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ABSTRACT

The traditional approach to measuring the rotation measure (RM) from radio po-

larimetric data consists of fitting linear polarization position angles obtained at differ-
ent wavelengths to a A? law. Depending exactly upon the observational instrumental
parameters (e.g. bandwidth, frequency etc.), this approach suffers variously from the
following malaises; n * m ambiguity, bandwidth depolarization, bad characteristics at
low signal-to-noise ratios, and it is only valid for an RM distribution which is singly
valued.

In this paper, we describe a new Fourier-based technique for extracting RMs from
radio polarimetric data that addresses the above problems. In particular, it deals with
low signal-to-noise observations correctly, allows the recovery of a spatially unresolved
RM distribution (i.e. one or more RM components) and does not suffer from an am-
biguity problem. Because this technique uses observations with many closely spaced
channels, it also mitigates bandwidth depolarization (but cannot escape it entirely).

Key words: Rotation Measure, Fourier Techniques, polarization, magnetic fields, radio

astronomy

1 INTRODUCTION

Polarimetric analysis of the electromagnetic radiation emit-
ted by astrophysical objects is a powerful tool which enables
assessment of physical quantities such as the emission mech-
anism, the magnetic field, the thermal number density, and
the physical geometry of the source.

In radio astronomy, it is common to try to determine
a quantity called the rotation measure (RM); it is derived
from the position angle of the plane of linear polarization
of the signal measured at different frequencies. It describes
the amount by which that plane will be rotated by Faraday
rotation (Faraday 1844) owing to any magneto-ionic ma-
terial between the emission and detection of the emission.
The RM is often used to determine the intrinsic position
angle of the projected magnetic field of the emitting ob-
ject. Of course, it can also be used to probe the intervening
magneto-ionic medium. However, it should be noted that
the analysis of such data becomes arcane when the Faraday
rotating medium is mixed in with the emitting medium.

Traditionally, the RM is extracted from broadband con-
tinuum measurements made at different frequencies by fit-
ting a A? law to the linear polarization position angles. How-

ever, this technique is compromised by several effects. First,
if the plane of polarization rotates more than a turn between
successive frequencies, the measurement of its position an-
gle is ambiguous, causing the deduced RM to be in error.
Second, if the RM is sufficiently large, the plane of polar-
ization rotates substantially across the bandwidth causing
degradation of the averaged signal (bandwidth depolariza-
tion). Third, any RM distribution other than one with a
single value will invalidate the use of a A% law. Associated
with non-singly valued and unresolved RM distributions is
beam depolarization; this occurs because the position angle
of the polarization changes across the beam. Fourth, it in-
correctly handles the noise characteristics of the signal when
the signal-to-noise ratio is poor.

In this paper, we discuss a new Fourier-based technique
to extract RMs from data that would otherwise be compro-
mised by some combination of the problems listed above.
It uses observations at regular, closely spaced frequencies
(channels). It handles low signal-to-noise observations opti-
mally and does not suffer from an ambiguity problem. Pro-
vided the signal per channel has not been completely beam
depolarized by large spatial RM gradients, or completely
bandwidth depolarized by large RM values, it can recover
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an unresolved RM distribution. In addition, depending upon
the flexibility of a particular instrument to provide combi-
nations of channel width and number of channels (with full
polarization capability), very large RMs can be accessed (up
to 10° rad m™2 with the Australia Telescope Compact Ar-
ray).

The Fourier technique has wide astrophysical applica-
bility; it will be important for any object with polarized
emission that has traversed regions of high electron den-
sity threaded by a strong magnetic field. Such material sur-
rounds the nuclei of galaxies (e.g. Sgr A) and inhabits the
broad-line regions of AGNs. Radio galaxies are also found
with large RMs in rich clusters of galaxies owing to the large
path lengths.

After we began this work, we became aware of the work
of de Bruyn (1996, see Section 3.2 for details) for use with
WSRT data. de Bruyn’s technique is essentially equivalent
to ours, although approached from a slightly different per-
spective.

In this paper we will refer variously to Faraday screens,
distributions and components. By screen we are really refer-
ring to the physical material. By component we are really
referring to a delta function within a more general mathe-
matical distribution. We will not be too rigorous about using
these terms totally consistently!

We will also assume throughout this paper that the only
propagational effect that the RM screens have is to rotate
the plane of linear polarization. That is, we will ignore all
scattering mechanisms.

In Section 2, we describe the problems affecting the tra-
ditional approach to RM extraction. In Section 3 we describe
the Fourier approach. In Section 4 we offer numerical simu-
lations exploring this new method. We summarise our find-
ings in Section 5. Appendix A gives a table relevant to the
Australia Telescope Compact Array, indicating the range of
RMs that are accessible with this instrument and the Fourier
technique.

2 THE TRADITIONAL APPROACH
2.1 Definitions

We will discuss the state of the electromagnetic wave in
terms of the Stokes parameters (Stokes 1852). These are co-
piously described in text books (e.g. Kraus, 1966). The total
intensity is given the symbol I, the two components of linear
polarization are symbolized by @ and U, and V represents
the circularly polarized component. It is convenient to refer
to the complex linear polarization introduced by Conway &
Kronberg (1969), where

P:QJriU:pe%p, (1)

p = /(Q?+ U?) is the total linearly polarized intensity
and ¢ = %tanfl(U/Q) is the position angle of the linearly
polarized radiation.

Faraday rotation is also treated extensively in the liter-
ature (xxx 19xx) and so we make no basic derivations here.
The RM is defined by

L
RM = 8.1 x 105/ ByNedl rad m™?, 2
0

where B is the line-of-sight component of the magnetic field
in Gauss, N, is the electron density in cm™> and dl is the
path length in pc. The position angle, in radians, of a linearly
polarized wave that has traversed a Faraday screen is given
by

w = win + RMAQ? (3)

where i, is the intrinsic position angle of the radiation, and
A is the wavelength in metres.

Traditionally, the RM is obtained by computing the po-
sition angle at a number of different wavelengths. Suppose
N measurements are made (A = A1 ... Ay, ) of the position
angle (¢ = 91 ...%n, ), then the RM may be recovered with
a least—squares fit to a straight line in the -\ plane.

2.2 Ambiguity

It is readily apparent that an ambiguity can occur in the
RM recovered with this least-squares fitting when the RM
is sufficiently large that 1 changes by more than 7 rad be-
tween adjacent wavelengths. This is commonly referred to
as the ‘n x m ambiguity’. With just two wavelengths, it is
impossible to assess whether there are ambiguity problems
or not. With three or more, a consistent solution can be
found, but one must always make the assumption that the
closest spaced wavelengths are themselves not subject to am-
biguity. Alternatively, if you do not assume that the closest
spaced wavelengths are free of ambiguity, then usually the
algorithm is designed to return the lowest-valued solution
or the solution with the best fit; neither is guaranteed to be
correct.

An extreme example of ambiguity is demonstrated in
Fig 1, where the fit to ¥-A? suggests a RM of 10 rad m ™2,

when the Faraday screen in reality has RM = 180 rad m 2.

2.3 Bandwidth depolarization

Assuming that p is independent of frequency, the integrated
complex polarization over bandwidth is

vo
P, :p/ My, (4)

vy

Substituting the expression for the position angle given by
eq. (3), putting tin = 0 without loss of generality, and
assuming the fractional bandwidth Av/r < 1, one can
straightforwardly show the well-known formula

P, = sin(a) 61’2RM)\02 (5)
where a = QRM)\ZAI//VC, Ac is the wavelength equivalent to
the central frequency, ve = (11 + v2)/2.

Fig. 2 shows a plot of the amplitude as the RM is varied
for a typical choice of frequency (1.4 GHz) and a range of
bandwidths from 1 to 100 MHz. Clearly RM values of sev-
eral thousand are only accessible with narrow bandwidths
which require high sensitivity. Naturally, for higher frequen-
cies and narrower bandwidths, the effect is smaller; however,
this plot is just for illustrative purposes to show that band-
width depolarization is not uncommon in broadband radio
observations, since RM values of several hundred rad m~?
are common and narrowband, single-frequency continuum
observations are rare.
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Figure 1. A simp@zleé(sg—giuz?ren?ﬁ 2ta the position angle, v,
measured at three frequencies (v = 1.4, 1.85 and 3.2 GHz) for a
Faraday screen with rotation measure RM = 180 rad m—2 results
in an incorrect measurement of RM = 10 rad m—2. The true
variation of 1 with X is shown by the dashed line. Note that
takes on values between 0° and 180° only. In practice, frequencies
which are much more closely spaced than suggested here would
be used.
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Figure 2. Bandwidth depolarization at v9 = 1.4 GHz and band-
widths from 1 to 100 MHz.

2.4 Noise

The traditional approach does not handle the noise charac-
teristics of the signal optimally. Imagine that we have @ and
U measurements at a number of closely spaced frequencies
(e.g. regular channels). We would compute the position an-
gle for each channel, and then, by least-squares, fit equation
eq. (3) to the spectrum of position angles.

The problem here is that the position angle, ¥(v), is
computed from the noisy quantities, Q(v) and U(v). Re-
ferring to Fig 3, the true linear polarization of the source,
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Figure 3. The measured polarization vector Pmeas, and inferred
position angle, ¢, depend on the true polarization vector, Ptrye,
and the contribution from noise and calibration errors €. For con-
venience, Pirye has been aligned with the Real axis. (left) If the
signal-to-noise ratio is small, the position angle is incorrectly mea-
sured as 1, and so the true value is not recoverable. (right) In-
creasing the signal-to-noise ratio leads to a significant reduction
in the inferred .

Prue is a vector in the complex plane. Noise and calibration
errors add to this a vector g, so that the measured linear po-
larization is Pmeas = Ptrue + €. If the signal-to-noise ratio
is low, then |Piue| ~ |€|. In such cases, the conventional
approach of computing the position angle for each channel
would lead to a spectrum of noise, rather than a spectrum
of meaningful position angles.

For Gaussian noise, ¥ follows a symmetric distribution
which becomes Gaussian at large signal-to-noise ratios. The
amplitude of Ppeas is biased and follows the Rice distribu-
tion (Vinokur 1965; Wardle & Kronberg, 1974), but also be-
comes Gaussian for large signal-to-noise ratios. A discussion
of these distributions can also be found in Thompson, Moran
& Swenson (1994) and plots of both the amplitude and po-
sition angle can be seen in their figure 6.8. As the available
signal-to-noise ratio increases, the symmetric spread in mea-
sured ¢ about the true value will decrease.

2.5 More Complex RM Distributions

The traditional approach fails for any spatially unresolved
RM distribution other than one that is singly valued. As
shown in the top two panels of Fig. 4, the functional form of
eq. (3) will correctly fit a single RM component (provided
observations can be made at sufficiently closely spaced wave-
lengths to avoid ambiguity problems). However, adding one
(or more) additional Faraday components (lower panel of
Fig. 4) causes the linear model of eq. (3) to be invalid. In
this example, the gradient is intermediate between the two
input RM values, but with discontinuities in ¥ < 180°.

One should also be aware of beam depolarization. This
means that if there are RM gradients unresolved to the tele-
scope beam, the vector sum over the beam of the complex
polarization will degrade the signal strength. By how much
depends upon the exact form of the gradients, but it can
potentially completely depolarize the signal. Analytic solu-
tions for simple linear RM gradients have been obtained by
Leahy et al. (19xx).
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Figure 4. Position-angle variation for multiple Faraday compo-
nents. The left-hand column shows Stokes Q,U data as a func-
tion of frequency; the right-hand column plots position angle,
1 € [0,180] degrees, versus 2. The plots cover a bandwidth of
500 MHz in 128 (equally spaced in frequency) channels centred
on 1.5 GHz. The input RM models are (top) single RM = 400
rad m~2, (middle) single RM = 1000 rad m~2 and (bottom)
multiple RM = 400 and RM = 1000 rad m~2. Clearly, when mul-
tiple Faraday components are present, the linear 1-\? relation
no longer holds: a least-squares fit to to a small number of (¢,\)
data points would give an incorrect estimate of the RM.

3 THE FOURIER TECHNIQUE
3.1 Overview

Our new technique is a simple Fourier-based idea, facilitated
by modern correlator capabilities. Instead of making broad-
band continuum observations at a few frequencies, one ob-
tains many closely spaced continuum channels over a broad
band. This is no different from a spectral-line observation.
Of course such observations have been made in the past,
and these decreased the ambiguity and bandwidth depolar-
ization problems. However, the analysis was still done in
the traditional way and therefore still suffer from the other
problems described above.

We will show in this section that our Fourier approach
to multichannel polarimetric observations is not subject to
ambiguity, handles noise optimally (allowing us to detect
RMs at much lower signal-to-noise ratios than with the tra-
ditional approach) and may also allow us to recover an RM
distribution (i.e. one that is more complex than a single

value) unresolved to the telescope beam. Because it uses
multichannel observations over a broader band, it retains
the benefits of reduced bandwidth depolarization. However,
sufficiently large RM values which completely bandwidth
depolarize a single channel, or unresolved RM distributions
that completely beam depolarize the signal, will still render
this technique ineffective.

Consider the observation of a point source with a multi-
channel correlator configuration over some broad band-
width. From this we can produce a real valued spectrum
(in the image domain) for each of the Stokes parameters.
The next step is to form the complex spectrum P(v) =
Q) + iU (v) = p(r)e*™ ™) If the RM is singly valued and
non-zero, ¥ changes with frequency according to eq. (3) and
we have a complex (quasi) exponential.

One can imagine a least-squares fit (of the appropriate
A\? function) to the P = @Q + U spectrum (essentially a si-
multaneous fit of @ and U; this is not the same as fitting
the position angle to A?) which would recover the RM and
not be subject to broadband bandwidth depolarization. Al-
ternatively, in the limit that the fractional total bandwidth
is small (i.e. the A\? stretching over the bandwidth can be ig-
nored), P(v) is an exponential, and the Fourier transform of
P(v) is a delta function in time space. The location of that
delta function is directly proportional to the RM. If RM = 0,
P is independent of frequency, and its Fourier transform is
a delta function at ¢ = 0.

The Fourier (and fitting of P(v)) technique has a sub-
stantial benefit over the conventional approach with regard
to signal-to-noise ratio considerations (see Section 2.4). This
is because it does not compute a secondary quantity (the po-
sition angle) from the noisy @ and U values. The Q and U
spectra, subject to well-behaved Gaussian noise, are effec-
tively used simultaneously. This means substantially weaker
signals can be recovered than in the traditional approach.

So far we have noted that the Fourier technique is equiv-
alent to the approach of fitting P(v) when the fractional
bandwidth is small. However, the Fourier technique is more
convenient for complex RM distributions, because it will give
that distribution straight away in the transform; there is no
need to decide how many RM components to fit and what
the starting values are.

Consider the case where there are Ny spatially dis-
crete Faraday screens completely filling the telescope’s spa-
tial beam (this is a very general distribution). For simplicity,
let us say that the complex polarization state of the radia-
tion impinging upon those screens is the same, and given by
P(v). The integrated response, Pi(v), is a vector sum over
the spatial beam of the radiation for all lines of sight within
the beam. Thus,

Ng

Pi(v) = p(v) Y _ e M (6)

k

where we have ignored beam-response weighting factors.
Rather than writing the RM effect as a phase term, one could
also think of P in terms of its real (Q) and imaginary (U)
components which are summed over the beam separately.
The spectrum, Pi(v), thus contains spectral Fourier compo-
nents induced by the frequency dependence of the Faraday
screen; it does not consist of just one Fourier component.
An example of this can be seen in the lower panels of Fig. 4



which shows @, U, and 1 for a two-component RM distribu-
tion. Taking the Fourier transform of P(v) yields those com-
ponents, which are inaccessible with the traditional tech-
nique of fitting a spectrum of position angles for a single RM.
We will put this on a firmer mathematical footing in the next
Section and also in the numerical simulations of Section 4.
These multiple components are of course also recoverable
through least-squares fitting to the P(v) spectrum.

A practical approach might be to use the Fourier tech-
nique to find quickly the main RM components, and then
put those (discrete) locations as starting locations into a
computer program which fits P(v). However, in this paper
we will concentrate on the Fourier approach only, owing to
its computational speed and ease of use.

Note that if the RM screens are all along the same line
of sight, then the Fourier technique cannot help. The ra-
diation that traverses the different screens simply emerges
from the last one having had its position angle rotated suc-
cessively by each screen; this is indistinguishable from an
RM distribution which is singly valued.

The Fourier technique not only yields the differing com-
ponents of the screen, but it also offers an elegant and pow-
erful way of visualizing the signal from all the screens. For
an extended source, one makes 3-D (two spatial and one
frequency dimension) images of @ and U and then Fourier
transforms the complex polarization P(v) = Q(v) + iU (v)
from the frequency domain to the time domain and searches
the resultant 3-D (two spatial and one time dimension)
image for peaks corresponding to RM screens — different
screens show up at different times (or lags) in the Fourier
transformed image.

3.2 de Bruyn’s Work

In de Bruyn’s (1996) formulation , images of the complex
quantity, P(v), are formed for a range of broadband fre-
quencies (which were not equally spaced). One then guesses
a value for the RM, and unwinds P(r) back to some ref-
erence frequency by applying that RM. All the images are
then summed. This is repeated for a range of RM values,
and a plot of the sum versus the RM can be generated for
each spatial pixel in the images. The location of the peak
value in the sum gives the ‘best fit” RM. This is really just
the inverse of the Fourier transform technique — there would
be secondary peaks if there were multiple RM screens. de
Bruyn’s formulation is equivalent to ours, although he did
not implement it with the Fourier approach, nor explore is-
sues such as optimized signal-to-noise ratios, ambiguity, and
unresolved screens that we comment upon in this paper. de
Bruyn did note, however, that different spatial locations may
have a different RM value which optimized the sum. He also
argued that his technique would be more effective with many
narrowband channels, which is the style of observation we
discuss in this paper.

3.3 Mathematical Basis

In this Section we will show that, for a singly valued RM dis-
tribution, the Fourier transform of P(v) is a delta function,
the location of which is proportional to the RM, provided we
make the simplifying assumption that Av/v < 1 (so that
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the A2 dependence can be ignored), where Av is the total
bandwidth.

Consider the complex polarization spectrum of a point
source, P(v), and its complex Fourier transform

1

Pt) = -— [ Pr)e? ™ dv

Av
= ﬁ/p(y)eiwei%”tdu (7

We have used eq. (1) in deriving this. Substituting w = v—uv.
(where vc is the central frequency of the spectrum) into this
equation we find

€i27ruct

Pt) = 5 /peiwﬂ%wtdw. (8)

Because we wish to make a linear approximation of the
quasi-exponential, P(v), we make a Taylor series expansion
of A2 as a function of frequency centred on v. and assume
that w/ve < 1:

2 2 24/ (A2)" 3
N =224+ () w+ 2Lu+op], (9)
where Ac = ¢/v. and c is the speed of light. Substituting
eq. (9) (with the definition of w) into eq. (3), then substi-
tuting eq. (3) into eq. (8), and dropping third-order terms,
it is straightforward to show that

i2(RMAZ 4-p5, +vct)

Piy= X

Av
0\2)”“’2

/ i2RM [(Ag)/w+ 5
e

where we have also assumed that p and s, are frequency
independent. If we now define

j| eiQWWtdw7 (10)

RM(A?)’
s
_ 2RMA?

T Ve

TRM =

(11)

and dismiss the second-order term in the Taylor series (i.e.
make a linear approximation) we have

i2(RM A2 +4)i5 +7vct) )
P(t) _ pe /6127rw(TRM+t)dw' (12)

Av

The integral is the delta function, §(7rm +t). One measures
TrM from the location of the peak of the amplitude of P(t)
and then computes the RM from eq. (11).

3.4 More Complex RM Distributions

So far we have considered only a singly valued RM distribu-
tion. In Section 3.1 we argued qualitatively (see eq. 6) that if
there were Ny discrete, singly valued Faraday screens com-
pletely filling the telescope’s beam, then the Fourier tech-
nique would recover those components (provided beam de-
polarization has not completely depolarized the signal). In
this Section we will show that more carefully. Since such a
distribution is very general, this is a powerful result.
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The measured complex polarization obtained with a fi-
nite beam is

PI(V)://B(w,y)p(%y,V)ew(z’y’”)dxdy, (13)

where we have assumed that the beam response, B(z,y),
is independent of frequency over the range of frequencies
observed and that its integral is unity.

Imposing the above discrete Faraday screen condition
and assuming that the polarization of the incident radiation
for each screen is constant and given by px(v), we can write
the integrated complex polarization as

Ng
rw = YnwE [ [ s
k Ag
Np
= Zpk(y)emwk(v)Ak’ (14)
k

where the A are geometrical terms giving the integral over
the beam response at the location of each region. This is a
more general form of eq. (6). The Fourier transform of P;(v)
is therefore

Pi(t) = ﬁ / Pr(v)e™ " dy

Np
1 . ‘
- Au/%:Akpk(u)e%%(we%mdy
1 o
- Av iy (v)+2mivt
-~ Av Zk:Ak/Pk-(V)e dv, 15)

where we have interchanged the order of the integral and
sum to reach the last expression. Each integral term inside
the sum is equivalent to Fourier transforming a singly val-
ued RM screen, the result of which is given by eq. (12). The
resultant spatially summed spectrum, Pi(t), is a linear com-
bination of the Ny terms in the sum, where the coefficients
are given by the product of the beam-area weighting factor,
and the incident polarized intensity. Therefore, since this is a
linear process, we can recover from the amplitude spectrum,
|P(t)|, each of the RM components.

In general, we cannot recover the intrinsic polarization
of the radiation incident upon each screen; it is weighted by
the beam integral factor, A;. However, the weighting is the
areal value, so, although the amplitude of the polarized in-
tensity is lost, its position angle is recoverable. In the special
case of a point source at the centre of the beam, we can also
recover the intrinsic polarized intensity.

Clearly, if the RM structure is not resolved by the beam,
we cannot determine where the Faraday screens are — only
that there are one (or more) screens within the beam, what
the RM value is for each screen, and what the weighted
complex polarization of the incident radiation was. Again
we emphasize that we can do this only if the signal is not
completely beam depolarized.

3.5 The Detectable Rotation Measure Range

Real observations present a band-limited signal (in this case,
one with finite frequency bandwidth provided by filters) to
digital samplers, which results in digitized samples in time.
Modern correlators then produce the frequency spectrum by
Fourier transforming a finite time (lag) series (or spectrum).
This means that RM values which correspond to larger time
lags than the maximum computed in the correlator are not
detectable.

In our procedure, we take the ) and U frequency spec-
tra provided by the correlator (or for spatially extended
sources, compute images of Stokes ) and U at each fre-
quency channel) and then Fourier transform back to the
time-lag space. Only the signals of RM components corre-
sponding to time lags originally generated in the correlator
will be present in the new lag spectrum. There is no RM
signal aliasing in this process. Aliasing can occur only if the
front-end filters have high sidelobes. Modern filter designs
generally have excellent sidelobe characteristics, so this is
not an issue.

With an ‘XF’ correlator (D’Addario 1989), one would
ideally gain access to the lag spectrum, and make images for
@ and U for each lag from that. However, in practice, our
correlators provide us with a frequency spectrum and so we
have to transform back. In addition, our calibration software
is heavily frequency-space oriented. But, in principle, one
could consider avoiding these two extra transforms.

The detectable RM range is found as follows. Consider
a correlator which provides Nchan frequency channels over
a bandwidth Av centred on v, so that each channel has a
width dv. The corresponding time-lag space also has Nchan
lags, over a total time A¢ = 1/§v with lag spacing 6t =
1/Av. By choosing to perform the transform with respect
to the central frequency, we have time lags centred on ¢ = 0,
and hence we will be able to recover RM components of
either sign.

The maximum detectable RM is then given by the max-
imum measured time lag (tmax = 1/2v):

TVctmax TV

RMmax = —33— = I\ass (16)

The RM sampling interval is found easily from ¢t to be

TV

ARMsamp — m

(17)
Note that the central lag channel® contains all signals
with |RM| < ARMsamp-

3.6 Ambiguity

The Fourier technique does not suffer from an ambiguity
problem because the signal is band limited and fully sampled
in the time-lag (RM) domain. Any RM signal large enough
to cause a position-angle rotation between adjacent channels
that is in turn large enough to cause an ambiguity problem
would have to be greater than RMpyax. Therefore it is not
detected and does no damage.

Remembering the assumption that Av/v << 1, the

* if Ne¢pan is odd, otherwise central two channels



position-angle change between adjacent channels at frequen-
cies v and v + dv is

26V

51 = —RMe (18)

e
Substituting the expression for RMpmax, we find |d¢| =
m/4 < 7 and so there is no n * m ambiguity over the de-
tectable range of RMs.

3.7 Deviations from the Ideal Case

So far, we have only treated the ideal case. We have as-
sumed that the fractional bandwidth is small (linearity),
that the frequency integration limits extend to infinity, and
that there is no frequency dependence of the polarized emis-
sion. We now discuss the effects of relaxing these criteria.

3.7.1 Linearity

We can estimate when the linear assumption will start to
fail by comparing the size of the first and second exponen-
tial terms in eq. (10). When they are roughly equal, the as-
sumption of linearity will be compromised. Thus, from the
equality

(A)w = 22 (19)

we find Av/v. = 2/3. The presence of a substantial second-
order term essentially translates into an error in the mea-
surement of the location of the delta function in the time do-
main. Since the integration limits are w = +v/2 the largest
value the second order term can have is

Aty = S RMA22Y
2

C ]/g - (20)
Applying eq. (11), this translates into an error for the RM
of

ARM, = ZRM Av, (21)

Ve

If the second order error should become important, then
it can be eradicated by resampling the frequency spectrum
(which is band limited) in frequency-squared space. We do
not bother to do this because the second-order error is gen-
erally small, and we wish to retain computational efficiency;
our data are provided to us by the correlator as a regularly
sampled frequency spectrum.

3.7.2 Finite Bandwidth

We can incorporate the finite bandwidth (recall we are as-
suming a bandlimited frequency spectrum) by an appropri-
ate modification of eq. (12):

i2(RMA2 44y, +7vct)

e
P(t) = L -

/b(w)eiQ‘rerRM €i2‘rrwtdw, (22)

where b(w) is the bandpass function. Since we are just deal-
ing with the calibrated spectrum of a point source here, we
can consider the bandpass shape to be a real-valued rectan-
gle or top-hat function. It is clear from this equation and the
Fourier convolution theorem that P(t) is not a delta func-
tion, but the convolution of the delta function and a sinc
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Figure 5. Truncated ramp, top-hat and sum of the ramp and top-
hat functions and their Fourier transforms (real is solid, imaginary
dashed).

function (the Fourier transform of the top-hat function).
This is of course just the sinc function. The zeros of the
sinc function are at integer multiples of +1/Av and the full
width at half maximum is 1.2/Av. Since 1/Av is the sam-
pling interval of the lag spectrum, any signal exactly centred
on a channel does not exhibit the sinc sidelobes.

8.7.8 Frequency Dependence

So far, we have assumed that the spectrum of linear polar-
ization is given by

ein(u)

P(v) p(v)

S 2
peQZ(TPm+RM>\ ). (23)
However, in reality, both the amplitude and intrinsic posi-
tion angle might be frequency dependent. Let us reformulate
the problem again then as

eiz(Rng-s-ﬂuct)

Plt) = Av

/ b(w)p(w)eimpm(u) eiQﬂ'erM eiZﬁwtdw. (24)

First, we consider the frequency dependence of p(w) and
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ignore the frequency dependence of i,. Since we are deal-
ing with relatively narrow bandwidths, we approximate the
spectrum with a linear function, into which we also incor-
porate the bandpass top-hat function. This is illustrated in
Fig. 5. One can think of this function as the sum of the even
top-hat function, and the odd truncated ramp that passes
though zero. Using the linearity theorem, its Fourier trans-
form is the sum of the real sinc function (Fourier transform
of top hat) and an imaginary sinc derivative (Fourier trans-
form of truncated ramp). These are also illustrated in Fig. 5.
In the limit that the ramp is horizontal (no spectral depen-
dence) we are left only with the sinc function as before.

At first sight this is rather unpleasant. The sinc deriva-
tive converts something symmetric and peaked at the signal,
to something asymmetric and no longer centred on the sig-
nal of interest (since we search for RM peaks by looking
at the amplitude it does not matter particularly that it is
imaginary as well). However, its quantitative contribution
to the Fourier transform depends upon the amplitude of the
truncated ramp relative to the amplitude of the top hat.

For example, if the amplitude change of the ramp is
10 per cent of the height of the top hat, its contribution to
the Fourier Transform is essentially negligible at 2 per cent.
What spectral index would generate a 10 per cent ramp? At
1 GHz with 100 MHz bandwidth, a 10 per cent ramp gives
a spectral index of unity which is already towards the limits
of a typical spectral index range.

To make the fractional ramp amplitude larger, one
would need to go to lower frequencies. For example, for a
spectral index of 1.0, we would need a frequency of 0.2 GHz
for 100 MHz bandwidth to make the fractional ramp am-
plitude 50 per cent. However, because the sinc derivative
amplitude does not scale linearly, this still only means that
the imaginary component of the Fourier transform is 10 per
cent that of the real component.

We conclude that the frequency dependence of the am-
plitude of P(v) is unlikely to be important.

Second, we turn to the frequency dependence of the
intrinsic position angle, 1i,. Let us again assume linearity
with frequency so that

1/1111 = (win,O + ﬁyc) + ﬁw (25)

Ignoring the frequency dependence of p(w), eq. (24) becomes

pei2(RMAz+7\'Vc.i+5(’/c+win,0))

P(t) = Ay X

/ b(w)e ™ (ractt+2) g (26)

This equation shows that the effect is to offset the location of
the delta function; the frequency dependence of the intrinsic
position angle is effectively equivalent to modifying the value
of the RM.

Of course, the real functional form of the frequency de-
pendence might be anything; this is just a guide. This term
will offset the RM peak by one channel when it is equal to
the time sampling interval, i.e. when 8 = n/Av rad Hz ™!
This means that the total rotation of i, across the band
would be 7 radians.

4 NUMERICAL MODELLING OF THE
FOURIER TRANSFORM TECHNIQUE

4.1 Formulation

Consider a source which is observed through N spatially
distinct and singly valued Faraday screens which are not
mixed in with the emitting material. Associated with each
screen is a rotation measure RMj.

From eq. (6), the Stokes @ and U, measured at a dis-
crete frequency, v;, are given by the sum of the contributions
due to each Faraday screen, with an appropriate weighting
factor, p(v;). As a demonstration of the Fourier transform
technique, we restrict our study to the idealised case where
all the p(v;) = 1, and neglect any additional effects due to
the beam response (see section Section 3.4). Thus we can
write

Np
Qj = Zcos 2¢5k) (27)
k=1
Ng
Uy =Ulv;) =Y sin(24) (28)
k=1
where
c 2
Yik = (Yin); + RMp () : (29)
Vj

The Fourier transform of eq. (8) is replaced by a dis-
crete Fourier transform to the time-lag domain, with real
and imaginary components

Nechan
1
R(tn) = N Z [Q; cos (2mtnw;) + Uj sin (2t nw;)]
n =
1 Nchan
T(tn) = > U 008 (2mtaw;) — Q; sin (2mtaw;)] (30)
j=1

evaluated at discrete ¢, = ndt—1/26v, where w; = (v; —vc).

4.2 Numerical Simulations

The modelling process is conducted as follows.

(i) Artificial Stokes @ and U spectra are generated with
the correct A? dependence for a particular set of correla-
tor parameters (v, AV, Nehan) and one or more RM compo-
nents (RM; ... RMny ). These spectra include the (generally
small) effects of bandwidth depolarization over the individ-
ual channels. This is done by first generating over-sampled
spectra and then summing the contributions over each chan-
nel to produce the final spectra with the desired number of
channels.

(ii) The real and imaginary Fourier transforms are calcu-
lated to form the complex valued P(t).

(iii) Peaks in |P(t»)| are identified and associated with
RM components RM,, = (—7vetn)/(2A2).
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Note that the central lag channell contains all signals with
IRM| < ARMsamp.-

An example of the Fourier transform technique is shown
in Fig. 6, where the amplitude spectrum (for a point source)
is plotted against the time-lag domain (converted for con-
venience to RM values at each lag, t,). The correlator con-
figuration was (v. = 4.8 GHz, Av = 8 MHz, Nehan = 128)
with ARMgamp = 2.7 x 10° rad m ™2 and RMumax = 1.7 x 107
rad m~2.

The input values of RM = —107 and 10° rad m~2 are
recovered within ARMgamp as —9.99 x 10° and 1.08 x 10°
rad m~2 respectively. The third component, RM = 10* rad
m~2 which is below ARMgamp falls in one of the two central
channels (since Nghan is even).

Each of the three components has the approximate delta
function appearance (convolved with the bandpass sinc func-
tion) expected from eq. (12), but with an asymmetric broad-
ening because of the true A\* dependence of the Stokes vec-
tors.

4.3 Noise

In practice, the @ and U spectra will be subject to Gaussian
distributed noise. We extend the definition of the Stokes
vectors in eq. (27) and eq. (28) to include this term (given
with standard deviation o, ):

n +€Q(Vn
Qn,obs - QiQ() (31)

(247

and similarly for Uy, obs. Unless otherwise stated, it is as-
sumed that the amplitude of all noise signals is the same for
both Stokes @ and U.

The most obvious effect of () is to introduce spuri-
ous RM signals. Fig. 7 shows the result of adding Gaussian

T i Nchan is odd, otherwise central two channels
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Figure 7. Recovery of rotation measure components in time-lag

space with Gaussian distributed noise: (left) o, = 2.5; the arrows

indicate the real peaks (right) o, = 0.5. Input RM values were

—107, 10% and 10* rad m—2, and the correlator configuration was

(ve = 4.8 GHz, Av = 8 MHz, Ncpa, = 128).

noise with o, = 2.5 and o, = 0.5 to @ and U for the same
correlator configuration and RMs of Fig. 6.

As discussed in Section 2.4, the Fourier transform tech-
nique optimally recovers RM signals in the low signal-to-
noise regime. Here, even for o, = 2.5, we can still see the
signature delta function peaks of the RM components, but
the Gaussian noise has introduced at least one potentially
erroneous RM in this example. In general, we find that for a
signal-to-noise per channel (S/A;) 21, the recovery of RM
components is not affected by a Gaussian noise component.

Frequency-dependent noise may also occur, as the band-
pass determination may become more noisy at the edge or
the band or, equivalently, there will be less signal. Whilst
this is really a calibration effect (see next section), it is more
useful to discuss it here. We can model this as a simple
parabola across the bandwidth

4(0max — Omin)

e(vn) = (Av)? (v
where omin is the minimum noise level (assumed to occur
in the central frequency channel) and omax is the maxi-
mum noise level which occurs in the first and last chan-
nel. We find that the amplitude spectrum for a frequency-
dependent noise profile is qualitatively equivalent to the
‘constant’ Gaussian noise case with o, = omax-

In summary, Gaussian distributed noise can produce
spurious RM signals, but only when S/N, 1.

Let us now examine what the traditional approach
would have done with the above example. In Fig. 8, we
show the variation in the position angle, v, for the same
three input RMs (—107,10° and 10* rad m™2) as in Fig. 6
with no noise. The correlator configuration was v. = 1.5
GHz, Av = 128 MHz and Nchan = 128. It is obvious that
the ambiguities produced by these very high RMs, and the
discontinuities in 1, would make it impossible to recver the
input RMs with a traditional least-squares fit -\2.

- VC)2 + Omin (32)

4.4 Calibration Errors

The spectra will also be subject to various calibration errors.
It is important to be able to recognize calibration errors that
masquerade as RM signals.

Consider a point source at the phase centre and a sin-
gle frequency observation. With a perfect calibration, after
conversion from the linear or circular correlations, the I,
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Figure 8. Variation of position angle, 1, with A? for input RMs
—107,10% and 10* rad m~2. The correlator configuration was
(ve = 1.5 GHz, Av = 128 MHz, N¢pan = 128). A traditional
least-squares fit to any subset of A2 values would not be able to
recover any of the RM components.

Q, U and V visibilities should have phase zero (i.e. be real
valued apart from noise). Any gain and leakage calibration
errors act to add a complex term to these visibilities. There-
fore, if you imaged the mis-calibrated visibilities, the point
source would become non-point-like — the flux would be re-
distributed in some way. Note that the images are real valued
(we are imaging the sky); the complex errors in the visibili-
ties affect the real spatial structure of the source, they do
not make it imaginary.

Now consider a multichannel observation of our point
source. If we made (naturally weighted) multichannel @
and U images from this observation, we could extract (real-
valued) @ and U spectra at the location of the point source.
Alternatively, we could average the real part of the @ and
U visibilities; this would make the same spectra.

If we ignore the fact that the shape of the source has
been changed by the calibration errors, we need concern our-
selves only with the effect on the real part of the visibilities
that the calibration errors have. We are also mainly inter-
ested in frequency-dependent errors, as these will affect the
character of the RM spectrum.

Calibration and instrumental errors can include: a DC
offset across the bandpass, DC; a frequency-dependent gain,
F(v;) (assumed sinusoidal across Av); and a polarization
leakage calibration error term, D(v) (modelled as a linear
ramp with gradient mjeax across Av). This is not an ex-
haustive list of all the possible instrumental and calibration
terms (or their functional form) which may affect the de-
tection of RMs, but gives an indication of how strong such
terms would have to be to produce spurious RM signals.

Note also that first-order gain and leakage errors mani-
fest themselves as fractions of total intensity added to @ and
U. This is why they are included here as additive errors. In-
cluding these errors, the definitions of the Stokes vectors
are:

Onone = Qn + DCq + Fo(vn) + Dq(vn) + eq(vn) (33)

Ov
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Figure 9. Effect of a DC offset in Stokes @ and U on the
recovery of rotation measures. Input RM values are 10° and
5 x 10% rad m~2 (indicated by arrows). Correlator configuration
was (vc = 4.8 GHz, Av = 8 MHz, N¢phan = 128). Noise compo-
nents: Gaussian noise o, = 1 and (left) DCq = 3, DCy = 0; the
arrows indicate the real peaks (right) DCq = 0.1, DCy = —0.2.

and similarly for Uy obs.

A DC offset in Q and U may arise from the correlator.
Generally these are different from baseline to baseline; in the
simplest case where all baselines have the same offset, the
error is indistinguishable from a point source at the phase
centre. This will appear in lag space as a signal with RM <
ARMgamp, as it is a component which does not vary across
the bandwidth. If the DC offset is greater than o, > 1,
then the amplitudes of all other RM signals are reduced and
may become comparable to the noise signal. In practice,
any DC offset in @ and U should be small, and so this error
should not affect the detection of RM components. This is
demonstrated in Fig. 9 where we have two RM components,
a noise term, and a DC signal. In the left-hand panel, there
is a strong signal in the central lag channel caused by the
offsets DCq = 3 and DCy = 0, but the two RM components
(RM = 10* and 2 x 10° rad m™?) are still detectable. This
DC signal disappears within the noise if the DC offsets are
reduced, as can be seen in the right-hand panel.

Next we consider the effect of a frequency-dependent
gain error, F'(v,), which is modelled as a weakly varying
sinusoidal component in () and U. The character of an actual
frequency-dependent error is observation dependent, and so
our choice of a sinusoid is somewhat arbitrary. We have:

27 Neyclen

F(Vn) - AF sin ( Nchan

+dau) (34)
with Neycle cycles across the bandwidth, where n is the fre-
quency channel number, Ar the signal amplitude and ¢¢,u
allows for a phase difference in the gain error between @ and
U.

In the amplitude spectrum, this signal would appear
as a pair of peaks at ¢ = £Ncycie/Av, corresponding to
RM = £NcycieRMmin, as shown in Fig. 10. For this fault
signal to be detected requires Ncycle > 1, otherwise it will
fall in the central time-lag channel(s). The strength of the
signal in lag space depends on the amplitude of the gain
error, Ar. The addition of the phase term ¢q,u changes the
relative heights of the two delta functions in time-lag space.

For S/N. < 1, we find that a sinusoidal frequency-
dependent gain error could result in a false RM detection
if Ar 20.4. Unless the calibration is poor, the amplitude of
any frequency-dependent gain should be small, and hence
will be lost within the noise signal in time-lag space.
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Figure 10. Effect of a frequency-dependent gain error on the
recovery of rotation measures. Input RM values were —107, 106
and 5 x 10% rad m™2. The correlator configuration was (v =
4.8 GHz, Av = 8 MHz, Ncpan = 128). Both panels have a gain
error with Ap = 0.4, Neycle = 10. (left) With no Gaussian noise,
fault signals are detected at RM = 4+ 2.2 x 106 rad m~2, as
indicated by the arrows. (right) On the addition of Gaussian noise
with o, = 2, the fault signals are comparable to the amplitude
noise level.

A polarization observation must be calibrated to allow
for the fact that the feeds are not perfect. That is, the polar-
ization ellipse of linearly polarized feeds will be slightly ellip-
tical, and for circularly polarized feeds, slightly non-circular.
These are characterized by ‘leakage’ terms, and they de-
scribe the amount of fully polarized signal that is detected
by the orthogonal polarization (e.g. how much completely
polarized signal in the X direction is detected by the Y
feed). There is generally a frequency dependence in the leak-
ages, although its exact form is design dependent. Often this
frequency dependence is not calibrated.

We model any uncalibrated leakage dependence as a
simple gradient across the bandwidth. Since the gradient will
be either a monotonically increasing or decreasing function
across the bandwidth, the Fourier transform of this compo-
nent will be a signal in the central time lag channel(s) (i.e.
below the RM sampling resolution). The amplitude of this
fault signal depends on the gradient of the leakage — a larger
gradient gives a greater amplitude in lag space. If there is
also Gaussian noise present, a gradient mjeax > o, produces
a large signal in the zero-lag channel, but the RM compo-
nents are still detectable. A large gradient should be obvious
by examining @@ and U, whereas a weak gradient across Av
slightly reduces the amplitudes of the RM components in
P(ta).

The exact form of a non-calibrated, frequency-
dependent leakage error depends very much on the design
of the hardware. For example, there may well be small-scale
variations (trapped modes) over a few channels, or larger
quasi-sinusoidal variation. The latter would show up as a
spurious RM signal (see above). The important thing is to
calibrate it out as much as possible, and be aware of the
residual error form.

We have now shown qualitatively that a range of possi-
ble calibration errors does not adversely affect the recovery
of RM signals with the Fourier transform method, even when
the S/N. is small. Caution must be used when identifying
RM components in the central lag channel(s) — any RM
which is below RMgamp will occur here, but may be mixed
in with fault signals caused by the DC offset or leakage gra-
dients from the calibration.
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5 SUMMARY

The traditional approach to measuring RM values from ra-
dio polarimetric data consists of fitting linear polarization
position angles obtained at different wavelengths to a A2
law. This method yields a singly valued RM distribution,
and is hindered by the n * m ambiguity, bandwidth depolar-
ization, and bad characteristics at low signal-to-noise ratios.
Additionally, it will generate incorrect results if the RM dis-
tribution is not singly valued.

We have described a new technique where the RM dis-
tribution is recovered directly from the Fourier transform
of the frequency spectrum. This approach has the following
features.

e It has wide astrophysical applicability and is important
for any object with polarized emission that has traversed re-
gions of high electron density or magnetic field. Such regions
are galactic nuclei, the broad line regions of AGNs and radio
galaxies.

e It is sensitive to RM signals over a finite range. The
maximum detectable RM is

TV

RMmax = m (35)
Any signal less than the RM sampling criterion,

TV
ARMamp = TNIAD (36)

will fall into the central bin of the RM spectrum (the Fourier
transform of the frequency spectrum).

By choosing the appropriate correlator configuration, a wide
range of RMs can be measured (see Appendix A).

e There is no n * w ambiguity problem.

e Noise is correctly handled, allowing the detection of
weaker signals than with the traditional method.

e Provided unresolved spatial RM gradients do not to-
tally depolarize the signal in each channel, the spatially
unresolved RM distribution can be recovered. We can also
recover the weighted polarization state incident upon each
component in the RM distribution.

e Because it depends upon the use of closely spaced fre-
quencies, while handling noise correctly, this technique can,
in principle, provide access to very large RMs. The range
depends upon the exact frequency configurations the cor-
relator of a particular telescope provides. A Table relevant
to the Australia Telescope Compact Array is shown in Ap-
pendix A. Its upper limit is ~ 10° rad m 2.

e Polarization spectral index effects are negligible.

e Difficulties with bandwidth depolarization are allevi-
ated (but not defeated) since the technique is based on ob-
servations with many closely spaced channels. If the RM is
sufficiently large that a single channel is fully bandwidth
depolarized, then our method cannot help.

One might also consider using this method with data
consisting of several blocks of channels in different bands.
However, in this case, the RM response function would
have high side lobes because of the poor frequency sampling
(see also de Bruyn (1996)); deconvolution could be consid-
ered. All assumptions based on narrow fractional bandwidth
would also need scrutiny if one pursued this path.

We suggest that the procedure for applying this tech-
nique to multichannel full polarization synthesis data is:
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(i) calibrate the data, taking care to make frequency de-
pendent calibrations for gains (the bandpass) and polariza-
tion leakage;

(ii) make multichannel images (called cubes — RA-DEC-
Freq) for Stokes @ and U (of course V is always good for
instrumental error checks);

(iii) if there is a strong signal in the zero lag which is
not of interest, you might subtract the average of Q) and U
(i.e. for each spatial pixel, find the average of the spectrum
and subtract it) from the cubes. This forces the zero lag
to be identically zero which means it will not ring through
the lag cube (which might otherwise mask weak, large-value
RMs). The ringing occurs because the frequency spectrum
has sharp cutoffs;

(iv) do a complex Fourier transform of the frequency axis
(usually the third) of the image @ 44U to the time domain,
creating a complex RA-DEC-Time image. The value of this
image is P(t);

(v) create the amplitude image from P(t) and search for
RM peaks. The time axis can be converted to RM with

eq. (11).
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APPENDIX A: AUSTRALIA TELESCOPE
COMPACT ARRAY RM OBSERVATIONAL
PARAMETERS

Whilst we have written this paper in largely general terms,
we provide here a table (Table A1) relevant to the Australia
Telescope Compact Array, indicating the range of rotation
measures accessible to this instrument. The ATCA correla-
tor always provides multiple channels — there is no tradi-
tional broadband mode of observation with this instrument.

REFERENCES

Conway R.G., Kronberg P.P., MNRAS, 1969, 142, 11

D’Addario L.R., 1989, Chapter 4 in “Synthesis Imaging in Radio
Astronomy”, Astronomical Society of the Pacific Conference
Series, Volume 6

de Bruyn A.G., 1996, NFRA Internal note 655, March 1996

Faraday M., 1844, Experimental researches in electricity. London:
R Taylor 1844. Repr. New York: Dover 1952

Kraus J.D., 1966, “Radio Astronomy”, McGraw-Hill, New York

Stokes G.G., 1852, Trans. Camb. Phil. Soc. 9, 399

Thomson A.R., Moran J.M. and Swenson G.W., 1994, Interferom-
etry and Synthesis in Radio Astronomy, Krieger Publishing
Company, Florida

Vinokur M., 1965, Ann. d’Ap., 28, 412

Wardle J.F.L., Kronberg P.P, 1974, Ap.J., 194, 249

Table Al. Rotation measure ranges accessible to the Australia
Telescope Compact Array. This is not an exhaustive list of all
possible configurations. The RM resolution of each set-up is
Al:u\/lsamp = RMmin~

v A Av Nchan 1%1\/[min RMmax
(GHz) (cm) (MHz) (rad m~2)  (rad m~2)
1.4 22 128 32 350 5500
64 64 690 2.2 x 104

16 256 2800 3.5 x 10°

8 512 5500 1.4 x 108

4 1024 1.1 x 10% 5.7 x 106

2.3 13 128 32 1700 2.7 x 104
64 64 3300 1.1 x 10°

16 256 1.3 x 104 1.7 x 108

8 512 2.7 x 10* 6.9 x 106

4 1024 5.4 x 104 2.7 x 107

5.0 6 128 32 1.7 x 10% 2.7 x 10°
64 64 3.4 x 104 1.1 x 108

16 256 1.4 x 10° 1.7 x 107

8 512 2.7 x 10° 7.0 x 107

4 1024 5.5 x 10° 2.8 x 108

10.0 3 128 32 1.4 x 10° 2.2 x 106
64 64 2.7 x 10° 8.7 x 108

16 256 1.1 x 108 1.4 x 108

8 512 2.2 x 109 5.6 x 108

4 1024 4.4 % 106 2.2 x 109
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