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KLT of radio signals from relativistic
spaceships in hyperbolic motion

19.1 INTRODUCTION

A spaceship, traveling at a constant acceleration ¢ in its own reference frame,
exemplifies the relativistic interstellar flight. If a Gaussian noise (Brownian motion)
is emitted in units of the spaceship’s proper time, it undergoes a time rescaling when
measured in units of the coordinate time. This noise is studied in this chapter in terms
of its KL expansion. All topics discussed in this chapter were first published by the
author between 1988 and 1990 [1, 2].

19.2 HYPERBOLIC MOTION

A classical topic in special relativity is the so-called hyperbolic motion, first considered
by Minkowski in 1908 [3], and discussed in most textbooks (see [4, p. 41].' Spaceflight
did not exist in the time of Minkowski, so he believed that his formulas about the
hyperbolic motion could only be applied to the physics of elementary particles then
known to exist, such as electrons. Here, however, we shall give the topic of hyperbolic
motion a space-travel cut, in view of the applications to telecommunications that will
be made in the rest of this book.

Imagine a spacecraft traveling faster and faster with respect to its own reference
frame, so that the crew experience a constant acceleration that, for their maximum
comfort, we assume numerically equal to g = 9.8 m/s>. The longitudinal force (see

[5, p. 205)) is
2 _3
i = [1 - ”C(f)] ) (19.1)

' The adjective “hyperbolic” refers to the fact that the x(f) curve in the (x,f) plane is a
hyperbola—given by Equation (13.24)—and that hyperbolic functions are used in the analysis.
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and so we must find the unknown v(¢) in the differential equation

2 _3
v ()72 do(t)
[1 2 ] m—==mg. (19.2)
Separating the variables, and setting v(7) = ¢ sin Q(¢), one easily finds
— g
Q1) = arctan(C t), (19.3)
whence
— g 9
v(t) = csin [arctan(c t)} (19.4)
but
x2
i t = 19.5
sin[arctan x] T (19.5)
so that the velocity v(7) in (11.16) is given by
o) = —9L (19.6)

2
1+ (%)
c
Note that as t — oo, (19.6) gives v(7) — ¢, as one would expect. The function f(¢) for
the hyperbolic motion is then found from (11.16) and (19.6)

1

f()=———. (19.7)

]

Unfortunately, it is quite difficult to handle this function. For instance, its integral

dx
J[l— (19.8)

i
+x2)4

can be shown to be expressed by hypergeometric functions inasmuch as it is a
binomial integral, but not of an elementary type. Thus, we will not attempt to study
(19.7) directly, but shall consider its asymptotic expansion in Section 19.4.

A few more results, however, can still be derived from (19.7). In fact, one has (see

[6, p. 86])
! ! ds ¢ ,
T(1) = LfZ(s) ds = J0H<is)2 = g arcsinh (% l)
zgm %H 1+ (gtﬂ (19.9)
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Thus, the time-rescaled Brownian motion corresponding to the hyperbolic motion of
special relativity is

X(t)=B(r) = B(g arcsinh <Q t)>

c
=B Eln
g

%z+ 1+(%I)ZD. (19.10)

We shall simply refer to it as the hyperbolic motion.

19.3 TOTAL ENERGY OF SIGNALS FROM RELATIVISTIC
SPACESHIPS IN HYPERBOLIC MOTION

In this section we shall show that it is possible (by virtue of the formulas derived in
Chapter 21) to compute both the mean total energy and total energy variance of the
signals emitted by relativistic spaceships in hyperbolic motion.

Let us start with the mean total energy (21.60). This, by substituting (19.9), takes
the form of the definite integral

E{e} = JOT dt J[ FAs)ds =S JT arcsinh (% t) dt

0 glJo
2 gr

= % [x arcsinh(x) — v/ 1 + xz}o (19.11)

where we make use of the substitution (gz)/c = x and of [6, p. 88, entry 4.6.43]. Thus,
the mean total energy of the hyperbolic motion is

2
T T T\?
E{e} = C—2 92 arcsinh (g_) — /1 + (g_) +1
g*| ¢ ¢ ¢

It is also possible to derive a closed-form expression for the total energy variance
starting from (21.62) and (19.9), but the calculations are more involved. To this end,
let us first note that

alka

. (19.12)

Jarcsinh2(s) ds = s arcsinh?(s) — 21/ 1 + s2 arcsinh(s) + 25 + C (19.13)
This result can be used to prove the more complicated expression

Jx arcsinh?(x) dx = %xz arcsinh?(x) — xv/1 + x2 arcsinh(x)

2

+%+J\/ 1 + x? arcsinh(x) dx + C. (19.14)



474 KLT of radio signals from relativistic spaceships in hyperbolic motion [Ch. 19

This leads us to compute a further integral
J V1 + x?arcsinh(x) dx = }[(2V/1 + x7 arcsinh(x) — x)x + arcsinh*(x)] + C.

(19.15)
These preliminary results enable us to tackle o, defined in (21.62) using (19.9)

ol =4 JOT dt J; du U:fz(s) ds]z = 4(2)2 LT dt J; duarcsinh® (Zu). (19.16)

Now (19.13) and the substitution ((g/c)u = s) change this into

N3 (T
ol=4 (3> J dt [s arcsinh®(s) — 2v/1 + s2 arcsinh(s) + 25] (&)

9/ Jo 0
T

—4 (§>3 “0 (g t) arcsinh? (g 1) dt—2 LT 1+ (% t)zarcsinh (% t) dt+2 LT % t dt] .

The further substitution (g/c¢)t = x and (19.14) yield

ot =a(5) | (L) aresinn(£7) - (1) 1+ (£7) arsion (£7) + 3 (¢7)

2 \¢ ¢ c ¢ c 2
(1)
- J V1 + x? arcsinh(x) dx}

0

hence the integral (19.15) finally yields

o= <§>4 [2 (% T)2arcsinh2 (% T) —4 (% T) 1+ (g T)zarcsinh (g T)
so(2r) —2(4r) 1 (1 aresinn(47) + (1) - arsinn (7).

Rearranging, the total energy variance for the hyperbolic motion is obtained

o= (S]] [per) - 1) areson (47)

_6(%T) 1+<%T)2arcsinh(%T)+7(%T)2}. (19.17)

194 KLT FOR SIGNALS EMITTED IN ASYMPTOTIC
HYPERBOLIC MOTION

The obvious asymptotic formula

limv1+x%= limx

X—00 X—00
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and its consequence
lim In[x + V1 + x?] = lim In[2x] (19.18)

X—00 X—00

form the starting point to investigate the asymptotic hyperbolic motion. In fact, from
(19.10), we see that, when 1 — oo, X (¢) approaches

B(gln(Z%t)). (19.19)

This we shall call the asymptotic hyperbolic motion and shall study it thoroughly.
By comparing (19.19) against (21.40), we immediately find

t
2 ¢ 9
s =—In(2=7¢). 19.2
Lf (s) ds gn( 7)) (19.20)
Then, differentiating and taking the square root, we are led to
c 1
flty=,/-—. 19.21
(1) ™ (19.21)
This is the f(¢) function for the hyperbolic motion.
Integrating (19.21), one then gets
t
J f(s)ds = 2\/2\/2. (19.22)
0

By virtue of (19.21) and (19.22) the x(¢) function defined by (11.10) reads

=\ Jf@) | £s)ds = \/; (19.23)

a constant. This circumstance is vital in order to develop the asymptotic hyperbolic
case, inasmuch as it simplifies things greatly. In fact, from

X'(1)=0 (19.24)
and from (11.9), it can be seen at once that v(¢) vanishes identically
v(t)=0 (19.25)

(i.e., the order of the Bessel functions is zero). Thus, the KL expansion is given by
functions of the form

Jo %M ZJO(%%)- (19.26)

Our next task is to find the meaning of the constants ~,, formally given as the real
positive zeros of (11.11). Letting x'(¢) = 0 and v/(¢) = 0, and getting rid of all multi-
plicative factors, one easily sees that (11.11) simplifies to

Jé)(')/n) =0. (1927)
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Thus, the v, are the positive zeros, arranged in ascending order of magnitude, of the
derivative of J(x). In other words, they are the abscissas of the maxima and minima
of Jy(x), which are known to follow each other alternately. However, a different
interpretation of the ~, follows from the Bessel function property (see [7, p. 12,

entry (55) (set v = 0)]

TU) =20, (3) = Ty (). (19.28)

In fact, (19.27) now becomes equivalent to
Ji(y) =0 (19.29)

and one may also say that the ~, are the real positive zeros of J;(x). The first 40
among them are listed in [8, p. 748], and one finds, for instance,

v = 3.8317060 7, = 7.0155867 4 = 126.4461387. (19.30)

No explicit formula yielding these zeros exactly is known. However, it is possible to
get an approximated expression by setting v = 1 into the asymptotic formula for
J,(x) (see [9, p. 134])

. . 2 T
}erolon(x) —}Lr{)lo chos(x—j—z) (19.31)
from which
cos (’Yn - 3—7T> R~ (19.32)
4
or
T =T n=1,2,.) (19.33)
g =5 (n=12,...). .
Thus,
7r
fynzmr—i—z. (19.34)
We may see how good this approximation is by setting n =1,2,...,40
Y1 A 3.9269908 v, &~ 7.0685835 4 =~ 126.4491 (19.35)

and checking these results against (19.30). Of course, the agreement improves with
increasing n. As for the eigenvalues )\, they are related to the ~, by (11.13)
4¢T 1
Ay = (19.36)
g (m)
and are also variances of the independent Gaussian random variables Z,,.
Finally, we turn to the normalization constants &V, that are obtained from (11.12)
after inserting (19.22) and (19.25). The resulting condition for N, is

4¢T (!
- N,ECTL o(r)]? dx. (19.37)
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This integral of (19.37) is calculated within the framework of the Dini expansion in
series of Bessel functions (see [7, p. 71]), and one finds

deT (1 0
1= Nig{z [Jg(%) + (1 _72>J%(7n):|}

= 82220 + TR >]=N3207TJ6<%> (19.38)

where (19.27) was used in the last step. Solving with respect to N, requires the
introduction of the modulus of Jy(7,), and one has

v
Ao AT (193%)

This is the exact expression of the normalization constants.
For an approximated expression for &V,, we substitute the Bessel function in its

asymptotic form (19.31) with ~, given in (19.34):
cos(nm)| = 19.40
| )| = \/ o ( )

Then, from (19.39) and (19.40) we get the approximated N,;:

\/7 +1 (19.41)

All the results obtained in this section may now be summarized by writing the
exact KL expansion

s(GnCE)) =27 5 v o) o)

and the approximated expansion—found by virtue of (19.31) and (19.41)

<g ( )> sz \/_T4z4 S(%\\//%—D' (1943)

The physical range of validity of (19.42) and (19.43) is provided by the relativistic
condition (11.7). Since, from (19.21)

o(m)| ~

cos 7n

n

o

1
=55 (19.44)
g- t
(11.7) yields the velocity of the asymptotic hyperbolic motion
1
In order to have a non-negative radicand, the inequality
2
¢ 1
? v <1 (19.46)
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must hold, meaning

t> ; = 3.0612245 - 107 s ~ 0.96996974 years ~ 1 year. (19.47)
Thus, the asymptotic approximation to the hyperbolic motion holds only after about

1 year of travel. Since any trip to even the nearest stars will certainly last longer than
that, this approximation may be reagarded as physically acceptable.

19.5 CHECKING THE KLT OF ASYMPTOTIC HYPERBOLIC MOTION
BY MATLAB SIMULATIONS

Just look at Figure 19.1.

” B(r) and its RECONSTRUCTIONS by using 10 eigenfunctions out of 100.
T T T T T T

T

1 T
——— Original Realization of B(t)
===+ Reconstruction by the EMPIRIC KLT
-~ Reconstruction by the ANALYTIC KLT

B(x)

Figure 19.1. The time-rescaled Brownian motion X (7) of (19.43) vs. time ¢ simulated as a
random walk over 100 time instants. This X (7) represents the “noisy signal” received on Earth
(whence the use of the coordinate time 7 = Earth time) from a relativistic spaceship moving
away from the Earth in an asymptotic hyperbolic motion, as in the science fiction novel Tau
Zero. Next to the “bumpy curve” of X (7), two more “smooth curves” are shown that interpolate
at best the bumpy X (). These two curves are the KLT reconstruction of X () by using the first
ten eigenfunctions only. It is important to note that the two smooth curves are different in this
case because the KLT expansion (19.43) is approximated. Actually, it is an approximated KLT
expansion because the asymptotic expansion of the Bessel functions (19.31) was used. So, the
two curves are different from each other, but both still interpolate X (¢) at best. Note that, were
we taking into account the full set of 100 KLT eigenfuctions—rather than just 10—then the
empirical reconstruction would overlap X (¢) exactly, but the analytic reconstruction would not
because of the use of the asymptotic expansion (19.31) of the Bessel functions.
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19.6 SIGNAL TOTAL ENERGY AS A STOCHASTIC PROCESS OF T

Formulas (21.60) and (19.20) enable us to obtain the total energy mean value

Efes) = JOT dr J; 72(s) ds = EJT In (@ t) dr. (19.48)

gJo ¢

The substitution x = (2g/c¢)z then results in

E{eqy} = % (2)2 [x(In x — 1)]5)279” = % [m (@ T> - 1} .

Thus, the asymptotic mean total energy reads

E{esy} = % [m (279 T) - 1]. (19.49)

Note that the same asymptotic result is obtained from the exact expression (19.12)
upon substituting arcsinh by log, and disregarding all the +1 that disappear for
large T.

Next let us turn to the asymptotic total energy variance by resorting to

Jlnzxdx:xlnzx—2xlnx+2x+C (19.50)
2 2 2
Jxlnzxdx:%lnzx—%lnx+%+c (19.51)
2 2
Jxlnxdx:%lnx—%+c. (19.52)

In fact, inserting (19.20) into the expression for ag in (21.62), one finds

o=s[ af al ]

G [ew)e

whence the substitution [(2g)/c]u = x and the integral in (19.50) yield

A3
i)
) g

T 5 2_gt
J dt[xIn” x — 2xInx + 2x| .
0
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The further substitution [(2¢g/c¢)]t = x now leads to the couple of integrals (19.51)
and (19.52)

s
0

2 Cc 4 %T > 2TgT %T
o J xIn xdx—ZJ xlnxdx—l—ZJ X dx
N 9 0 0 0
2
e\ [+ x2 x? o x? i
:<g) 7lnzx—jlnx—.>c21n)c+z4—7+x2 0

4 2g
= 5)1[x2(21n2x—61nx+7)] !

() -en) ]

Thus, the asymptotic total energy variance reads

T\ 2 2
P (—‘D {2 1n2(—cg T) —6ln (—g T) - 7] (19.54)
. ‘ p

Note that just as (19.49) is the asymptotic version of (19.12), so (19.54) is the
asymptotic form of (19.17), and could have been found by substituting arcsinh by
log, and forgetting all the additive +1 that are dwarfed for large 7.

The square root of (19.74) is the asymptotic total energy standard deviation

= ig 21n? (Q T) — 61n(@ T) + 7. (19.55)
g c c

g,
gy

Setting
gT
=X

(19.56)

we see that the radicand of (19.55) is the quadratic in £ =In x
267 — 6647 > 0. (19.57)

This is positive for any & because A = —20 < 0.

Let us regard the noise asymptotic total energy as a stochastic process of 7.
The process behavior in time is characterized by its mean value curve (19.49) and by
the upper and lower (mean value + standard deviation) curves given by

E{eqp}t £oo,, - (19.58)

The first column of Table 19.1 shows the numerical values of the independent
variable x defined by (19.56) ranging from 0 to 20. In units of time, 7" ranges from
0 to 20 years since

€ ~3.0612245 - 107 s ~ 0.96699947 years ~ | year. (19.59a)

4
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Table 19.1. Noise asymptotic total energy.

Signal total energy as a stochastic process of 7 481

gT
xX=—
@

M = x(In(2x) — 1)

V = x*(21n*(2x) — 6 In(2x) + 7)

X M M-V M+\V
0 0 0 0
1 —0.30685 —2.25673 1.643024
2 0.772588 —2.40600 3.951178
3 2375278 —2.52698 7.277545
4 4317766 —2.80572 11.44125
5 6.512925 —3.21883 16.24468
6 8.909439 —3.73346 21.55234
7 11.47340 —4.32692 27.27327
8 14.18070 —4.98419 33.34561
9 17.01334 —5.69497 39.72166
10 19.95732 —6.45182 46.36646
11 23.00146 —7.24919 53.25213
12 26.13664 —8.08277 60.35607
13 29.35525 —8.94912 67.65963
14 32.65086 —9.84541 75.14714
15 36.01796 —18.7693 82.80522
16 39.45177 —11.7188 90.62235
17 42.94812 —12.6922 98.58846
18 46.50334 —13.6880 106.6947
19 50.11413 —14.7049 114.9332
20 53.77758 —15.7418 123.2970
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The second column gives the numerical values of the asymptotic mean value (19.49)
of the noise total energy apart from a factor (¢/g)>. The third and fourth columns,
respectively, show the values of the lower (minus sign) and upper (plus sign) curves
(19.58), again apart from a factor (¢/g)>.

One may check the above asymptotic total energy results against the correspond-
ing exact results derived at the end of Section 19.3. Table 19.2 shows the same items as
Table 19.1, but is calculated by using the exact total energy variance (19.17). We see
that the agreement is not as good for very small values of T, while it increases for
increasing 7', and the dispersion of the total energy around its mean value increases
roughly by the same amount as the total energy itself.

The conclusion to this section is that the KL eigenfunction expansion has been
derived for the noise emitted by a spaceship traveling at a constantly accelerated
relativistic motion. Though the mathematical difficulties forced us to confine our-
selves to the asymptotic theory for values of time larger than 1 year, the study of the
noise total energy (where both asymptotic and exact results can be obtained) shows
that the errors of the asymptotic version are not very large.

19.7 INSTANTANEOUS NOISE ENERGY FOR ASYMPTOTIC
HYPERBOLIC MOTION: PREPARATORY CALCULATIONS

In Chapter 24, as well as in [2], the process Y (¢) defined by
Y (1) = X*(1) - E{X*(1)} (19.59b)

was considered. According to (24.35), the KL eigenfunction expansion of that process
reads

< [ ) Jlf(s)ds
=327, 7 jf() o | —— . (19.60)
= |, 7 as

where the function f(7) is defined in terms of /() by (24.24). That is,

,/ f2 (19.61)

This section is devoted to finding the KL expansion of the zero-mean square process
Y (1), in the asymptotic hyperbolic case, and its physical meaning for relativistic
interstellar flight will be examined in the coming section. In this section we just
pave the mathematical way to the coming section by performing the necessary
calculations.
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Table 19.2. Noise exact total energy.

X = —
C

M=xln(x+V1+x2)—V1+x>+1

V=02x" = D[In*(x 4+ V1 +x2) —6xv1 + x2In(x + V1 + x2) + 7x7]

0 0 0 0
1 0.467160 —0.07884 1.013160
2 1.651202 —0.31139 3.613797
3 3.293061 —0.67013 7.256257
4 5.255744 —1.12713 11.63862
5 7.463172 —1.66295 16.58929
6 9.867916 —2.26419 22.00002
7 12.43777 —2.92124 27.79679
8 15.14952 —3.62692 33.92596
9 17.98561 —4.37568 40.34690
10 20.93235 —5.16310 47.02780
11 23.97876 —5.98558 53.94311
12 27.11583 —6.84016 61.07182
13 30.33603 —7.72432 68.39640
14 33.633301 —8.63592 75.90195
15 37.00130 —9.57310 83.57571
16 40.43615 —18.5342 91.40657
17 43.93342 —11.5179 99.38482
18 47.48945 —12.5229 107.5018
19 51.10098 —13.5481 115.7500
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According to (19.61), we must first obtain the function f (1), which follows at once
from (19.20) and (19.21)
)

We now proceed to construct the complicated expression (4.26), or, alternatively,
(3.50) with f'(¢) substituted by f(¢), to find the time-dependent order (). But a glance
at (24.26) and (19.62) shows that considerable analytical difficulties are involved. For
instance, evaluation of the integral appearing in (22.50) with f(¢) substituted by f'(¢),
namely

o lQ

In
fo =% Q

(19.62)

(19.63)

does not seem to be feasible in terms of elementary transcendental functions.

Nevertheless, these difficulties may be overcome by keeping in mind that we are
seeking the asymptotic version of (19.62) for large values of time. Therefore, one is led
to consider the limit

1 2gl | 2gt
lim f(7) = lim %JH(C): %J lim M - % (19.64)

Concluding the calculation at the last limit, and checking this against the initial limit,
we thus obtain the following ““ultimate’ asymptotic version of (19.62), which from
now on we shall regard as the asyptotic replacement to (19.62) for large values of
time ¢
~ 2c¢ 1
flt)y=——.
() o i

This formula is simple enough for us to perform the remaining calculations involved
with the KL expansion (19.60).

Beginning with the computation of the Bessel function order (22.50) with f'(¢)
substituted by f(z), (19.65) yields at once

(19.65)

Inf(1) = In (%) il (19.66)
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whence
dinf(1) 11
- __ 19.
dt 21 (19.67)
d*Inf(t) 11
and
- ZCJ’ 1 4c
s)ds == | —=ds =—+/1. 19.69
Jof() g Jo/s 4 ( )
Therefore, (22.50), with f(¢) substituted by f(t), yields
4c 2
D T A B EYER T\ S VO
AU et 2e ] e\ T2 T2\2e
g Vi

v 31 11yt 131
e R Lo T EVE R o T

The time variable is thus seen to disappear from the last formula, leaving

- 1 34 1 -1
l/(t)— Z+4{T}_ Z+T_\/6_O

That is, the order of the Bessel function vanishes identically
v(t)=0 (19.71)

and this circumstance helps to simplify further calculations considerably. Intuitively
speaking, (19.71) is quite a reasonable result. In fact, on the one hand, the corre-
sponding Bessel function order in the KL expansion of the X () process vanished too

v(1) =0, (19.72)

which is Equation (19.25), or eq. (68) in [1]. On the other hand, (19.71) truly mirrors
the asymptotic character of the KL expansion under consideration, since the Bessel
function of order zero is the only Bessel function of the first kind to have its initial
value equal to one rather than zero, pointing out the non-validity of this theory for
values of time near to the origin.

Let us now proceed to finding the function x(7) defined by (24.25). By virtue of
(19.65) and (19.69), it follows that

X(1) = %\%-%ﬁ:zﬁ? (19.73)
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Once again, the time variable cancels out from the last formula, yielding a constant
rather than a time function. An immediate consequence of (19.73) is, of course,

() =0 (19.74)

which helps to simplify further calculations also.
Reverting now to the KL expansion of (19.60), we see that the Bessel function
must have the form

Jo %ijf:))dg =J (7\/—@> (19.75)
f(s)ds

0

Our next task is to find the meaning of the constants 7,, given by (24.27).

As X'(1) =0 and 7'(¢) = 0, and getting rid of all multiplicative factors, one easily
sees that (24.27) yields

To(3) = 0. (19.76)

Thus, the 4, are the positive zeros, arranged in ascending order of magnitude, of
the derivative of Jy(x). In other words, they are the abscissas of the maxima and
minima of Jy(x), that are known to follow each other alternately. However, a
different interpretation of the ¥, follows from (see [7, p. 12, entry 55 (v = 0 must
be set)]

T =20, () = T (). (19.77)
Using (19.77), (19.76) now becomes equivalent to
Ji(%,) =0 (19.78)

and one may also say that the 4, are the real positive zeros of J; (x) The first 40 among
them are listed in [8, p. 748], and one finds, for instance:

31 = 3.8317060 4, = 7.0155867 49 = 126.4461387. (19.79)

No explicit formula yielding these zeros exactly is known. However, it is possible to
get an approximated expression for them on setting v =1 into the asymptotic
formula for J,(x) (see [9, p. 134])

. . 2 v T

Jim .09 = Jim [ eos (v == ) (19:50)

getting
cos (5/,, - 3;) R~ (19.81)

whence

3
ﬁ/n—%zmr—g (n=1,2,..) (19.82)
and finally

A 4L (19.83)

4
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We can see how good this approximation is by setting n = 1,2, ..., 40,

Y1 ~ 3.9269908 4, &~ 7.0685835 A4 ~ 126.4491 (19.84)
and checking these results against (19.79): the agreement improves with increasing n.

As for the eigenvalues ), they are related to the 7, by (24.29), and, by virtue of
(19.69), take the form

2
5, =0 1 (19.85)
9= (%)

Finally, we turn to the normalization constants N, that can be discovered from
(24.28) by inserting (19.69) and (19.71). Therefore

16¢>T
1—N26gc—2L x[Jo(F,x)]? dx. (19.86)

This integral is evaluated within the framework of the Dini expansion in the series of
Bessel functions [5, p. 71], and one finds

5 16¢°T (1 5 0 :
1= Nﬁ P} {z |:JE)2(%1) + (1 _~_2>J(2)(7n)] }
g ’7)‘1

N28€ T

2
[1/02( ) + J0(711)] = ~H7J(2)(’7n) (1987)

where (19.76) was used in the last step. Solving for N, requires the introduction of the
modulus of Jy(%,), and one has

_ 9

This is the exact expression of the normalization constants. We can, however,
derive an approximated expression for them on substituting the Bessel function by

virtue of (19.80) and (19.83)
2 2
— |cos(nm)| = —. 19.89
S leos(m)| = /= (19:89)

Thus, from (19.88), by virtue of (19.89) and (19.83), we get the approximated N,,:

o)l =

n

T g
u 19.90
1ouT (19.90)

which completes our set of preliminary calculations.



488 KLT of radio signals from relativistic spaceships in hyperbolic motion [Ch. 19

19.8 KL EXPANSION FOR THE INSTANTANEOUS ENERGY OF THE
NOISE EMITTED BY A RELATIVISTIC SPACESHIP

When dealing with a noise represented by a stochastic process X (7), an important
distinction is between its instantaneous energy, given by the square process

X2(1) (19.91)

and the total energy, given by the stochastic integral of the instantanous energy
(19.91) over the finite time span, 0 < ¢ < 7 during which the noise is observed:

T
I= J X2(s) ds. (19.92)
0
This section is devoted to finding the KL expansion of the process (19.91), whereas
both mean value and variance of the random variable (19.92) have already been
obtained in Section 19.3, as well as in section 5 of [1]. A related paper, [10], may also
be consulted.
Let us then consider the mean value of (19.91), given by (21.59); that is,

t

E{X*(1)} = J 12(s) ds, (19.93)

0

where E denotes mean value operator, or ensemble average. By virtue of (19.20),
(19.93) is changed into

E{X(1)} = gln(zgz) (19.94)

Thus, the zero-mean square process Y (1), defined by (19.59), takes the form
—x2 ~Sm(29
Y(r) = X2(1) gln(zct) (19.95)

whence

X3(t) = §In<2%t) Y (). (19.96)

Let us now consider the KL expansion of the Y (z) process. By sustituting into
(19.60) the normalization constants (19.90), the x(¢) function (19.73), and the Bessel
function (19.75), we come up with

22 SJO (ﬁn ﬁ)

N g
o= ;Z” 2vV2ev/T|Jy(5,)] VT

n

from which both ¢ and g disappear, yielding

R S}
0= 2 2 A (7" ﬁ)' (19:97)
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Thus, by virtue of (19.96) and (19.97), we conclude that the exact KL expansion of
the instantaneous energy X >(¢) reads

()=—ln( —r) 2:: flJlo %)lz\f‘J (’y \/W_T_> (19.98)

From this exact expansion we may also derive an approximated one by resorting
to the usual asymptotic formula (19.80) for both the Bessel functions appearing in
(19.98). The result is

1 2[ c R/ 77)

—ln =t +E Z — =, 19.99

( ) ( ) n=1 4 g (7 Vv T 4 ( )

which, after substituting the 4, by the approximated version (19.83), takes the final
form

\/_C ™ Vi T
X2(1) ~ $n(221 A )2 =—-=). (19.100
0= (220) + 37t 2 (o 5) S ). 19

This is the approximated (i.e., asymptotic) KL expansion of the noise instantaneous
energy for large values of time. The computational advantage of (19.100) over (19.98)
is that the Bessel functions have been substituted by a cosine.

19.9 CONCLUSION

A surprising property of both the instantaneous energy KL expansions (19.98) and
(19.100) is revealed by checking them, respectively, against the corresponding KL
expansions (19.42) and (19.43) of the noise process X (). In fact, on the one hand, one
should note that the 4, (19.78) of the Y (¢) process are just the same as the 7, of the
X(1) process, given by (19.29), inasmuch as both are the real positive zeros of J; ().
Moreover, a glance shows that (19.98) has just the same eigenfunctions as (19.42),
and (19.100) as (19.43). Therefore, we reach the unexpected conclusion that, when
dealing with the noise emitted by a relativistic spaceship in asymptotic hyperbolic
motion, the best orthonormal basis in the Hilbert space (i.e., the basis spanned by the
eigenfunctions) is the same for both the noise and its own zero-mean instantaneous
energy. Alternatively, if we prefer to give up the zero-mean restriction, we may say
that the noise and its own instantaneous energy share parallel optimal reference
frames, or bases, in the Hilbert space. This unusual feature should bear consequences
in the design of a correct signal analysis procedure to filter out the noise received on
Earth from a relativistically moving spaceship in asymptotic hyperbolic motion.
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