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INTERFEROMETRIC MAPPING USING THE HARTLEY TRANSFORM

R.N. Bracewell
Sydney, 21 May 1986

Sky mapping as practised in radio astronamy produces the mast highly
resolved images at present available in any field of imaging and also
permits very high dynamic range. Consequently the compubting locad is heavy
and any relief frow this load would be helpful.

Interferometric mapping is usually described in terms of a measurement
procedure using pairs of antennas which yield values of complex coherence
corresponding ta the vactor displacement af the antenna pair. The sat of
values of complex coherence (or complex visibility? is then regarded as a
two-dimensional input functiaon to a Fourier transformation. The result of
the transformation is a real two-dimensional function which, after some
further treatment according to circumstanges, is the output map.

A good part of the development leaddting to the basic Fuurier.transfnrm
relationship taook place in Australiaj for the history, see “Imaging Theory
in Australia in the Fifties," ip_ﬂoqpy Sull;van's'bouk.

The recent activity over the theory of the Bartley transform has caonfirme
this technique as an efficient means of doing spectral analysis on a computer.
Consequently, it is timely to ask whather there is an application ta
interferometric mapping that would enable the efficiency of the Hartley method
to be realized.

Two concerns have been raised that suggest that the factor of two speedup
gained in the inner loops of the algorithm might not be available in the T
practice of sky mapping by interferometry. L
The first of these cancerns is neatly expressed by quoting it in the farwm in
which it first came to'mY'attéhtion.‘“It's a pity that the Hartley Eransform
does not generalize to two dimansions. Unfortunately, cas(A+B) is not ,
separable into‘a'prbﬂuct“as“ié"the case with expti(A+B)3:'the'faEt that the
two-dimensional Fourier kernel can be written as the product axp(iAYexp(iB)
is what permits the two-dimensional transform to be done as a set of 2N calls
to the ane-dimensional FFT."

This concern has been laid te rest by the discovery of a means of
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Transform," by R.N. Bracewell, 0. Buneman, H. Hao, and J. Villasenor)dﬁp o

" appear in Proc. 1EEE, for the method and for other references. A
__preprint is attached. ’
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The other concern is that the Hartley transform gets its

advantage from the property that the input is real, whereas [ }_%”fiﬁT?WL"”"
interferometry the input is complex; therefore there is a feeling
amang those who have not yet gained familiarity with Hartley 2???‘ﬂ?¥3§

) methods that they might not be applicable to interferometri?— \ \
mapping. S T S C ,Tﬁ?”'“““";;éﬁé?/"
From a philosophical gtandpoint one can see that the R <
argument is shaky. After all we never in fact make camplex o j,‘igg
measurements; all measured quantities are real. Complex T ,“”“\H)’ﬂ”
quantities are a praduct of the mind rather than of Nature. o s

heen well known ta students ever since the introduction of J fnﬁaﬂ

-~alternating current theory by Kelvin, we find it natural to“tdihk‘"”

‘in terss of the Fourier tramsform, which is by definitian comglex.
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" advantage in computing two-dimensional maps from interferometric

1f one looks at the actual operations performed by the radio
astronamy instrumentation it is apparent that the modulus and
phase of the complex visibility are certainly not formed;j what we do
is ta multiply by in-phase and quadrature reference gscillatians
and generate two baseline-dependent numbers that we regard as the
real and imaginary parts of a complex guantity, the caomplex
visihility, which we are comfortable with theoretically. But of
course the imaginary part of a camplex quantity is raal and we
are not obliged to apply complex number theory to the number
pair. It is perfectly open tg us to canstruct, an the baseline
plane, the real quantity whose Hartley transform in two
dimensions will directly give us the same output map as could
have been obtained by the familiar complex method.

The canclusion then is that ane really can get the Hartlay

data. Most of the refinements af complex Fourier computing are
already available for use, including the radix-4 program and FORTRAN
assembler code far the VAX (also for the CRAY if you can get at
one). In addition there are the new fast permutation and fast
rotation algorithms, which are applicable ggually to the Fouriar

and Hartley transforms, but which do not form part of current
packages, and therefore will require special attention.

1t would be desirable to look carefully at hardware designed
for Fourier transformation to make sure that the recently
uiscovereg advantages are hbeing obtained.
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' Fast Two-dimensional Hartley Transforms — R.N. Bracewell, O. Buneman, H. Hao, and
J. Villasenor, Space, Telecommunications and Radioscience Laboratory, Stanford Univer-
. sity, Stanford, CA94305.

March 20, 1986

Abstract - The fast Hartley transform algorithm éntroduced in 1984 offers an alternative
to the fast Fourier transform, with the advantages of not requiring complez arithmelic or
a sign change of i to distinguish inverse transformation from direct. A two-dimensional
“exlenston is described that speeds up Fourier transformation of real digital smages.

The two-dimensional discrete Hartley transform of the function f(z,y) is defined [1],
[2] by analogy with Hartley’s integral transform (3], by

M-1N-1

H(u,v) = Y ) f(z,y) cas2m(uz/M + vy/N)],

=0 y=0

where casf® = cos# + sinf. Since the one-dimensional Hartley transform offers a speed
advantage [4], [5], [6], {7] over the Fast Fourier Transform {(FFT) for numerical spectral
analysis, it might be expected that the two-dimensional Hartley transform would offer
similar advantages in image processing and other applications of multidimensional spectral
analysis.

Two-dimensional fast Fourier transformation is performed by calling a succession of
one-dimensional FFTs: first one transforms all the rows using the kernel exp(i2zuz/M)
and then transforms column by column using exp{§27vy/N). The result amounts to trans-
forming with the product kernel expli2x(uz/M + vy/N)], which is the two-dimensional
Fourier kernel, and may be thought of as representing a wave at some general angle to the
two coordinate axes. _

However, the kernel cas[2w(uz/M + vy/N)|, unlike exp[i2n(uz/M 4 vy/N)}, is not
separable into a product of factors. This letter is to report success in overcoming this
apparent difficulty with generalizing the Hartley transform to more than one dimension.
If one were to follow the row and column procedure using one-dimensional Hartley trans-
forms, the effective two-dimensional transform kernel would be the product cas{27uz/M) x
cas(2rvy/N), which has no simple physical interpretation as an oblique wave. Instead, one
wants the transform kernel cas[2r(uz/M + vy/N)], an expression which, as in the Fourier
case, represents a wave, with u and v being the components of a vector which is perpen-
dicular to the wave fronts and whose magnitude is the inverse of the wavelength.

One way of doing this is to try to apply the same steps in two dimensions that led to
the fast transform in one dimension. The approach involves progressively quartering the
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data until 2 x 2 cells are reached, and applying the two-dimensional Hartley shift theorem
- {1} to synthesize the full-size transform from the transforms of the elementary cells. It
is necessary to study the phenomenon of two-dimensional permutation, which generalizes
from bit reversal in one dimension, in order that the results appear in the correct spatial
order. Either prepermutation or postpermutation may be adopted. A program has been
developed using prepermutation, which corresponds to “decimation in time,” a term that
is inappropriate in two dimensions.

A second way is to take Hartley transforms of the rows to form an intermediate array
whose rows are split into even and odd parts. Two further arrays are then formed; one
consists of the Hartley transforms of the columns of the even array, the other of the
Hartley transforms of the columns of the odd array, written in reverse order bottom to
top, except for the top row. These two arrays are then added. The program was developed
using postpermutation, along the lines of the “decimation in frequency” form [8] of the
one-dimensional Hartley algorithm .

A third method begins by direct analogy with the two-dimensional FFT, takes the
one-dimensional discrete Hartley transforms of the rows one by one and then transforms
the columns. The temporary outcome T(u,v) is of the form

M-1N-1

T(e,v) = E Z f(z,y) cas(2ruz /M) cas(2wvy/N)

z=0 y=0

which, as mentioned above, is not the Hartley transform. However, the result can be
converted to the desired two-dimensional Hartey transform by a trivial step. First we note
the trigonometrical identity

2cas(a + f) = casacasf + casacas(—f) + cas{—a) cas 8 — cas(—a) cas(—8).

Let the data array have dimensions M x N. Then the desired Hartley transform H (u,v)
can be expressed as a sum of four temporary transforms

2H(u,v) =T{u, v} + T(M — u,0) + T(u, N —v) = T(M —u, N — v)

=A+B+C-D.

The desired trassform can be obtained from T'(u, v) by combining four members of T'(u, v)
situated on the vertices of a rectangle. To compute the combination efficiently we work
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. on sets of four values at 2 time, in each set forming the diagonal excess E = L{(A + D) —
(B + C)]. Then four replacement statements

A—A-E, B—B+E C—C+E, D~D-E

convert T(u,v) to H{u,v}. The quantity E is zero whereu =0, v =0, u = %M, v= %N;
consequently the replacement need only be made for values of « from 1 to -;—M —1and
for v from 1 to %N — 1. This discussion shows that the two-dimensional discrete Hartley
transform is speedily calculable by M + N calls to a one-dimensional Hartley routine
followed by some additions. With an 8 x 8 array the extra additions add about 8 per
cent to the operations count and, as array size increases, the fraction of extra operations
diminishes.

Once the Hartley transform is arrived at, the real and imaginary parts of the Fourier
transform could be obtained by rotating the Hartley array half a turn and adding and
subtracting respectively. But it is apparent that, where the Fourier transform is the sole
objective, it is not necessary to go via the the full two-dimensional Hartley transform;
it suffices to calculate the temporary transform T'(u,v). With the definitions introduced
above, and with v < iM,v < %N, one then gets the Fourier transform at (u,v) as
3(B +C) —i3(A - D) and, correspondingly, that at (M —w,v) as {4 + D) — i3(B - C).
The Fourier transforms at (4, N — v} and at (M — u, N — v) follow from the hermiticity.

Various doctored codes derived from the fast Fourier transform are available (7] that
may be as fast as the fast Hartley FHT, but are incapable of inverting their own output; two
different one-legged programs of this type are needed to equal one fast Hartley program.

It is thus now possible to compute two-dimensional Fourier transforms without the
use of complex arithmetic and by means of one algorithm that is the same whether one is
transforming or retransforming. '
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