We present deep HI observations of the compact high velocity clouds CHVC 162+03. We use both low and high resolution data obtained with the 100-m Effelsberg telescope (EBHIS), the WSRT and VLA (THINGS). The combination of both data sets is essential in order to study the physical properties of the objects. Shown here are the cumulative fluxes as a function of distance from the field center. The dashed line marks the extension of the primary beam of interferometer. In case of CHVC 162+03 (left panel), about 50% more flux has been detected by the single-dish than by the radio interferometer. It reveals that a large portion of the cloud consists of WNM which is traced mainly by the single-dish. In case of NGC 4214 (right panel), plot demonstrates the dominance of the cleaning artifacts around the galaxy. These negative values affect the result of the combination severely.

In the upcoming era of radio interferometers single-dish instruments still play a major role. These are the only instruments which are able to detect the total flux of the source. Because of the „missing spacing“ problem of the radio interferometers an approach is needed to correct for the missing HI emission.

Galactic Data

We use both low and high resolution data obtained with the 100-m Effelsberg telescope, the WSRT and VLA (THINGS). The combination of both data sets is essential in order to study the physical properties of the objects. Shown here are the cumulative fluxes as a function of distance from the field center. The dashed line marks the extension of the primary beam of interferometer. In case of CHVC 162+03 (left panel), about 50% more flux has been detected by the single-dish than by the radio interferometer. It reveals that a large portion of the cloud consists of WNM which is traced mainly by the single-dish. In case of NGC 4214 (right panel), plot demonstrates the dominance of the cleaning artifacts around the galaxy. These negative values affect the result of the combination severely.

Extra-Galactic Data

In the upcoming era of radio interferometers single-dish instruments still play a major role. These are the only instruments which are able to detect the total flux of the source. Because of the „missing spacing“ problem of the radio interferometers an approach is needed to correct for the missing HI emission.