OVERALL SYSTEMS & PERFORMANCE
FILE NOTES
AT/20.1/014

The Scheduling Preblem,

mik. 22 March 1986

Ray MNorris has recently ocutlined a possible scheduling
algorithm, Thiz note examines Scome limitations to his
scheme,

The Compact Array

The Compact Array of the AT has been designed expressly
to provide high gquality. wide field, high dynamic maps. We
can therefore expect that in general the observers will be
requesting a number (n) of egssentially complete 12 hour
gcans, {(My guess 18 that n will likely be 4 on average),

it is currently believed that the array will remain 1in
a given configuration for around two weeks - that is. we
would expect to complete a 4-day observation in a two month
period,

How many sourceg can we observe in two weeks? If the
sources are all carefully chosen we could conceivably
observe 27 sources, allowing about 30 minutes between scans.
But in the real world the sources are unlikely to be so
conveniently organized. I have run a few checks with random
numbers. in order to set some lower limits, The results are
shown below.

Number of sources mean dead time Extra days added
in schedule between scans te schedule
{(hours)
5 g.8 +/- 3.6 1.5
10 6.4 2.4 2.4
15 5.4 1.8 3.1
20 4.7 1.4 3.8
30 3.9 1.2 4.7
50 3.0 1.0 6.2
100 2,2 0.7 9.0
180 1.8 0.6 13.2
500 1.0 0.3 21,3




Page 2

In summary. a 20 source schedule which should be
completed in 10 days will likely require 14 days, with an
average dead time of 4.7 hoursg between sources, Schedules
of more than 20 sources do not seem to offer much relief - a
100-source schedule has 2.2 hours dead-time/source. but the
penalty is high: a 4-day source will require around 230
days: and the "24-day source” will require almost 4 years,.

The difficulties arise because the principal observing
mode will be a 12 hour scan. Thus, unlike the VLA, VLBA or
LBA, the CA has little flexibility,.

Consegquences for the scheduler,

What do we do with the dead-time? Can we reduce it?

- we could observe some sources in sub-1Z hour segments.
This is probably undesirable from the calibration peint of
view, Obtaining high dynamic maps will be an uphill battle
at the best of times; multiplying the number of
non-contiguous segments does not help. One strategy might
be to differentiate between night and daytime observations,
The nighttime sources would be guaranteed a full 12 hour
run: the daytime sources, likely to be of lesser guality in
any case, are the ones which may be sub-divided. This route
leads to & book-keeping nightmare, and to probable madness.

- a gimpler alternative would be to recognize two classes of
observations - the seriocus mapping, and the pilot quick
gurvey type. The schedule would be built around the mapping
(12 hour scan) sources: everything else would take 1its
chances, and fit in as begt it can. These would socak up the
dead-time, Any time remaining could be wused for general
observatory calibration purposes,.

In this scheme the scheduling tagk is still severe, but
probably tractable. Observers requesting short scans would
in effect generate a list of the source positions: the
scheduler would slot them into the overall schedule as
convenient, and delete the entry in the reqguest file once
the observation iz completed. Since the observer may wish
to keep a calibration source adjacent to his observations,
the scheduler does not have complete freedom in dissecting




Page 3

the observer's requests,

- a yet simpler scheme is to adopt a more rigid, VLA-style,
approach: a tentative schedule, based on the 12 hour
requests, would be drawn up after the TAC deliberations,
The remaining time would then be parcelled out to those
observers with survey-type requests, at the end of this
operation all the time segments of the schedule will have
been defined: the dynamical rescheduling, should it occur,
would apply to these =segments, and not to the -elements
within them. (We would need to find some way of describing
the extent to which a survey request can be slipped in time
- sarliest start time, latest stop time, for example).

I favour this last method as it is the simplest., A
more sophisticated scheme might be worth pursuing at a later
date, when we have a better idea of the mix of survey/12
hour observations,

I suggest the following seduence, applied on a
guarter-by-guarter basisg

1. Divide the guarter into 4 parts, each to be allocated to
a different array configuration,

2. To each configuration slot those observations which must
occur there: the "Z24-day"” and "4-day"” sources.

3. Generate a schedule based on these, with the "1i-day”
sources being distributed over the four configurationg 20 as
to give roughly equal time to each configuration,

4, Any time left over at this stage is given to the sub-12
hour regquests,

5. Since we will mneed to complete the "24-day” sources in a
finite lifetime, we will probably need to assign some
priority to the rescheduling process: "24-day” sources must
pe observed: "4-day” really ought to be, but could be
postponed;: the others may suffer,




Page 4

The arguments given above are somewhat attenuated if
the observing requests congist of a hidh proportion of 1l-day
sources, In that case the basic schedule will be dealing
with a quarter’'s worth of sources - 180, approuimately., The
gscheduler thus has greater scope. and the dead-time will be
reduced (to 1.8 hours/source),

LBA

The 12-hour unit is no longer relevant, so we can
expect a much higher scheduling efficiency. I suggest that
the observers’ requests should take the form of modules,
specified by an earliest start time, and a latest stop time,
The actual scheduling operations can then be quite dynamic,




