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WIDE FIELD MAPPING: EFFECTS INCREASING WITH DISTANCE
FROM THE FIELD CENTRE

Introduction

The AT's compact array is being designed to produce high quality maps

over a wide field of view. Some effects which may 1imit the accuracy

of wide field mapping are considevred here. In this note I am concerned
with effects which originate in the (u,v,w} plane. Another class of
problems which are not considered here are related to the antenna elements,
principally the primary beam. These include effects due to pointing, beam
asymmetry, sidelobes and polarization characteristics.

Summa ry

Expressions for the maximum sampling interval in the uv plane {AB),
integration time (At) and percentage bandwidth (av/v) are given in terms
of the parameters

Antenna Diameter (metres)

Baseline Length (km)

Field-of-View/Primary Beam Diameter to 1lst Null

Intensity reduction factor for a point source at the edge
of the field-of-view
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The sampling theorem requires that

AB
At

A

B/2F metres
150/FB seconds

A

Circumferential smearing gives

At s 570 /F/FB seconds







and Bandwidth smearing gives

av = vbf x 107° D/FB
v

The constraint on the size of the « (non-coplanar) baseline term for a
maximum phase error A¢ radians is

w < Ap (Q)z metres.
m F

For a maximum evror of ~ 1% at the 3 dB point of the primary beam we
require that

At = 20 seconds

v = 1.7 X 1073

w < 40 metres.
Discussion

A fundamental requirement for mapping over a field of view of radius r
is that the u,v plane be sampled at intervals

M s 1

A 2r

A

where AB is the sampling interval on the ground. This is the sampling
theorem due to Bracewell, and it guarantees that complete information
about the sky brightness distribution within that field is contained in
the measurements. We shall define our field of view in terms of the
angle r measured from the beam axis to the first null of the primary beam
pattern

where D is the diameter of the antenna elements making up the interferometer.
In order to faithfully map the sky out to the first null of the primary beam
(F = 1) the sampling theorem requires

AB = D/2 metres.

For the compact array with D = 22 m, this implies sampling at intervals no
greater than 11 m on the ground.
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1t should be pointed out that mapping over an area corresponding to F =1
using two grid points per synthesized beam requires the generation of maps
with

points on a side. With B =6 kmand D = 22 m the maps will be ~ 1024 x
1024 points.

For an east-west array the u,v plane is sampled along concentric ellipses
with major axes equal to twice the baseline length in wavelengths.

For a uniformly filled array the spacing increment along the u axis is
constant. For the compact array Au is currently specified at 15 m. The
sampling theorem is satisfied in this direction for a field corresponding
to F = 0.73. The sampling increment along the v axis is Av = Au sin §
where § is the declination of the field centre. For av = 15 m the
sampling theorem for F = 1 is satisfied along the v axis for sources south
of ¢ = -47°, but not for more northern declinations. The increment along
an elliptical track is non-uniform except at & = -90°.  The maximum
increment occurs near the u axis and has a value

AB = 4.36 BAat metres

for a baseline of length B km and an integration time of At minutes. In
order to satisfy the sampling theorem along an ellipse the maximum
integration time is

At = 150/B F seconds.

For the 6 km baseline with F = 1 the maximum integration time is At = 25 sec.
It should be noted that this integration time scales inversely with baseline
length.

There is another related 1imit on the integration time caused by the rapid
fringe rate of points far from the phase centre. In the map, a point source
at a distance corresponding to F (primary beams) from the field centre wil]l
have its intensity reduced by a factor







. FBaty ?
Teime * 1‘{376_)

due to integration of the time varying visibility. Here B is the maximum
baseline Tength in km and At is the integration time in seconds. For a

25 s integration time and B = 6 km, the intensity of a point source at

F =1 is reduced by ~ 7%. In order to keep the intensity reduction to
less than 1% an integration time less than 9.5 seconds is required. It
might be worthwhile remembering here that at F = 1 the primary beam
response is down by many dB. To recover the true, intensity of a source
located near F = 1 requires accurate knowledge of the primary beam response.
Such a measurement would be severely affected by noise.

It is clear that the u,v plane is not uniformly sampled along most directions
and that the sampling theorem is not always satisfied for F = 1.  Especially
serious is the hole in the u,v plane near the origin caused by the absence
of spacings shorter than the minimum.  The minimum spacing currently
specified for the compact array is 30 m. This means that the telescope acts
as a (spatial frequency) high pass filter and is insensitive to structure on
scales of order A/ZBmin‘ As an example, a unit Gaussian source of FWHM = F
(primary beams) has a visibility amplitude on baseline B(metres) of

12

Y| = exp {-3.56 FB/D)

For B=30m, D=22mand F =1, the measured amplitude is ~ 0.008, i.e.
less than 1% of the total flux is detected. For a minimum spacing of 11 m,
about 17% of the flux is detected. Only if the total flux is measured and
included at the origin of the u,v plane is the sampling theorem satisfied
and the time brightness distribution recoverable.

For a shortest spacing of S metres, baseline forshortening brings the

projected baseline length to its minimum value of B =S sin § at £ 6 hours

min

of hour angle. The minimum projected spacing is B = D, at which point

min
one antenna becomes shadowed by the other. With S = 30 m, shadowing occurs
only for declinations north of -47°. In order to reach a projected spacing
of 22 m at -60° declination {the southernmost extension of the galactic

plane) a minimum spacing S = 25.4 m is required.

Holes elsewhere in the u,v plane have a similar effect, although the
visibility amplitudes there are generally smaller. One way of looking at
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it is the following: the sampling theorem gives a measure of how quickly
the visibility function changes with distance on the ground. As long as
sampies are taken often enough, the visibility between sample points is
well estimated by interpolation. This interpolation is the prime function
of image restoration techniques like CLEAN or MEM.  When holes Targer than
0.5/r occur, the interpolation is less certain to give correct values. The
difficulty of interpolating across the hole near the origin is compounded
by a number of additional problems. Among them is the generally large
fringe amplitude which can produce large flux errors for the same rate of
change as elsewhere.  Another probiem is that without the zero spacing
datum the restoration is forced to extrapolate to the origin. In the
presence of large-scale structure in the field, the region near the origin
of the u,v plane is perhaps the most difficult to predict based on the value
of surrounding points. Of course if large-scale structure is not present,
a hole near the origin is no worse than a hole anywhere else.

Another important effect for wide field mapping is bandwidth smearing.
The effect is to smear a point source in the radial direction by an amount

o.r
9

\Y

where Av/v is the fractional bandwidth, r is the distance of the source from
the phase centre and 6 is the FWHM of the synthesized beam. Letting
r = Fx/D and 8 = )\/Bmax we have

Yhandwidth ~ %3- F Bhax . (size factor)

D

Since the total flux of a smeared source is conserved, the peak intensity of
a point source is reduced, for moderate smearing, by approximate]&

I = 0.2 avFB 2 (intensity factor)
AV

bandwidth ( max )
D

This approximation is valid for IB < 20% or for g = 1 (smeared by a factor 2).

For Bmax =6 kmand D = 22 m, allowing a maximum of 0.5 smearing at F =1
gives

Moo= 1.8 x 1073,
hY
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The corresponding intensity reduction is 5%. If this criterion is used
to determine the number of frequency channels required to synthesize the
maximum instantaneous bandwidth available (160 MHz), the worst case for
the AT is at L-band where ~ 60 channels are required (AT/05.4/001).

The final effect to be considered here is the effect of non-coplanar
baselines. If a 2-dimensional FFT is used to transform visibilities
measured on a 3-dimensional surface, the maximum phase error introduced
by the required approximation is

ap = wriy radians

where v is the distance from the phase centre and « is the non-coplanar
component of spatial frequency. In terms of F,D and h = wx we have

A$ = vF2hy  rad.
DZ

This is the only error discussed here which is wavelength dependent for
a given value of F. The largest error occurs at the lowest frequency,
so Tetting » = 1 m (300 MHz) and D = 22 m, the maximum phase error at
F=1is

A4 = 0.007 h radians

for h in metres. If we allow a maximum phase error of 0.1 radian (~ 6°)
for a source at the first null in the primary beam, the maximum allowable
non-coplanar baseline component is ~ 16 metres. Note that the phase

error is directly proportional to A, and is proportional to distance squared
from the phase centre.

Conclusions

1} For a minimum u,v increment of 15 m, sampling is adequate over the
entire uv plane for fields of view corresponding to F = 0.73 with a 22 m
dish. For full-field mapping (F = 1) parts of the uv plane are under-
sampled unless the increment is reduced to 11 m.

2) For a uvy increment of 15 m, the sampling is adequate over the entire
uv plane for fields of view less than or equal to F = 0.33 with a 10 m dish.
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This will probably be the case for frequencies above 50 GHz with the AT.
This is likely to cause problems only for CO mapping at 115 GHz.

3) For accurate wide field mapping, good measurements of the visibility
function near the origin of the uv plane is essential. In order to reach

the minimum (non-shadowed) projected spacing of 22 m at - 60° declination,

a shortest spacing of ~ 25 m is required.

4) For most observations with the compact array an integration time of
20 seconds on the 6 km baseline is appropriate from the standpoint of the
sampliing theorem and circumferential smearing. The integration time
required for shorter baselines is correspondingly longer. However, in
order to keep the circumferential smearing amplitude error for a point
source at F = 1 below 0.3% (25 dB), a 5 second integration time is
necessary.

5) In order to have similar errors due to bandwidth and circumferential
smearing, the percentage bandwidth for mapping should be

Av = 3.92 x 107° At D
A

With D = 22 m and at = 20 seconds, the appropriate value is av/v = 1.73 x 107 3.

6) Distortion due to non-coplanar components in the compact array
visibility coverage will be negligible.
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