Chapter 19

Primary Beams and Mosaicing

19.1 Primary Beams and Primary Beam Correction

In interferometry, the image formed normally by the imaging and deconvolution steps is a representation
of the sky muliiplied by the primary beam response of the antennas. The primary beam is typically similar
to a Gaussian function, although it also has sidelobes.

MIRIAD tasks which require knowledge of the primary beam response of a telescope use built-in models
of the responses of various telescopes (e.g. ATCA, VLA, Hat Creek, WSRT) — the primary beam model
used is determined by the ‘telescop’ item or variable. Currently these models assume the primary beam
is circularly symmetric and time independent. The task pbplot produces some information and can make
a plot of the primary beam models.

If you wish to override MIRIAD’s model, or if MIRIAD does not have a model of the telescope of
interest, you may set the primary beam associated with an image or visibility dataset to be a Gaussian
of a particular size. This is done by setting the pbfwhm item using puthd. This gives the FWHM width
of the primary beam, in arc seconds, at the reference frequency (the ‘reference frequency’ for a visibility
dataset is the frequency of the first channel imaged!!). For example, to set the primary beam size of the
image 1mc.map, usc:

PUTHD
in=lmc.map/pbfwhm | Set pbfwhm of 1mc.map.
value=1200.0 Set the primary beamm FWHM to 20 arcmin (1200 arcsec).

Although there are a few exceptions (e.g. mfspin and sllint), MIRIAD’s analysis tasks do not
correct for primary beam attenuation automatically. The task to correct an image for the primary beam
is 1inmos. To use linmos for this function, you need only set the input and output dataset names. For
example

LINMOS
in=lmc.map Image to primary beam correct.
out=Ilmec.pbeorr | Qutput, corrected, image.
options Leave unset.

19.2 Mosaicing

The primary beam limits the size of an object that we can observe with a conventional experiment. To
circumvent this, a large object can be observed using multiple pointings — this is the practise known as
mosaicing. In interferometry, mosaicing is not simply the practise of pasting together multiple tiles of
the sky. In interferometry, the adjacent pointings are not independent, and so we can get fundamentally

19-1




-2 A1 r 1Y, FOAOUMAILL DALY AINL IMUJIALIULIYG

Table 19.1: Mosaic grid spacing for ATCA dishes
Frequency | Pointing Spacing
v (GHz) Phex (arcmin)

1.38 19.6
2.378 11.4
4.8 5.6
8.64 3.1

better images by processing the different pointings together. This is particularly so for extended emission
or when the signal-to-noise ratio is low. A description of the theory behind mosaicing can be found in
the NRAO Synthesis Imaging Summer School (Lecture 15 — Wide Field Imaging III: Mosaicing - by Tim
Cornwell). Other notable references are Cornwell (1988) (Astronomy and Astrophysics, 143, 77) and
Cornwell, Holdaway and Uson (1993) (Astronomy and Astrophysics, 271, 697).

19.3 Mosaicing Observing Strategies

The job of planning a mosaic experiment requires extra thought over a simple conventional observation.
Issues that you must decide in the planning of an experiment include:

* Pointing grid pattern: In a mosaic experiment, you observe a number of pointings — possibly a
few to several hundred, depending on the size of the source of interest. To consider how dense
the sampling grid needs to be, consider the primary beam of an antenna. In the u — v plane, the
Fourier transform of the primary beam pattern is just the cross-correlation between two antenna
illumination patterns. For the 22-m ATCA dishes, the Fourier transform of the primary beam
pattern will be of finite and circular extent, having a diameter of 44-m. Because it is of finite
extent, Nyquist’s sampling theorem indicates that, provided we do not sample in the sky domain
coarser than some limit (i.e. provided the pointing grid pattern is sufficiently fine), all information
can be retrieved. Assuming a standard, rectangular grid, the sky plane Nyquist sampling limit is

A
Hrect = ﬁ

(A is the wavelength, and D is the dish diameter). For a well-illuminated dish, this spacing cor-
responds roughly to half-power point spacing between field centres. Because the extent of the
transform is circular, we can do somewhat better than this, by using a so-called hexagonal grid.
This grid places pointing centres at the vertices of equilateral triangles — packing six triangles
together gives a hexagon. An extension of Nyquist’s theorem indicates that

o = 2 A
hex = \/§2D-

So a hexagonal grid allows a given area of the sky to be covered in a smaller number of pointings (it
does also require slightly longer drive times between pointings — see below — which may occassionally
be a consideration). Table 19.1 gives this grid spacing for ATCA dishes.

o Dwell time: Most mosaiced experiments will continually switch between the different pointing
centres (or a subset of them, if there are too many pointing centres to visit in a single observation).
Normally they will be visited in a raster scan fashion. Switching to a new pointing centre typically
results in 0.5 to 4 seconds of ‘lost’ time while the antennas are slewing to the new pointing. This
time can be a significant consideration in some experiments - e.g. if the integration time was 10
seconds, and the pointing centre was switched every integration, up to about 40% of the observing
time could be lost. To avoid this, you will want to dwell on a given pointing centre for as long as
reasonable, This must, however, be traded against loss of tangential u — v coverage that occurs
when each pointing is not visited sufficiently frequently. To determine the balance, recall that a
correlation does not measure the value of a single point in the u—v plane, but a region corresponding
to twice the diameter of the dishes. At transit (when the projected baselines are moving fastest),
the time taken for a baseline to rotate to a compleiely independent visibility point is



———

1.4, ¥idiDILLd L LD 1ly-0

= 86400 2—D— geconds
- 27 L

Here I, is the maximum baseline length of interest when imaging and I is the dish diameter. Ideally
you will want to sample twice as frequently as this, i.e. for N pointings, a dwell time of /2N would
be best. You may, however, decide to suffer tangential holes in the u — v coverage.

¢ Field Naming Convention: When preparing the observe files for an ATCA mosaic experiment, you
will create a ‘mosaic file’. This gives a field offset, integration time and field name for each pointing
centre. To simplify a step in the reduction process (the splitting step only), it is recommended that
field names be composed of two parts, separated by an underscore character. The first part should
be common to all fields. Typically this will be the name of the object being mosaiced. The second
part is unigue to each field, typically being a field number. For example, the field name for pointing
1923 for a Large Magellanic Cloud mosaic would be called lme_123.

19.4 Visibility Processing

The flagging, splitting and calibration of a mosaic experiment are rather similar to a conventional exper-
iment. The following comments only on any differences. This section will assume that, as is usual, only
a single phase calibrator is used for all pointings.

e Flagging: Flagging differs only in that, when the instrument is continually changing to a new
pointing centre, it can be more difficult to spot the outliers which indicate bad data.

o XY Phase Correction and Splitting: XY phase correction is identical with a conventional reduc-
tion. Again, as with conventional reduction, for calibration and imaging purposes, it is easiest in
MIRIAD to split the data into datasets containing a ‘single source’ and single frequency band.
For a mosaic experiment, all the pointings from the object of interest should be considered a ‘single
source’. As the ATCA on-line system labels each pointing with a different field name, uvsplit
would normally break the dataset into one file per pointing. To avoid this, use wrsplit’s mosaic
option. This causes uvsplit to use the source name up to any underscore character. Thus, assum-
ing you have used the field naming convention of Section 19.3, uvaplit will not split apart all the
separate pointings.

If you failed to follow the naming convention, the select keyword of uvaver and uvsplit can be
used to split the dataset up. This is left as a tiresome exercise for the reader.

For example, assuming a dataset containing calibrators and an observation of the LMC (with
appropriately named fields), the following inputs will generate datasets for the calibrators and a
single dataset for all the LMC data.

UVSPLIT
vis=mosaic.uv | The input dataset.
options=mosaic | Assume mosaic experiment, so create
multi-pointing output where necessary.

e Data Selection: With mosaic visibility datasets, the select=ra and select=dec selection sub-
commands can be useful to extract or manipulate a subset of the visibility data.

e Culibration: Determining the calibration solutions does not differ from that described in Chapter 11.
You will then use gpcopy to copy the calibration tables to the multi-pointing dataset.

19.5 Summary of Imaging Strategies

There are two quite distinct methods for reducing a mosaic experiment - the so-called “Joint” and
“individual” approaches. Although hybrid approaches are also conceivable, they will not be discussed.




1y-4 COAN L LI 1Y, CILVEA Y DEAINLY AINL VA IULIY Y

The joint approach, which is the sunplest, takes advantage of MIRI.AD’s mosaicing software. In this
case, all pointings are handled simultaneously by the imaging and deconvolution software. With the
individual approach, a mosaic experiment is treated like a large number of conventional observations,
where each pointing is imaged and deconvolved separately. In this case you, the user, are responsible for
keeping track of all the pointings. Only as a final step are all the pointings pieced together.

The advantage of the joint approach is speed and simplicity. Also becanse the deconvolution of all the
pointings is done together, it can produce fundamentally better deconvolutions. This is particularly so
for low signal-to-noise ratio mosaics and for extended emission (emission comparable in extent to the
primary beam - see Cornwell’s papers for the argument). It is the approach normally used. However
there are disadvantages — the joint approach depends more critically on the model of the primary beam.
Errors in the model of the primary beam will tend to be arnplified by this approach, particularly when
the u — v coverage is poor. Generally the joint approach will be limited to dynamic ranges of several
hundred or so.

A more practical difference between the two approaches is that the joint approach generally uses sig-
nificantly less disk space (this can be an order of magnitude or more for spectral line experiments).
However, because the joint approach does all pointings simultaneously, it does use significantly more
computer memory in its reduction steps. With current computers, the joint approach is not possible for
full resolution ATCA images (6 km array) if you have more that a few pointings.

19.6 The Joint Approach

19.6.1 Theory

For the joint approach, the reduction proceeds in a fashion which appears very'similar to conventional
observations. First a dirty image is formed (with associated point-spread function), and then a decon-
volution algorithrn is used to ‘clean’ this dirty image. Finally the ‘restore’ step is performed. There are,
however, substantial differences — although these are largely hidden from the user,

The task to form the dirty image is still invert. The dirty image is formed by imaging (using a conven-
tional algorithm) each of the pointings separately. These individual pointing images are them combined
in a linear mosaicing process. This linear mosaicing stmply consists of a weighted average of the pixels in
the individual pointings, with the weights determined by the primary beam response and the expected
noise level. The resultant output dirty image is thus an image of the entire region mosaiced,

The weights are computed to minimise the noise in the resultant image as well as to correct for primary
beam attenuation. The output image, I (£, m), is given by

TP =&, m—m)L;(¢,m)/o?
P —Lym—my)fe?

I(6,m) = g(£,m)

Here the summation, 4, is over the set of pointing centres, (£;,m;). J;(€,m) is the image formed from the
#'th pointing, and P(£,m) is the primary beam pattern. The expected noise variance in the ’th field is
ol

Primary beam attennation is only corrected for within limits. Because there are large variations in
sensitivity across a mosaiced image (the edges of a mosaiced region will have low sensitivity), the imaging
software does not always attempt to {ully correct for primary beam attenuation. Instead, it constrains
the weights so that the noise level does not exceed a certain limit (this limit is based on the noise in
individual pointings). This results in some residual primary beam attenuation at the edges of a mosaic
or in holes in the pointing grid. This is done by the function 9(£,m). It normally has a value of 1, but its
value drops towards 0 at edges or holes. In this way, the noise level across a mosaiced image is crudely
uniform.

Task invert also applies geometric corrections to account for the fact that the sky is not a plane. For an
cast-west array, such as the ATCA, these corrections are exact, meaning that the coordinate geometry of
the resultant images is also (nominally) exact. For other array types, the corrections are optimal in the




1y, 40O ULl Arrnwavan LT

Table 19.2: Size of Main Lobe of the Primary Beam for ATCA dishes

Frequency | Primary Beam Main Lobe Size
v (GHz) ¢ (arcmin)
1.38 70.2
2.378 445
4.8 20.6
8.64 12.2

sense that they are the best approximation that still results in a convolution relationship (in the sense
that such arrays obey a convolution relationship!).

Because the u — v coverage of the different pointings will not be identical, the synthesised beam patterns
will differ between pointings. This, and the weighted average process, means that the point-spread
function of the resultant dirty image is position-dependent. As most deconvolution algorithms assume a
position-independent point-spread functien, a conventional algorithm cannot be used. However the point-
spread function from the linear mosaicing process is still reasonably compactly described and readily
computed. The beam dataset that invert produces is not a normal one — it is a cube of beam patterns,
one for each pointing. Given this, and some information stored in a auxiliary mosaic information table,
the deconvolution tasks can compute the true point-spread function at any position in the dirty image.
Being able to compute a point-spread function (or rather, being able to compute a dirty image, given a
trial deconvolved image) is the difficult part of writing a deconvolution task. A maximum entropy-based
deconvolution algorithm is readily implemented.

The practicalities of this processing are now described.

19.6.2 Imaging — INVERT

Most of the inputs to invert are the same as with conventional imaging. Only mosaic-specific con-
siderations will be mentioned here. See Chapter 12 for more information. Note that invert supports
multi-frequency synthesis, Stokes and spectral imaging.

o options=mosaic: The most important thing to remember is to invoke invert’s mosaic mode! This
causes invert to expect multiple pointings in the input visibility data, and to perform the linear
mosaicing steps and geometric corrections.

e options=double: If you intend to deconvolve, options=double should always be used. This is
because the full field of the each individual pointing is potentially filled with emission.

e vis: When mosaicing, invert handles input datasets which contain multiple pointing centres.

e imsize: In mosaic mode, this is interpreted as the image size, in pixels, of each subfield. There
are two constraints that are important if you wish to deconvolve. These can be relaxed, with
corresponding degradation in deconvolution.

— Ideally imsize should be large enough to contain all emission in the main lobe of the primary
beam (as MIRIAD only models the main lobe, making it larger has no beneficial effect).
Table 19.2 gives these sizes as a function of frequency for the ATCA.

— The image size should not be a power of 2, or a number within the range (approximately)
[0.9 x 2*,2"] (note that just 1 pixel more than a power of 2 is fine - and indeed good). This
restriction is to help reduce the effects of the aliasing caused by a “grid-and-FFTI” imaging
algorithm which invert uses.

e offset: This has a different meaning in mosaic mode. It gives the position on the sky (the so-called
tangent point), in RA and DEC, which is used for geometry calculations. The value is given in the
form hh:mm:ss,dd:mm:ss, or as decimal hours and degrees. Normally you can allow this to default,
and invert will choose a central pointing centre as the tangent point.

Typical inputs to invert would be:



i3-0 UIAr LIV 1Y, CALVIAIY DreAvtI Aives M ALY T

INVERT
vis=lmc.uv The input multi-pointing dataset,
options=mosaic,double | Use mosaic mode and make large beam.
offset Usually can leave blank.
map=Imec.map Output image name.
beam=lmc.beam Output beam name.
cell= Set cell size.
lInsize= Set output image size.

19.6.3 Deconvolution and Restoration

MIRIAD contains two tasks to deconvolve the mosaiced dirty images produced by invert. In terms of
theory, practical use and indeed internal implementation, these tasks are quite similar to the deconvolution
tasks described in Chapter 13. The major difference is that the ‘convolution’ operation (which turns a

The two mosaic deconvolution tasks are mosmem, which implements a maximum-entropy-based deconvolu-
tion algorithm, and task mossdi, which uses a Steer, Dewdney & Ito (SDI) CLEAN algorithm. Generally
mosmen is superior. Task mossdi can be very slow for all but very extended emission, and its results
can be poor. Note that, although you can make mosaiced, multi-frequency synthesis images with invert
(and, indeed, produce a mosaiced, spectral dirty beam), there is no mosaic equivalent to mfclean. In
deconvolving a mosaiced, multi-frequency image you will have to tactically assume that the spectral in-
dex is 0. This should not be a problem — primary beam model errors are probably more significant than
spectral errors in these deconvolutions.

If you are deconvolving, note the recommendations for invert’s imsize parameter, and the use of
options=double.

If you are familiar with the inputs to the conventional deconvolvers, the inputs to mosmem and mogsdi
should be fairly straightforward. In the cage of the inputs to mosmem and maxen, apart from differences
in the options, the meaning of the £1ux keyword and the default region, the only significant difference
is in specifying the expected RMS noise level in the dirty image. Because the noise level varies across the
dirty image, mosmem uses the theoretically expected noise level (which it computes) times a user-specified
Judge factor, rmstac. That is, if rmsfac is set at 1 (the default), then mosmem uses the theoretical noise
level when calculating its y? statistic.

Typical inputs to mosmem are:

MOSMEM
map=Imec.map Dirty image produced by invert.
beam=lmc.beam { Beam dataset.
model An initial model estimate — generally unset,.
default The image that the solution should tend

towards — generally unset.
out=Imc.model | The output dataset.

niters=30 Maximum number of iterations — default js 30.

region= Region to deconvolve. The default is the entire image.

measure Leave unset gives you the Gull measure.

flux= Estimate of the total lux — its best to give a value.

rmsfac=1 RMS noise fudge factor. Default is 1.

q An initial estimate of the beams volume. Generally
you can leave this unset.

options Generally leave unset, or

options=doflux use doflux to enforce the flux constraint.

The inputs and use of mossdi should be equally simple for someone familiar with clean. Given that the
task is not recommended, it will not be discussed further.



1.0, 10K JULIVE AFFRVALLIL L1y

Having produced a model, we generally want to convolve this with a Gaussian CLEAN beam and add
in the deconvolution residuals. This is done by restor. The inputs and use of restor is identical to a
conventional observation (restor is the only general task which is smart enough to recognise a mosaiced
experiment directly). Task restor uses a constant CLEAN beam - it is not a function of position. The
only caveat is that, when determining a default CLEAN beam, restor fits a (Gaussian to the synthesised
beam which corresponds to the first pointing. Provided the first pointing is a fairly typical pointing, this
will probably be adequate. Otherwise you may wish to use task mospsf (see Section 19.6.5 below) to
generate an actual point-spread function (at some position) and then use imfit to determine Gaussian
parameters for it.

Typical inputs to restor are:

RESTOR.
map=Ilmc.map Dirty image produced by invers.
beam=lmc.beam | Beam dataset.
model=lmec.model | Model produced by mosmem.

mode Leave unset to get restored image.

fwhm Beam size — leave unset to let restor
fit it, but to the first pointing!

pa Again leave unset to let restor fit it.

19.6.4 Self-Calibration

The software to perform self-calibration is workable and reasonable flexible, although it is rather inelegant.
In part, this software has not been upgraded from the time before the ‘joint approach’ suite was developed

in MIRIAD.

The self-calibration process is performed in two main steps (there is a minor third step). First the
task demos (“de-mosaic”) is used to break the model produced by mosmem into models for individual
pointings. That is, demos produces many models each one of which corresponds to the nominally true
sky multiplied by the primary beam pattern at a pointing. The second step is performed by task selfcal
(gpscal cannot cope with mosaiced observations). Task selfcal takes all the models simultaneously
and then, for each visibility in the input visibility dataset, it computes a model visibility using the model
with the same pointing centre. The observed and model visibilities are then processed by a conventional
antenna-gain solver, to produce a table of antenna gains vs time.

In reality, antenna gains will be a function of both time and pointing centre. However selfcal assumes
that the gains are purely a function of time — not pointing. In practice this should not be a great problem,
as time and pointing change together, and integrations that are close in time will also be close on the sky.
Note that, short of setting a self-calibration solution interval to be smaller than the integration time, you
cannot be sure that a solution interval will contain data from a single pointing.

In the above process, only a subset of all pointings need be used in the self-calibration process. If, for
example, you have a strong source in one pointing and all the other pointings have only weak emission,
it may well be appropriate to assume that the antenna gains are completely independent of pointing. In
this case, the gains can be determined from the one strong field.

We now address the steps in more detail:

1. The demos step: This step consists of producing a number of models, one for each pointing. The
inputs are described in turn.

o map: This gives the name of the input model image (produced by moemem) to be de-mosaiced.

o vis This will usually be the visibility dataset to be self-calibrated. This dataset is used to
determine the pointings present and the primary beam to be used.

e select: This provides normal visibility selection. If only a subset of pointings are being
processed, it is convenient to select them here. In this way, models are not generated for
pointings that are not of interest. Typically, if you wish to self-calibrate with only a subset of



L=

2,

UOAFN 100 LY. CIWVIAIY DIRANLD AL IO A I LI O

pointings, you would use the ra, dec and/or source subcommands to select the appropriate
ones.

¢ out: This gives a template for the names of the output de-mosaiced models. Task demos will
generate an output name by appending a number to the template name. For example, the
output template lmc.dmos. would produce names such as 1mc.dmos.1, lmc.dmos. 2, etc.

¢ imsize: This gives the maximum size of the output models. Task demos may make the outputs
smaller where needed. The default used by demos is derived from the primary beam size and
the input model, and should be adequate (although if disk-space is tight, you might set a
smaller number than that chosen by demos).

» pbtype: This gives the primary beam type to use in the de-mosaicing process. The defauls,
which is determined from the vis dataset, should be adequate.

e options: You must invoke the option detaper. This causes demos to account for any residual
primary beam attenuation that mosmem has left.

Typtcal inputs to demos are:

DEMOS
map=Ilmc.model Model produced by mosmem.
vis=lme.uv The visibility dataset to be self-calibrated.
select Leave unset if self-calibrating with all pointings, or
select=source(Imec_123,Imc_124) | select just the fields to be used in the self-calibration process.
out=Ilme.dmaos, Output name template.
options=detaper Account for any residual primary beam attenuation.
pbtype Generally leave unset.
imsize Generally leave unset.

The selfcal step: In general, the inputs to selfcal are fairly conventional — see Chapter 14 for
more information. There are, however, multiple input models (produced by demos) corresponding
to each of the pointings to be used in the self-calibration. Note that wildcards will generally make
this easy. The other difference which you must remember is to use options=mosaic to invoke the
mosaicing machinery. Note also that selfcal will not use a visibility of a particular pointing if
there is no model for this pointing. Thus, if you are self-calibrating using only a few of the stronger
pointings, you do not have to explicitly select the data for these pointings.

Typical inputs are: |

SELFCAL
model=lmec.dmos.* Models produced by demos.
vis=lmc.uv The vis dataset to be self-calibrated.
select Set as with normal self-calibration. |

options=mosaic,phase | Use mosaic mode and phase self-calibration, or
options=mosaic,amp | amplitude/phase self-calibration.

Fixing the interpolation tolerance: As noted in Section 11.5, a MIRIAD gain table has an as
soclated interpolation tolerance (the time interval over which you can interpolate or extrapolate
a gain). Task selfcal will set this to the solution interval. If you are self-calibrating with only
a few pointing centres, you will want the gains to apply to the entire cycle through the mosaic
grid. In this case, you may well want to increase the interpolation tolerance from the default. See
Section 11.5 for the details. In summary, you use puthd with inputs like:

PUTHD ‘
in=lmec.uv/interval | Set the ‘interval’ item of a vis dataset.
value=0.1 Set the tolerance to 2.4 hours (0.1 days).




o

1¥.i, 10D lNiAavIiUAL Arrnuacn 1oy

19.6.5 Some Additional Tools
We briefly describe some other useful tools.

e Listing Mosaic Tables - IMLIST: Task invert stores information concerning its linear mosaic
operation in the item mostable (stored in both the map and beam datasets). The table can be
printed by imlist, using optiona=mosaic.

o Mosaic Point-Spread Function — MOSPSF: It is occasionally instructive to look at the point-spread
function at a particular position in a mosaic experiment. Task mospst can compute this. Apart
from the input beam data-set, the user must specify a position and frequency of interest (the
point-spread function is also frequency dependent).

o Mosaic Sensitivity and Gain Images - MOSSEN: Just as the point-spread function varies, so does
the expected noise level in an output mosaiced image. Additionally, as mentioned above, invert
does not attempt to completely correct for the primary beam attenuation where there is too little
data (i.e. some primary beam attenuation is remains in the output image). The task mossen can
produce images of the expected rms noise and the remaining primary beam attenuation given a
mosaiced image.

19.7 The Individual Approach

The individual approach images, deconvolves, self-calibrates and restores each pointing separately. It
is only when you are happy with the individual images that you would combine them - using a linear
mosaicing algorithm.

As noted above, the individual approach is less automated and can produce fundamentally poorer decon-
volutions. However in some high-dynamic range applications, it may be preferable. The reason for this
is that the deconvolution process does not depend on the primary beam model (nor do some errors such
as a constant pointing error affect the deconvolution). With the ‘individual approach’, it is possible to
deconvolve sources (and thus eliminate their sidelobes — which is the important issue) beyond the limit
where MIRIAD’s primary beam model gives up. To do this, however, you must make images larger
than the main primary beam lobe (see Table 19.2 above).

In the following, we assume that the ‘joint approach’ section has been read and understood.

19.7.1 Splitting and Imaging

Although this is largely a matter of taste, it may be convenient (particularly if self-calibration is to be
used) to split the multi-pointing visibility dataset into single pointing ones. Task uvsplit (with no
options, and only the multi-pointing visibility dataset as input) will do this function. It will also copy
across any calibration tables associated with the input dataset.

In the individual approach, you will run invert many times, once for each pointing (you may have split
the multi-pointing visibility dataset into single pointing ones, or you could use selection by source name
to select out the appropriate subset of data). Apart from possibly the names of the input and output
datasets, the parameters to invert should not be changed between runs.

Even though you are imaging just a single pointing, you will still want to use invert’s mosaic mode
(options=mosaic). This causes invert to perform its geometry corrections and to create the the images
of the different pointings on the same pixel grid. In this way, no interpolation will be needed when
the images from the different pointing are finally combined. Consequently the artifacts and problems
associated with interpolation can be avoided.

To compute the geometry, however, you must provide a reference position on the sky — the tangent point.
The default tangent point is the pointing centre of the data being imaged — this is not appropriate as it
will vary from pointing to pointing. You will want a tangent point which is the same for all the pointings.
Although it can be any arbitrary point, it is best to make it near the centre of the source being imaged.



12-1v LA LGOI 1Y FIVIWANRT DALY AV LAV NATFALE |

If there is a point source which dominates the image, you might choose its position as the tangent point
to help reduce deconvolution problems. The tangent point is given through the offset keyword, in the
format hh:mm:ss,dd:mm:ss (or as decimal hours and degrees).

As an example, consider an LMC observation, where we wish to image field 123 (which has field name
1mc_123). Assuming we have a multi-pointing dataset, and wish to use position (RA,DEC)=(4:30,-71:00)
as the tangent point. Typical inputs to invert would be:

INVERT
vis=Ilmc.uv The input dataset.
select=source(lmc_123) | Select a single pointing.
options=mosaic Use mosaic mode. ‘
offset=4:30,-71:00 Set position for geometry computation.
map=lmc123.map Output image name.
beam=Imc_123.beam Output beam name.
cell= Set, cell size.
imsize= Set output image size.

19.7.2 Deconvolution, Restoration and Self-Calibration

Deconvolution is no different to conventional observing. When restoring, you may wish to use the same
restoring beam size for all fields. Otherwise treat each pointing as a separate cbservation.

Much of the discussion in the self-calibration section of the ‘joint approach’ applies equally well here. The
major difference is, of course, that because the deconvolution step has been performed on the individual
fields, the demos step is not required. If you have split the visibility data into separate single-pointing
datasets, you will not need to use options=mosaic {although it will not hurt). Also for single-pointing
datasets, if you wish to use just one or a few of the stronger fields for self-calibration, you will need to
copy the resultant antenna gain tables across to the other datasets, using gpcopy.

19.7.3 Image Combination

When you are satisfied with the deconvolution, restoration and self-calibration of all the individual images,
task linmos can be used to combine them in a linear mosaic. Usually you will just combine the restored
images (if you are going to do quantitative analysis on the composite image, it may be best to do a
deep CLEAN and use the same restoring beam for all pointings). Although linmos can interpolate input
images to align them, its algorithm, particularly for geometric correction, is very poor, and so this is
strongly discouraged. You should use invert to make all the input images on the same grid, by setting
a common tangent point (offset keyword).

Task linmos uses the same weighted sum of the input pointings as the ‘joint approach’ sofiware (see
Section 19.6,1). Normally the expected rins noise in the image is determined from the images themselves
{(image item rms). However if this item is missing, or if you wish to override it to get a different weighting,
you may enter the expected rms noise via keyword rms. Also note that linmos, ‘by default, fully correct
for the primary beam attenuation even when this excessively amplifies the noise. The taper option can
be used to reduce the correction at the edge of the field, and thus avoid excessive noise amplification.

Task linmos can also produce an image giving the expected rms noise as a function of position, and a
gain image — see the help on the options keyword for these.

Typical inputs to 1inmos are:

LINMOS
in=lmc_*.cIn Use wildcards to select all images.
out=lmc.mosaic | The output linearly mosaiced image.
rms Generally left unset. ;
options Leave blank to fully correct primary beam,
options=taper or set to taper at the edge of the mosaic.




