' AT |25 1-1]033

AT PROGRAMMING STANDARDS | -
R.P.Norris koo /4é§§??,
19 December 1986 P ni///g

$ov. .
1 INTRODUCTION o o
In 1985 AT programming standards were discussed L Yahd -h t of
recommendations proposed, These were documented by R.H.Wand 1in

AT/25.1.17016. which should be consulted for the rationale behind =zome
of the edicts issued herein. Recently, & reguest from the cerrelator
group prompted a re-appraisal of those standards. The result of that
re-appraisal is presented here. This document adopts wholeheartedly
the philosophy of AT/25.1.1/016. and makes only a small number of
changes as a result of (i) experience gained since 1985. and (ii)
changes in the computing configuration for the AT. item= which have
been changed since 1985 are prefaced by a (#),

It should be noted +that this document =ays little about
programming style. since we all know what the elements of good stvle
are - don't we? ingstead, this document primarily addresses the
programming conventions adopted for the AT,

Attention is drawn to the ELF (ELegant Fortran) prettifier. All
code should be passed through this wherever ©possible, See Ph:l
Mulhall for more details on ELF. Attention ig also drawn to CMS (Code
Management System) installed on all RP VAXes. Use this wherever
possible, To asgsist in this. there should normally be only one
program or subprogram in each VMS file,

2 SCOPE

The programming standards presented here should be used wherever
possible on all software written for the AT (¥} with the following
exceptions;

1, Non-VAX machines (e.g. PDP-11/73., Cyber Z05)
2. software to be used in the AIPS environment, which should
conform +to the AIPS programming standards rather than to the

AT programming standards,

3. VAX =oftware containing Rdb instructions for the RFO
pre-processor.

In these exceptional cases software should adhere as far ag possible
to the gpirit of these standards.

Page 2

3 LANGUAGE
VAX FORTRAN-77 (VF) shall be the language used. MNote that

1. All Vax extensions to FORTRAN-77 are permitted. except where
stated below, and

2. RATFOR is specifically prohibited (1)

Specifically. use of the following Vax extensione is ENCOURAGED.
ag an aid to better code:

1. All modules should contain IMPLICIT NONE.

2. INCLUDE files should be used freely, subject to the rules for
include files outlined in Section 6 below.

3. PARAMETER should be used rather than coded numerical
constants. (*) Each PARAMETER should be prefaced by a line
of comment explaining what the parameter ig,

4, Use the DO WHILE and END DO constructs. and omit the label
from do-~loops wherever possible,

Use of the following constructs is DISCOURAGED:

1. Computed GOTO

2. Arithmetic IF

3. ASSIGN

4. PAUSE (*) except during the development of software

5, BLOCK DATA

&, EQUIVALENCE

7. DIMENSION (include the array =sizes in type declarations
instead)

8. Initialisation of data in type declarations: use explicit
DATA zstatements instead
Note also the following conventions:

1. Lower case characters if wused in code should be used
consigtently,

2, Usge explicit rather than implicit type conversions

i0,

Page 3

Handle characters wusing only the VF character string
mechanisms,

Avoid labels where possible, by using label-legs DO loops and
(*) embedding formate within i/o statements. Where labels
are necessary. use them only on FORMAT and CONTINUE
gtatements, They should be less than 10000 and increase
monotonically through the routine.

Variable names should be as far as possible self-explanatory.
and need not be limited to six characters.

Use only meaningful names
Define z1zes of tables. arrays, and buffere parametrically.
Do not access uninitialised variables

Do not test REAL variables for equality (¥) except in the
special casgse of testing whether a REAL that has been set to
zero (and thus in VAX FORTRAN has an exponent field of zero)
has been reset to a non-zero quantity,

Wherever possible use program libraries rather than write
code to duplicate the functions of existing routines, (¥)
Where "in-house’ library code duplicates VAX library or
gystem service routines. use the VAX code in preference.

4 STRUCTURE

Follow the principles of structured programming, including the

concept

of top-down desgign. Write out the specification first. then

the modules’ prefatory commments and calling segquence. and finally
write the code, Use the following guidelines:

1.

Modularize rather +than write large monclathic gingle
programs,

Avoid the use of GOTO
Avoid "internal gubroutines’ driven by GOTO statements.

Put COMMONs and data structures., (%) along with their type
declarations and comments. in INCLUDE files.

Eradicate unreachable code. unused labels. and unused
declarations,

Code for clarity rather than efficiency

5

)

Pace 4

PRESENTATION

INPUT

All program and subprogram units must begin with a PROGRANM,
FUNCTION. or SUBROUTINE statement., and €inish with an END
statement,

(#3 Each subprogram should be stored in a V¥MS file with the
same name as the subprogram (but possibly prefixed with a
common prefix for one package), Only one subprogram should
normaliy be stored in each file, On any occazion where more
than one subprogram 1= in & file. each subprogram should be
clearly distinguicshed £from the preceding subprogram by, for
example, a number of blank lines followed by =& line of
asterisks.

Each subprogram should start with a block of bprefatory
comments, These should include the author, date, functional
description, list of arguments (along with their function and
type). implicit inputa (from files or COMMON=s), implicit
cutputs. and subroutines called., Any modifications made to
the yprogram should also be 1listed here with a date and
author, (¥) even if the code is being cared for by CHS,

Commenta should be clearly distinguishable €from code and
accurately reflect the behaviour of the program., They should
be generous without stating the bleedin’” obvious and must
rrecede the code they describe.

Program structure should be indicated by a consistent
indentation structure, (#¥) This ig best achieved by passing
all code through ELF. To aid this procesg, comments must
have a € in column 1 rather than a ¥, continuation lines
sghould have a : in column 5. and labelled DO-loops should be
avoided,

AND OUTPRUT

When convenient, FORHAT= should be embedded in the read or
write statements, Falling that. FORMAT statements should be
placed immediately after the corresponding i/o statement (if
used only once) or else at the end of the meodule,
Exzternal unit jdentifiers should be defined using LIBSGETLUN.
Terminate input by end-of-file rather than count,

(¥) Test for an error condition on ainput,

Page 5

5. Applications should not distinguish between upper and lower
caze in data they recieve. Use STRSUPCASE where necessary to
achive this.

6. Validate everything that comes into a program from cutside,

7 SUBPROGRAMS
1., (%) FUNCTION subprograms should have the type declaration in
the FUNCTION statement rather than in the body of the code,

2. (%) Argumentes of subprograms should have the type declaration
ymmediately after the FUNCTION statement. before all other
type declarations,

3. Arguments should be in the order: given. given and altered.
returned, status, (#) Wherever vossible, "given and altered’
parameters szhould be avoided altogether,

4, Do not mix data types across a subprogram call

& INCLUDE FILES

1, (%) Each INCLUDE file must start with a brief description of
the contents,

2. (*) Each item in the include file should be accompanied by a
line of explanation.

3. (¥) Each include file should be self-contained wherever
possible in the sense that it contains the type declarations,
commons (where applicable), and array dimensions (e.g.

Parameter) of each item,.

9 ERROR HANDLING

Leave error handling to the calling program wherever possible by
returning a status, This status should either be:

1. An INTEGER conforming to the VAX convention for error
conditions

Page ©

2, (%) A CHARACTER string containing ‘OK’ for no error. or else
a description of the error,

16 (#) QUANTITIES (ABSTRACTED FROM AT/16.3.1/032)
10,1 Pos=itions

The AT will operate internally in J2000 coordinates only.
However, observers may if they wish specify their source coordinateszs
in B1950 or other frames, but these will immediately be precessed on
input to J2000,. All AT software will store and use RA and Dec in
J2000 radians. stored internally as= REAL#*S.

10.2 Units

All quantitiee within AT software must be specified in SI units.
and all angles must be specified in radians, Thus arcsec, mm. cm.
minutes, deg/sec, etec.., are all illegal. However, the quantities may
be converted to ‘friendly’ wunits at the interface to the outside
world, but this conversion must take place right at the 170 stage,.
Thus the observer may =specify a 1 degree source offset (or the
engineer a imm telescope location offset) into his terminal. but these
must immediately be converted toe S5I wunits (radians and metres
respectively) before being pagsed to other software,

10.3 Floating Point Formats

At present, the VAX 750 s execute D-floating far more efficiently
than G-floating, However. newer VAXes will execute G-floating by
default, Thuz at present routines should be compiled using
D-floating, but this convention will have to be changed at some point
in the near future.

