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POSSIBLE STATION LOCATIONS FOR COMPACT ARRAY

The table below gives station positions computed by Geoff Poulton for the
6 km compact array in a configuration based on 20 metre increments for
1.5, 3 and 6 km baselines. This layout is interim in a sense as we are
looking at further optimization of the configuration perhaps involving
non-grating arrays. It does, however, represent a practical solution in
that future solutions are likely to have a similar number of and overall
distribution of stations - in particular the main concentration at the
western end of the 3 km track and two stations at the 6 km point,

Stn. Intervals Distance Str. Intervals Distance St Intervals Distance
— (20m) (m) — (20m) (m) — (20m} (m)
1 0 0 13 77 1540 25 124 2480
2 2 40 14 79 1580 26 125 2500
3 4 80 15 81 1620 27 134 2680
4 8 160 16 83 1660 28 135 2700
5 20 400 17 88 1760 29 138 2760
6 24 480 18 94 1880 30 140 2800
7 30 600 19 96 1920 31 142 2840
8 41 820 20 97 1540 32 146 2920
g 50 1000 21 102 2040 33 148 2960
10 57 1140 22 106 2120 34 149 2980
11 64 1280 23 112 2240 35 150 3000
12 76 1520 24 118 2360 36 296 5920
37 300 6000
R.N. Manchester
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ON DIFFERENCE TRIANGLES AND INVERSE-ZOOM ARRAYS

P.R. Wild - 1 Decemben 1983

1. INTRODUCTION

The (5) differences between antennas in a linear configuration of n
antennas may be represented in a triangular form, known as the dif4erence
triangle, which has certain arithmetic properties. We use these properties
to consider the possibility of inverse-zoom arrays - a sequence of
configurations which yields differences which become progressively
closer together as we move from the small differences to the larger ones.

We conclude that for n26, an inverse-zoom array is not possible. For
n=4,5 an inverse-zoom array (if it exists) must be close to a regular
full-fill grating array. For n=3 an inverse~zoom array may well exist.
For n=2 any set of differences is possible.

2. DIFFERENCE TRIANGLES AND THEIR ARITHMETIC PROPERTIES

Consider a linear array with n antennas. Let the station location of
the antennas on day i be given by integers Qi1 weves A5, (i=1, ..., m).
Write dif = 2445~ 25y for the distance between the (k+j)*M and kth
antennas 1<j<n-1; 1Sk<n-j. We may represent the distances in triangular

form (the difference triangle):
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i.e., the k™ element of row j = the sum of j consecutive elements on the
1

bottom row of the difference triangle starting at dik'

For example:

has difference triangle

row 1 contains the differences between successive antennas
row 2 contains the difference between two antennas separated by one othar antenna

- this difference is the sum of the differences between each of the
two antennas and the third (separating) one.

The property of a difference triangle which is of interest to us is that:

the sum of the elements in the top (ﬂ%l) rows of a difference triangle

= the sum of the elements in the bottom (ﬂ%l) rows of that difference triangle.
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i.e., sum of bottom [Eil- rows = sum of top [ﬂél] rows.

3. INVERSE-ZOUM ARRAYS
Put p = En%l].
There are ip(p+l) elements in the top p rows and
ip(2n-1-p) elements in the bottom p rows.

Since n~2p there are approximately three times as many elements in
the bottom half of a difference triangle-as in the top half. Since, in
general, the bottom half contains the smallest and the top half the
largest differences (their sums being equal) it is clear that for every
large difference we have several smaller differences. It follows that
an ‘inverse-zoom' array, in which the large differences outnumber the
small ones, cannot be realized except perhaps by having redundancies
among the small differences. The calculations which follow make precise
the above claim when n26. For n=4 and 5 the calculations suggest that
perhaps an inverse-zoom array may exist provided it is close to a regular
full-fill array (the border-line between zoom arrays and inverse zoom
arrays).

Consider the following possibility:

We have m configurations Bigs eeees @ i=1, ..., m; of n antennas,

in
giving distinct differences (or at least very few redundancies) which
make up an inverse-zoom array. That is, the differences get progressively

closer together as we go from the small differences to the larger ones.
Put p = [E%l-. Let the average distance between successive differences

in the first S = %—[ﬂ%ll (2n-1-[5%ll)= %?(Zn-l-p) differences be fl. Let
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the Targest distance between successive differences in the last
T==%— p(p+1) differences be f,. We have f;>f, for an inverse-zoom
array.
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Now i fli <sum of first S differences <
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= sum of terms in bottom p rows of the m difference triangles.

Also, sum of terms in top p rows of the m difference triangles
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where R = difference between the (gJ-T difference and the S difference.
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If n is odd then n = 2p+l and we have

S =5P(3pHl), T=3p(ptl), R=0

So, #f; 5P (3p+l) (5p (3p+l) +1)
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5. fy [ (3p"-2p3-p2) + 7 (3p2+p) ]
2

< f, [ (p*+2p3+p?) + 7 (p34p) ]

It follows that for p = 3 we have f2:>f1 contradicting our assumption
that we have an inverse-zoom array. For p=2 and large m we have
f2 2 %—fl, which means that for n=5 perhaps an inverse-zoom array is

possible provided it is not too 'zoomy'.

For p=1 {n=3) we require f2 2 fl,, SO ah inverse-zoom array Seems
m

possible for large m.

If n is even then n = 2p+2 and we have
s =0 p(ptl), T =3p(pHl), R=xm(p+l)f,
3m 3m
So 3f, S plp+l) [5 p(ptl) +1]
2 2 2
< 327'" p2 (p+1)? + 5 p(p+l)” f, + 3,3 p(p+l) [5 p(p+l) +1]
so fy B (prazpSep2) + 3M p(pe1) ]
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< f, [G (p*+6p%+9p2+dp) + T p (p#1) ]
This contradicts f2<:f1 if p2 2.
For p=1 (n=4) we have (for large m) f, 2 % fl'

So for n=4 an inverse-zoom array may be possible for a small zoom factor.

For n=2 anything is possible.




