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Fig. 1. Range vs. SNR for the planetary radar at Medicina, near Bologna, in Italy. The improvement in the range is due to the replacement
of the FFT by virtue of the KLT (Karhunen–Loève transform) as the noise filtering tool. The horizontal dashed line is the GEO distance of
35,786 km above the Earth. The solid curve increases like the inverse of the fourth root of the SNR as long as the SNR decreases from 10 to
0.5 because of the superior filtering provided by the KLT over the FFT.

1990s under the direction of Ing. Stelio Montebugnoli
(see, for instance, Ref. [8]).

But what is the KLT?
The KLT is a mathematical tool superior to the FFT

in that it rigorously applies to any finite bandwidth,
rather than applying to infinitely small bandwidths only
(i.e. to monochromatic signals) as the FFT does. Also,
the KLT applies to both stationary and non-stationary
processes, and when the background noise distribution
is colored, rather than just white.

The KLT is described more in detail (but without
a full, appropriate mathematical treatment, that would
take too many equations) in Sections 3 and 4 of this
paper.

3. A heuristic introduction to the KLT

The KLT is a rather recent mathematical tool ca-
pable of improving our understanding of physical
phenomena, and it is superior to the classical FFT,
as intuitively described by the following mechanical
analogy.

Consider an object, for instance a book, and a three-
axes rectangular reference frame, oriented in an arbi-
trary fashion with respect to the book. Then, Newtonian
mechanics shows that all mechanical properties of the

book are described by a 3 × 3 symmetric matrix called
the “inertia matrix” (or “inertia tensor”) whose elements
are, in general, all different from zero. Now, handling
a matrix whose elements are all non-zero, is obviously
more complicated than handling a matrix where all en-
tries are zeros except for those on the main diagonal
(i.e. a “diagonal matrix”). Thus, one may be led to won-
der whether a certain transformation of axes exists that
changes the inertia matrix of the book into a diagonal
matrix. Newtonian mechanics shows then that only one
such privileged orientation of the frame with respect
to the book exists yielding a diagonal inertia matrix:
the three axes must coincide with a set of three axes
(parallel to the book edges) called “principal axes” of
the book, or “eigenvectors” or “proper vectors” of the
inertia matrix of the book. In other words, each body
possesses an intrinsic set of three rectangular axes that
describes its dynamics at best. And one can always com-
pute the position of the eigenvectors with respect to a
generic reference frame by means of a certain mathe-
matical procedure called “finding the eigenvectors of a
square matrix”.

Now let us go over to signal processing, which is the
main theme of this paper. By adding random noise to a
deterministic signal one obtains what is called a “noisy
signal” or, in case the power of the signal is much less
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than the power of the noise “a signal buried into the
noise”. Since the signal+noise is a random function of
the time, denoted hereafter by X(t), one can describe
it well by a statistical quantity called autocorrelation
(or simply correlation), defined as the mean value of
the product of the values of X(t) at two different in-
stants t1 and t2 and formally written E{X(t1)X(t2)} ≡
〈X(t1)X(t2)〉. This correlation, obviously symmetric in
t1 and t2, may play just the same role as the inertia ma-
trix in the book example. Thus, if one firstly seeks for
the eigenvectors of the correlation, and then changes
the reference frame over to this new set of vectors, the
simplest possible description of the signal + noise is
achieved.

The next step is the rearranging of the eigenvalues
in decreasing order of magnitude and, consequently,
also the rearranging of the eigenvectors corresponding
to each eigenvalue. There is no degeneracy, i.e. only
one eigenvector corresponds to each eigenvalue. Also,
all eigenvalues turn out to be positive, and so, once re-
arranged, they form a decreasing sequence whose first
eigenvalue is the largest one, called the “dominant”
eigenvalue by mathematicians.

We are now ready to compute the direct KLT trans-
form of the signal + noise: simply use the new set of
eigenvectors to describe the signal+noise: the signal+
noise in the new representation is just the direct KLT
transform of the older signal + noise. So, the KLT is
just a linear transformation of axes: nothing easier than
that! But what is its statistical meaning? Well, since the
eigenvalues also are the variances of the zero-mean set
of data, this means that we are ordering the axes accord-
ing to their decreasing order of statistical importance. In
other words, the first eigen-axis is the one around which
the variance is largest. The second eigen-axis, is the one
with second largest variance, and so on. In other words
still, the more eigenvectors one takes into account, the
more one ”grabs” out of the statistically significant part
of the data. But, since the variances around the axes de-
crease as long as one takes into account more and more
axes, one is really “grabbing” less and less statistically
significant stuff. This “feeling” is the key to the KLT
filtering.

In fact, the KLT filtering simply consists in only tak-
ing a small, finite number of eigenvectors out of the set
of all (infinite) eigenvectors, and then declaring the part
of the data spanned by this smaller set of eigenvectors
as the “statistical bulk”, or the “signal”, out of the origi-
nal signal+noise. The “noise” is then automatically the
cut-away part. Finally, in order to recover the signal out
of the noise, one has simply to back-transform, or in-
verse KLT, the small set of data that has been regarded

as the statistically “significant” part of the original, full
signal + noise.

And if the input is an image, rather than a noisy signal,
then the KLT bulk is just the KLT-compressed image.

So, the KLT may be equally well used for both noise
filtering and data compression.

4. The KLT expansion

The KLT is named for two mathematicians, the Finn
Kari Karhunen and the French–American Michel Loève
(1907–1979), who proved, at about the same time
(1947) and independently, that the series (4.1) hereafter
is convergent. When put this way, the KLT looks like a
purely mathematical topic, but this is not, of course, the
case. Instead, we are going to use the language familiar
to engineers and radioastronomers, and so we shall say
that it is possible to represent the signal + noise X(t)

as the infinite series (called KLT expansion)

X(t) =
∞∑

n=1

Zn�n(t), (4.1)

where the Zn are just random variables (i.e. they are
not stochastic processes) and the �n(t) are just ordi-
nary (i.e. deterministic) time functions. Assuming that
the signal + noise autocorrelation E{X(t1)X(t2)} ≡
〈X(t1)X(t2)〉 is a known function of t1 and t2, it can be
proven that the functions �n(t) (n = 1, 2, . . .) are the
eigenfunctions of the correlation. In other words, the
correlation is treated as an operator acting on the time
variable, and its eigenfunctions are the solutions to the
integral equation

∫ T

0
〈X(t1)X(t2)〉�n(t1) dt1 = �n�n(t2). (4.2)

These �n(t) form an orthonormal basis in the Hilbert
space, and they actually are the best possible basis to
describe the signal + noise, better than any classical
Fourier basis made just of sines and cosines. One can
thus say that the KLT adapts itself to the shape of the
signal + noise, whatever it is. A further advantage of
KLT is that the Zn in Eq. (4.1) are orthogonal random
variables in the statistical sense, i.e. 〈ZmZn〉=�mn�n i.e.
they are uncorrelated. In addition, if X(t) is Gaussian,
this amounts to statistical independence, i.e. the terms
in the KLT expansion are statistically independent of
each other. Finally, since the constants �n are both the
(positive) eigenvalues and the variances of the random
variables Zn, the KLT expansion, when truncated to
keep only the first few terms, may be proven to be the
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best approximation to the full KLT expansion in the
mean square sense.

A much more detailed analytical treatment of the KLT
for general, non-stationary stochastic processes may be
found in the author’s book [5], embodying also the
relativistic KLT, i.e. the KLT of objects in relativistic
motion with respect to Earth, such as highly red-shifted
quasars or even future relativistic starships. Good refer-
ences about the KLT of stationary stochastic processes
only, such as the inputs to radiotelescopes are assumed
to be in SETI, are in Refs. [6–8].

5. Conclusion

We describe here that the range on any radiotelescope
and/or radar increases with the inverse of the fourth root
of the SNR when the SNR is reduced.

The SNR is thus reduced without touching the hard-
ware at all, simply by replacing the FFT by virtue of
the KLT.

Although the computational burden of the KLT is
higher than the FFT, the great contemporary advances

in computer technology now enable the adoption of the
KLT at moderate costs and with the above-mentioned
advantages.
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