BIGCAT Overview

Chris Phillips | BIGCAT Project Lead

11th March 2021

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

CABB

- Installed 2009
- 2x 2 GHz (dual pol) continuum bandwidth
 - 1 MHz default spectral resolution
 - Tunable independently across an 8 GHz IF
- Zoombands for spectral line astronomy
 - 16x 1 MHz with 2048 points (0.49 kHz)
 - 16x 64 MHz with 2048 points (31.25 kHz)
- 2x 64 MHz VLBI tied array bandwidth

ATCA-BIGCAT upgrade

- BIGCAT: Broadband Integrated Gpu Correlator for ATca
 - Replacement of CABB digitisers and correlator with a hybrid FPGA+GPU backend
- LIEF funded, lead by WSU (PI Ray Norris)
- Key aspects of BIGCAT:
 - Double instantaneous bandwidth to ~8 GHz
 - Flexible spectral resolution
 - Improved reliability
 - More flexibility:
 - Many more options wrt. frequency resolution and integration times
 - Ability to change quickly between different observing modes
 - More adaptable to automated observing (e.g. rapid ToO follow-up)
 - Retain standard CABB features (e.g. mosaicing)

BIGCAT

- Replace last stage of analogue IF
 - Retain existing 8 GHz IF stage
- All new digital system
- Hybrid FPGA/GPU solution
 - Xilinx RFSoC bases digitizer and coarse filterbank
 - Stream data over standard 100 Gbps Ethernet from antenna
 - Limited configurations
- "Astronomical" processing done on GPU
 - Fine channelisation
 - Geometric correction ("fringe rotation")
 - Cross correlation
 - RFI removal (eventually)

ATCA-BIGCAT signal chain

BIGCAT Frequency Bands

- 4 x 1.92 GHz IFs stitched together to form a contiguous 7.68 GHz bandwidth
- Limited tunability in 160 MHz steps •
- Single "8 GHz" IF chunk for higher frequencies
- No user IF tuning, just central frequency

BIGCAT Digitisers

- 2 GHz IFs sampled using Xilinx RFSoC ADC
 - 8 samplers and FPGA fabric on single chip
- Built into CASS "Jimble board"
 - 4x 2 GHz per board
 - 2x 100 GbE output
- Jimble common to CryoPAF project
 - Plan to upgrade for Parkes UWB systems using same firmware as BIGCAT

Jimble Specs

- 12 bit sampling (4096 MS/sec)
- 128 MHz oversampled polyphase filterbank
 - 32/27 oversampling ratio (151.7 MHz effective bandwidth/channel)
- 2x 100 Gbps Ethernet output (CODIF)
- 8 or 16 bit quantisation (complex, 8+8/16+16)
 - 8 bit required to get 8 GHz bandwidth
 - 16 bit 1-3 GHz, 8 bit for higher frequencies)

GPU Backend

- GPU backend 16 servers, each with 2 GPU and 2x100 GbE
 - RTX 3080 current plan (High end gaming card)
 - 58 Gbps/GPU (without reference antenna)
- Each 128 MHz coarse frequency channel processed independently
 - Same frequencies from all telescopes (ATCA + reference) to single GPU
 - No GPU cross connect planned
 - 2 coarse channels/GPU (except LS)
- Plan to allow bespoke "user" processing on GPU

BIGCAT Frequency Resolution

- Standard frequency resolution across full 8 GHz 18.5 kHz:
 - 8192 frequency points across every coarse channel
 - Average after integration to the spectral resolution required
 - Suitable for most thermal lines
- Flexible zoombands available with higher spectral resolution
 - E.g. 0.1 kHz easily achieved over limited bandwidth
- Number of zoombands limited by GPU compute and output data rate
 - Main limit total bandwidth of zooms, so trade #zooms for bandwidth
 - Zooms can have separate bandwidth and spectral resolution
- How to expose flexibility to user?
- All observations will get low spectral resolution continuum data across the full bandwidth.

VLBI (Voltage Streaming)

- VLBI requires tied array voltage beam
 - Assume any other "voltage" users will use VLBI mechanism
- VLBI requirements talk tomorrow
 - Full bandwidth available
 - Recorded bandwidth configurable
 - Multiple steerable tied array beams
- 16 Gbps recording available initially
 - Higher rates possible with purchase of more VLBI recorders

Advanced Modes

- No planning yet for "advanced" modes
 - Pulsar binning
 - Coherent de-dispersion?
 - RFI mitigation
 - Flag tables
 - Adaptive filters
 - Clipping on high time and frequency resolution data
 - FRB mode?
 - Blind search marginal
 - Repeater follow up?
 - Space craft tracking and asteroid bistatic radar built in?
 - Or just supply raw voltage stream from tied array
 - Near field effects
 - Fast dump visibilities?

Control

- RF control will depend on "pre-canned" setups for IF
 - Standard mode will presumably be 7.6 GHz continuous frequency coverage
 - Option for modes with slightly wider frequency coverage but some "gaps" between 2 GHz IFs
 - Tunable central frequency for mm receivers (15+ GHz)
 - Cannot observe frequencies > 8 GHz separated
- Setup entirely included in caobs schedule
 - No more "prog"
- Infinite setup possibilities how to allow user customization but ensure tested setup
 - Zoombands particularly
- No plan to replace caobs

Feedback and questions:

Elizabeth Mahony BIGCAT Project Scientist Elizabeth.Mahony@csiro.au **Chris Phillips** BIGCAT Project Lead Chris.Phillips@csiro.au

Jamie Stevens ATCA Systems Scientist Jamie.Stevens@csiro.au

BIGCAT overview: https://www.atnf.csiro.au/people/Chris.Phillips/BIGCAT_Overview.pdf

Thank you

CSIRO Astronomy and Space Science Chris Phillips BIGCAT Project Lead

- **t** +61 2 9372 4608
- e Chris.Phillips@csiro.au

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

