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ABSTRACT

The natural spherical projection associated with the Hierarchical Equal Area and isoLatitude
Pixelisation,HEALPIx, is described and shown to be one of a hybrid class that combines
the cylindrical equal-area and Collignon projections, not previously documented in the car-
tographic literature. Projection equations are derived for the class in general and are used to
investigate its properties. It is shown that the HEALPix projection suggests a simple method
(a) of storing, and (b) visualising data sampled on the grid of the HEALPix pixelisation, and
also suggests an extension of the pixelisation that is better suited for these purposes. Poten-
tially useful properties of other members of the class are described, and new triangular and
hexagonal pixelisations are constructed from them. Finally, the standard formalism is defined
for representing the celestial coordinate system for any member of the class in the FITS data
format.

Key words: astronomical data bases: miscellaneous — cosmic microwave background — cos-
mology: observations — methods: data analysis, statistical — techniques: image processing

1 INTRODUCTION

77N
W/INN
The Hierarchical Equal Area and isolLatitude Pixelisation, 77NN
HEALPix (Gorski et al. 1999, 2005),fters a scheme for distribut-
ing 12N?(N € N) points as uniformly as possible over the surface
of the unit sphere subject to the constraint that the points lie on a 2
relatively small number (d — 1) of parallels of latitude and are
equispaced in longitude on each of these parallels. These proper-
ties were chosen to optimise spherical harmonic analysis and other
computations performed on the sphere.

In fact, HEALPIx goes further than simply defining a distri-
bution of points; it also specifies the boundary between adjacent

points and does so in such a way that each occupies the same area.

Thus HEALPIx is described as anual area pixelisationPixels at s

the same absolute value of the latitude have the same shape inthe N NE NE NE
equatorial region, though pixel shapdfdis between latitudes, and 15 i ah ah N
with longitude in the polar regions. The boundariesKbe 1 de- 30 4 B e NN oL
fine the 12base-resolution pixeland higher-order pixelisations are L 7S

defined by their regular subdivision. Note, however, that although \\é év// g _7\\5 é é)// \\é é)//
they are four-sided, HEALPIx pixels are not spherical quadrilater- W :
als because their edges are not great circle arcs.

. iqinall . | ith ref Figure 1. The HEALPIx class of projections fdf = 1,2, 3 rescaled to unit
HEALPix was originally described purely with reference to area (top), and the nominative case with= 4 (bottom) atx4 the areal scale

the sphere, the data itself being stored as a one-dimensional arnq with the top left-hand comer of the graticule “cut away” to reveal the
ray in a FITS binary table (Cotton, Tody & Pence 1995) with underlying cylindrical equal-area projection in the equatorial region. Facets
either ring or nestedorganisation, the former being suited for are shown as dashed diamonds.

spherical harmonic analysis and the latter for nearest-neighbour

searches. For visualisation purposes the software that implements

HEALPix (Gorski et al. 1997) fiers a choice of four conven- The mathematics underlying HEALPIx is based on mapping
tional projection types onto which HEALPIx data may be regrid- each of the twelve base-resolution pixels onto,d] [0, 1] unit
ded. square, and this was always an essential feature implemented in the
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2 M. R. Calabretta and B. F. Roukema

HEALPIx software. Roukema & Lew (2004) have re-derived the 2.1 HEALPIx derivation
pertinent equations and present a diagram showing a projection of

the whole sphere (hereinafter tHEAL Pix projectiof in which the In the equatorial regions, the HEALPIx projection is based on Lam-

base-resolution pixels, and consequently the pixels of all higher- bert's (1772) cylindrical equal area projection whose equations are

order pixelisations, are projected as diamonds (i.e. squares rotateoYve” kpown. While Co.lllgnon’s (1865) derivation of the equations

by 45°). These equations may readily be synthesised into those of used in th_e polar_ region was bas‘?d on g_eometry, herc_effee a

an equal area projection of the whole sphere. mathematical derivation based on integrating the Jacobian determi-
The HEALPIx projection is a combination of a cylindrical nant - L . i

equal-area projection in the equatorial region and an interrupted h In 0I|er|V|ng the p.ro(;egtlo;: eﬂuleg:cons, ngte:llrstly tT]at f(l)r &hy.

Collignon projection in the polar regions (Collignon 1865; Tissot the total area occupied by the half-facets in the north polar region

1881; Lutque & Matarazzo 2004). This hybrid does not appear to is always 16 of the total area._Since the project_ions are equiareal,

have been documented previously in cartography texts and could"V® equgte the area ofasphencal cap on the unit sphereor(1 -

not be located in a web search; in particular, it is absent from Syn- sme)_, with the c_:c_)rresppndlng fra_ctlo_n .Of the total are:a/&, to

der’s (1993) review of the history of cartography. lllinois State Uni- obtain the transition latitud@,, which is independent g#:

versity's MicroCAM web site presents a catalogue of 320 map pro- g, = sin'}(2/3) ~ 4128103 1)

jections produced by a member of the International Cartographic

Association’s Commission on Map Projections (Anderson 2003);

none bear an obvious resemblance. Of these, the equal-area quac 1.1 Equatorial region

cube may be dissected and rearranged to produce something with

a similar boundary but it is a distinctly fiérent projection. The ~ The equatorial region, whefé| < 6., is clearly a cylindrical equal-

stated intention of this web site is to present as complete a collec- area projection, i.ex(y) = (¢, a'sing), wheree is a constant de-

tion as possible of historical, published map projections. termined by the requirement th@t be projected at the vertex of a
This work will show that the HEALPix projection is one of the ~ facet. Since the length of a facet diagonal, e.g. as measured along

more important members of an infinite class of projections param- the equator, is#/H, we havey, = 7/H = a'siné,, whence

eterised byH € N and will derive the projection equations for the X = & @)

class. In particular, the HEALPix projection (i.e. with = 4) sug-

gests a simple way of storing HEALPix data on a two-dimensional y = 3 sing. ?3)
square grid as used in conventional imaging and mapping, and also 2H

suggests an extension of the HEALPix pixelisation that is better Becausely/d¢ = 0 for the HEALPIx projections the Jacobian
suited to this. The HEALPIx projections with = 3, and 6 are also ~ determinant reduces to

shown to be special, their properties will be discussed, and new 1 0xdy

hexagonal and triangular pixelisations constructed from them. I, 6) = CosO 3¢ 00 )

The related issues of representing celestial coordinates in the

HEALPix projection are also considered in relation to image data 1S gives the ratio of an infinitesimal area in the plane of pro-
storage in FITS (Hanisch et al. 2001). jection to the corresponding area on the sphere. In the equatorial

regions it is &/2H, a constant, indicative of an equiareal projec-

tion. Note that the Jacobian determinant is inversely proportional

to H, but the graticules in the top part of Fig. 1 were set to the
2 THE HEALPIX PROJECTIONS same areal scale by scaling botndy by VH. Likewise, the re-

Figure 1 shows the first four membersl (= 1 4) of the maining graticule, and all others in this paper including Fig. 2, were

HEALPix projections. They may be described as interrupted, equal produced at a consistent areal scadegreater than these first three.
area, pseudo-cylindrical projections whose defining characteristics

are .
2.1.2 Polar regions

(i) They are equiareal; regions with equal areas on the sphere ) )
have equal areas in the plane of projection. In the polar regions the area north ®f> 6,) on the unit sphere

(i) Parallels of latitude are projected as horizontal straight lines 'S 27(1 — sin6) and, noting that the pole is zprojecte_dyai: 2r/H,
(interrupted in the polar regions) whengg/d¢ = O. in the plane of projection it |5H(27r/H - Yy)- Eguatmg the ratio
(iii) Parallels are uniformly divided (apart from interruptions). of these to the value of the Jacobian determinant obtained for the

(iv) The interruptions are defined by stacking equal-area dia- €duatorial region and solving we obtain

monds (hereinaftefiacety as shown in Fig. 1. The facet that strad- _ +£(2 — o) ©)

dles+180 is split into halves in the graticule, Y=y ’

where we used,6) for longitude and latitude respectively, and where the negative sign is taken for the south polar region, and

(x.y) for Carteglan_coordlnates in the plane of prOject_lon. o= \B{=[sina)) )
These projections correspond td,( Ny) = (H, K) with K =3

in the genre of isolatitude pixelisations described kyr<ki et al. is the ratio of the distance of the pole from the paralled td that

(2005). Projections associated with other valuds afe readily de- of the pole from the parallel af;.

rived but are only considered peripherally here, though the general The equation forx may be obtained readily by integrating

equations are cited in Sect. 6. It is interesting to note that the caseEq. (4) withdy/66 from Eqgs. (5) & (6) to produc = o¢ + C,
with (H,K) = (2,1) is the interrupted, symmetrical form of Col-  whereC is the constant of integration, thus indicating that the par-
lignon’s projection as illustrated in Fig. 2. See also Furuti’'s (2006a) allels are uniformly divided. It is instructive also to consider a ge-
web site which presents geographic outlines. ometrical argument; the area of any triangle in theg/) plane with
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Figure 2. Edouard Collignon’s (1865) projections at equi-areal scale: (top) Collignon’s projection of the sphere in an isoceles triangle; (bottom left) the
northern hemisphere folded about the equator into the south to create a rhombus, re@l;aiilllg\gitude (orx% and in latitudex V2 to preserve the areal

scale) would produce the HEALPIx projection witH,(K) = (1, 1); (bottom right) the rhombic case interrupted along the prime meridian and recentred to map
each hemisphere onto a square - this corresponds to the HEALPix projectiorwih £ (2, 1). These and the remaining graticules in this paper are shown

at the same areal scale as the bottom panel of Fifl. 2 4 case).

its apex at the pole and base along a given parallel of latitude de-are much less distorted in the polar regions than any such projec-

pends only on the change xbetween its base vertices and not on

their location. Since the projection is equiareainust therefore

vary linearly withe.

Applying the interruptions to the parallels (this in fact could

be omitted or done in other ways to producetient projection

types) we have

X=¢c+ (- ¢c)o,
where

T

H

(¢;7:)HJ+1)

is the native longitude in the middle of a
floor function, gives the largest integsru.

¢C:—7r+(2

2.2 Properties

The most important feature of the HEALPix projections, indeed

™

®

polar facet 4uod, the

tion. Consequently the HEALPIx pixels are truer in shape when
projected onto the sphere and their centres are more uniformly dis-
tributed. As shown by the dashed lines in the upper-left corner of
Fig. 1, the equivalent portion of the underlying cylindrical projec-
tion, being severely squashed at the pole, is stretched upwards to
twice its height and brought to a point; the pole itself is thereby
projected a1 points rather than a line. However, this is gained at
the cost of introducingd — 1 interruptions which should properly
be considered as extreme distortions, though of little consequence
for the pixelisation.

Evaluating the partial derivatives we find
( (1, 2% cost)

)1
{ (o 35 22%)
which shows that in the polar regiomds scaled directly, and is
scaled inversely by = ¢(6) in order for the Jacobian determinant
to maintain constancy.
To get some idea of the relative degree of distortion between

ox Oy ... equatorial,

9’ 96

©)

... polar,

the underlying rationale for the HEALPIx pixelisation, is that they members of the class, consider first from Egs. (3) & (5) ftsdales

are equiareal with squared boundaries and straight parallels. Thusas ¥/H for any 8, while x is independent oH except for defining
they may be completely inscribed by diamonds of equal area, the the interruptions. Hence the relative spacing of parallels between
minimum number of which is @ (the facets). Each facet is sub-
ject to further subdivision bi? smaller equal-sized diamonds that
are identified apixels(picture elements); their centre positions in
(¢, 0) may be computed readily for anid(N) from the inverse of

the above projection equations as are cited in Sect. 6. As explained
by Gorski et al. (2005), it is significant for spherical harmonic anal-

the equator and poles is independentofas is evident in Fig. 1,
and the distortion is determined solely by the relagivex scaling.
Thus theH > 1 projections may be considered to be composed of
H rescaleH = 1 projections in sequence.

A spherical projection isconformal or orthomorphic (true
shape) at points where the meridians and parallels are orthogonal

ysis that the pixel centres lie on a relatively small number of paral- and equiscaled. The general equations of the cylindrical equal area
lels of latitude, and that the facets may be subdivided hierarchically. projection expressed in terms of the conformatandardatitude,

Of course a pixelisation may be constructed similarly from 6, are &, y) = (¢, sind/ cog 6,) (e.g. see Sect. 5.2.2 of Calabretta
a cylindrical equal-area projection, but the HEALPix projections & Greisen 2002), whence from Eq. (3)

© 2007 RAS, MNRASO0Q, 1-8



4 M. R. Calabretta and B. F. Roukema

Table 1.1sotropy, area, flexion, skewness, distance and boundary distortion
measures for the HEALPIx projection, and the overall distortion measure
%, for a selection oH, K andy-rescaling. Measures that equal or improve
upon (i.e. are less than) those of thé K) = (4, 3) projection are shown

in bold. The measures are also computed separately for the equdtptal (
30°) and polar regions for the (3) and (4 3) projections (italics).

Figure 3. Tissot indicatrices on a graticule for a representative portion H,K Ve | A E S D B T
of the HEALPIx projections wittH = 3,4 & 6 at consistent areal scale. The
rescaledH = 6 & 3 projections associated with the triangular and hexagonal 1,1 1 117 O 070 0.74 0.38 025 968
pixelisations discussed in Sects. 4.1 and 4.2 are also shown atthe same areal 2 1 1 065 0O 056 0.48 0.48 0.50 8.19
scale. Thus all indicatrices have the same area. 3,1 1 060 0 047 039 055 075 1281
2,2 1 050 0 058 042 041 042 6.19
2H 3,2 1 039 0 049 031 045 0.58 7.90
0, = cos® /=~ (10) 4,2 1 049 0 043 027 050 075 1182
3 5,2 1 065 0 037 025 054 092 17.02
ForH = 1,2,3,4 this is (63,49, 37, 23); the first two of these 2.3 1 072 0 066 048 038 038 6.76
exceedd, and hence are inadmissible, afdis undefined for 3,3 1 042 0 057 0.33 040 052 6.85
higher values oH. Since the latitude that halves the area of the 037 0 029 012 042 052 Equ.
equatorial region is siff(1/3) = 195, independent of, this sug- 045 0 086 053 054 052 Pol.
gests that the projection witd = 4 is the least distorted in the 4,3 1 03 0 051 027 044 065 9.09
equatorial regions. 011 0 028 010 043 065 Equ.
Looking at it another way, the requirement for equiscaling in 050 0 075 045 057 065 Pol.
. . 5,3 1 046 0 047 026 047 0.79 1252
x andy where the meridians and parallels are orthogonal, i.e. ev- 6 3 1 060 0 044 026 050 092 1682
erywhere in the equatorial region, and along the centreline in the 3 1 073 0 040 025 053 105 2178
polar half-facets, is 3,4 1 056 0 064 0.37 0.38 0.48 6.99
i% _ @ (11) 4.4 1 040 0 058 0.30 041 0.60 8.18
cosh d¢ 90 5,4 1 039 0 054 027 043 071 10.50
o . 6,4 1 048 0 050 0.26 046 0.83 13.60
Substituting Eqg. (9) gives
6,2 V3 031 0 044 0.6 048 1.08 20.94
Z cog o ... equatorial, 6,3 V3 027 0 054 027 042 092 1557
Ho=< - . . 12) 6,4 V3 041 0 061 030 039 083 1345
(1 +1sing|) ... polar, centreline, L
3,3 I 059 0 048 031 048 0.52 7.59

whenceH, = (4.7,44,35,26,27,29,31,3.1) for 6 = (0,
15,30, 6,,45,60°,75°,90°). ThusH = 4 is a good all-over com-
promise but fof 8| > 30, the latitude that halves the hemisphere
by areaH = 3 would appear to be better on this basis. tions andA = 0O for equiareal projections), and also the larger-scale
The nature of the projective distortion in the region where measures of flexion (or bendindy, and skewness (or lopsided-
meridians and parallels are not orthogonal is more complicated andness),S, which are based on the derivatives of the metric. They
is best illustrated by means of Tissot’s indicatrix (e.g. Snyder 1993; combine these with the global measure of distance eBpde-
or Furuti 2006b). This is the projection, greatly magnified, of an veloped by Gott et al. (2006), with a contribution from boundary
infinitesimal circle on the sphere, as in Fig. 3. In the polar regions discontinuities,B, to derive an overall distortion measure for the
the projection of the facets onto the sphere (i.e. the base-resolutionprojection,X.. The authors kindly provide a code, usable in either
pixels) meet at the pole at 36MH. ForH = 4 this is 90 which ac- IDL® (Interactive Data Language) or GDL (GNU Data Language),
cords with the angle in the plane of all HEALPix projections. Thus to allow others to compute these measures via a Monte Carlo anal-
it might seem thaH = 4 should be least distorted in the neighbour- ysis and we have applied it to the HEALPIx projection. Results are
hood of the pole. However, this argument is somewhat misleading; presented in Table 1 for a variety of parametdrandK and ad-
on the sphere the angle between meridians and parallels along thelitional y-scaling, as for the triangular and hexagonal pixelisations
edges of the polar half-facets is always 9@hile in the plane of discussed in Sects. 4.1 and 4.2.
projection it is always 45 Tissot’s indicatrix shows thdtl = 3 is For a pixelisation the relevant measures Aravhich is zero
actually less distorted near the pole. for all HEALPix projections, and the mean isotropy,Like the
Tissot’s indicatrix also indirectly describes the deformation of Tissot indicatrices| indicates how distorted the pixels are. Of the
the HEALPIx pixels themselves. On the sphere the indicatrices are square (non-rescaled) pixelisatiortd, K) = (4,3) achieves the
all circles of the same size, whereas on the plane the pixels are alllowest global mean value ¢f= 0.36 with several others close be-
same-sized squares. If the projected Tissot ellipse at the centre of ahind. The associated projection also does well for the other distor-
pixel was rescaled into a circle by compressing its major axis while tion measures, though it falls behind Bp— the overall distortion
expanding its minor axis so as to preserve area then the square pixemeasure is strongly influenced I8y the total length of boundary
boundary would become a parallelogram, representative, to first or- discontinuities, which favours smaller and largerK.

der, of the pixel's shape on the sphere. The distortion measures were computed separatelygifor
Recently Goldberg & Gott (2006) have developed global- 30 and|g| > 30 for the (3 3) and (4 3) projections, where 3Qvas

average distortion measures for isotropyand areaA, that de- chosen in light of the discussion following Eq. 12. As anticipated,

pend on the map projection metrit € 0 for conformal projec- the (3 3) projection does slightly better in the polar region but not

© 2007 RAS, MNRASO0Q, 1-8
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Figure 4. The HEALPIx pixelisation folN = 6 on the HEALPIx projection

for H = 4 projected with a 45rotation onto the mapping grid showing the
twelve facets with standard numbering. The graticule of the HEALPIx pro-
jection is shown in the seven facets adjacenit@) = (0, 0), and those at
lower left show the pixel boundaries fof = 6 as defined by the HEALPiIx
pixelisation.

as well near the equator. However, its global mean isotropy is not
far behind the (43) projection and it does better on a number of
other measures to produce a loviier

With rescaling, the lowest value ofis achieved by, K) =
(6,3) with y rescaled byv3. Its other distortion measures are also
low with the exception oB, the boundary discontinuity, which in-
flatesZ.. This projection is the basis of the triangular pixelisation
discussed in Sect. 4.1.

3 THE HEALPIX GRID

The base-resolution pixels of the HEALPIx pixelisation are pro-
jected as diamonds (squares rotated b3) 45 the HEALPIx pro-
jection with the consequence that the pixel locations fall on a grid
with diamond-symmetry.

However, Fig. 4 shows that the diamond grid may trivially
be converted to the common square grid used in imaging via a
45 rotation. HEALPix data may thus be displayed directly on the
HEALPIx projection without regridding and the potential introduc-
tion of artefacts. At 48% the resulting image plane is slightly less
than half-filled but this is comparable to the figure of 50% for quad-
cube projections (O’Neill & Laubscher 1976) which are commonly
used in the same type of application as HEALPix. Moreover, being
composed of square facets like the quad-cubes, the HEALPix pro-
jection also admits the possibility of dissection and storage on a
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Figure 5. HEALPix double-pixelisation foN = 3 on the HEALPix pro-
jection withH = 4. Filled circles define the regular grid, with interpolated
pixels shown as open circles to the east (leftwards) of these. Pixel bound-
aries are shown in the middle three facets, those of the two additional polar
pixels contain a contribution from each of the four adjacent polar facets.
One of the eight inside corner pixels witfd3area is arrowed. Note the dif-
ference between the pixel locations in this figure compared tiNthe 6
pixelisation in Fig. 4. Also illustrated in grey is the boundary between the
faces of the pseudo-quadcube layout of the HEALPIx projection, applicable
for (H, K) = (4, 3) only.

layout. This achieves a 75% filling factor of the enclosing square,
now reduced to 4 4 facets.

3.1 HEALPix double-pixelisation

The main drawback with the above technique for storing HEALPix
imaging data is that the image is presented at an unusual orienta-
tion. However, this may be solved via a simple extension to the
HEALPIix pixelisation. Figure 5 shows the HEALPIx grid with a
pixel interposed between every pair of pixels along the parallels
of latitude and additional pixels added at the two poles. The total
number of pixels in the pixelisation is thereby increased from?212

to 24N? + 2 without dfecting the special properties described by
Gorski et al. (2005), although requiring a slightlyffiérent method

of forming the hierarchy and indexing it.

Pixels that fall along the lines where the polar half-facets meet
act to “zip” the two edges together. They still have equal area of
47/24N? sr on the sphere, half that of the standard HEALPix pix-
els, except for the eight pixels in the inside corners. As can be seen
in Fig. 5, the latter are incomplete, with only8of the area, and
consequently are three-sided when projected onto the sphere. Col-
lectively their reduced aredfsets the contribution from the extra
two pixels at the poles.

The pixel index of an interpolated pixel is obtained by adding
0.5to the HEALPIx pixel index (in the ring or nested scheme) of the

third image axis, such as is implemented for the quad-cubes via thestandard pixel immediately to the west of it (rightwards in Fig. 5).

CUBEFACE keyword in FITS (Calabretta & Greisen 2002).

Facet number 6 which straddlgs= +180 may be treated
in a number of ways; it may be left split, or the halves may be
reconnected in either the lower-left or upper-right corner, or it may
be replicated in both.

The butterfly projection, the polar variant of Fig. 4 (Stuart
Lowe, private comm. 2007), is created by splitting the equatorial
facets along the®0and+90° meridians, rotating the three resulting
gorescontaining facets 0, 1 and 2 by appropriate multiples 6f 90
and joining them at the pole to producear “butterfly”-shaped

© 2007 RAS, MNRASO0Q, 1-8

All pixel indexes are then doubled and incremented by unity so that
they run from 0 to 2M1? + 1 with the first and last at the poles.

The filling factor for this, as of any of the HEALPix pro-
jections in the normal orientation, is 75% which exceeds that of
the quad-cubes at 50% and is comparable to that of the oft-used
Hammer-Aitdf projection at 79%.

Figure 5 shows how the facets of the double-pixelisation
may be repartitioned into a configuration that resembles that of a
guad-cube projection and by which it becomes amenable to the
CUBEFACE storage mechanism. However, the resemblance is purely
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Figure 6. HEALPIx projection forH = 6 scaled iny by V3 whereby the di- Figure 7. HEALPix projectiqn forH = 3 scaled iy by 1/ V3 whereqpon )
it becomes three consecutive hexagons - the new base-resolution pixels;

amond facets become pairs of equilateral triangles - the new base—resolutionh ioinal di qf hed (dashed i f
pixels. These may then be subdivided hierarchically; base-level pixels are e original diamond facets, now squashe (dashed lines), are superfluous.

shown to the left and right (black circles), the first level of subdivision is at 'I;]he grati(;]ule_ orf]th?pr(;jecti(;n is shovgn ihn'thtj Ie{(t—har(ljd rl:e()j(agon| VIVherIeiS
mid-top (thin black), the next at mid-bottom (grey). those to the right of it show the second (thin black) and third (grey) level o

subdivision - each hexagon splits into four non-inscribed hexagons, some
of which are shared between two base-resolution pixels as indicated by the
superficial because the cubeface edges do not match those of &rMow.
guad-cube projection on the sphere.

present but degraded somewhat from the diamond pixelisation of
H = 4. However, if the pixel centres are moved up or down from

4 OTHER PIXELISATIONS the centroid byl—l2 of the height of the pixel to the point half-way
Consider dividing the 3600f circumpolar longitude into integral ~ Petween the base and apex then they fall onto a rectangular grid
subdivisions. Of the possible ways of doing this{B6C, 2 x sampled more frequently ir thany. This provides some of the
180, 3x 120, 4x 90", 5 72°, 6x 60", ...) only the divisions into 3, ~ Same benefits as tité = 4 double-pixelisation. o

4, and 6 correspond to regular polyhedra. The division int®e° Although the displacement is small, there is a possibility that
corresponds to the familiar case of HEALPix wih= 4 with dia- it could introduce statistical biases so the full consequences should
monds tessellated by diamonds. be investigated for a particular application. These potential biases

may be minimised by making the pixel sizeflstiently small, and

the fact that the bias between adjacent pairs of pixels is in opposite
4.1 Triangular—H =6 senses will tend to cancel them over a region encompassing-a su
cient number of pixels. It should also be remembered that although
the pixel location@ppearto be at the centre of the pixel boundary
in the projection of the diamond, square, and triangular pixelisa-

However, the division into & 60° suggests a ffierent type of pix-
elisation in which equilateral triangles are tessellated by equilat-

eral triangles. This pixelisation may be defined by rescaling the i this i h tefact of the distorti inh tin th
HEALPix projection withH = 6 by V3 in y so that the half- ions this is very much an artefact of the distortions inherent in the

facets become equilateral triangles. Such a linear scaling doesprOJectlon. Because thecoordinate varies non-linearly with on

not afect the projection’s equal area property. What were previ- the sphere they are e_lctually piased to one side of the pixel. Hence
ously half-facets may now be identified with 36 new, triangular some degree of bias is unavoidable.
base-resolution pixels that may be subdivided hierarchically as for
HEALPIx, as depicted in Fig. 6. It is interesting to note that this
subdivision is naturally hierarchical — the number of pixels varies
exponentially as 36& 4V whereN is the hierarchy level. In the  The division into 3x 120 suggests hexagonal base-resolution pix-
H = 4 pixelisation the exponential hierarchy must be engineered els. Although the familiar “honeycomb” structure shows that it is
by doublingN at each level. possible to tile the plane with hexagons, nevertheless there is no
The conformal latitude computed fé# = 6 with this ex- bounded tessellation of hexagons by hexagons; that is, no hexago-
tra y-scaling isd, = 310, indicating that the projection be- nalregion larger than the cell size can be cut out of any honeycomb
comes conformal near the latitude that bisects the hemisphere bytessellation without cutting the individual cells. Thus it may seem
area. Applying Eq. (12) with the extra scaling give/8H, = surprising that a hexagonal pixelisation can be constructed from the
(8.2,7.6,6.1,45,4.6,5.1,5.3,5.4) for 8 = (0,15,30, 6,45, HEALPiIx projection forH = 3 with y scaled by 1 V3. The bound-
60°, 75°,90°), again indicating less distortion in the polar regions ary of this projection, as seen in Fig. 7, is reduced to that of three
thanH = 4. Tissot's indicatrix in Fig. 3 clearly shows that it also  sequential hexagons and this boundary is then used conceptually
does better in the polar zone away from the centreline because theas a “pastry-cutter” on a honeycomb tessellation of the right scale.
60° angle along the edge of the polar facets more closely matchesPixels that are cut can be made whole again by borrowing from
the true angle of 90on the sphere. Overall, this pixelisation per- adjacent facets, much as the square pixelisation in Fig. 5 does.
forms adequately at low latitudes and does better tharthe 4 The hierarchical pixelisation, somewhat more complicated
pixelisations at mid to high latitudes. than for the other cases, is shown in Fig. 7. Like the triangular
This rescaling of theH = 6 projection is reminiscent of pixelisation the number of pixels at each level also varies exponen-
Tegmark’s (1996) icosahedral projection composed of 20 equilat- tially, as 3x4"-1. A subdivision of each hexagon into six equilateral
eral triangles; the problem of indexing the subdivisions of its trian- triangles is possible but the resulting pixelisation does not satisfy
gular facets was solved in the implementation of the corresponding equiscaling in longitude.
pixelisation. In the present context the isolatitude property is still Rescaling Eq. (12) give$l,/ V3 = (2.7,25,2.0,15,1.5,

4.2 HexagonalH =3
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17,1.8,18) for 6 = (0,15, 30, 6.,45,60°, 75°,90°). Thus the
rescaledH = 3 projection does not achieve conformality at any lati-

tude, it does well close to the equator, but degrades at mid-latitudes.

In the polar regions the 3@&ngle between meridians and parallels
along the edge of the facets is further from the ideal 6fthan the

45° angle for the unscaled projections. However, it may be optimal
for certain values of the total number of pixels in the pixelisation.

5 K#3

The projection equations for general value&adre cited in Sect. 6.
The general form of the Jacobian determinani(is, 6) = #K/2H
and the generalisation of Eq. (12) becomes

{

This demonstrates thad, is independent oK along the centre-
line of the polar half-facets and its variation between equator and
pole may thus be reduced by choosk@ppropriately. FoK = 2

we findH, = (3.1,2.9,24,2.7,2.9,3.1,3.1) for § = (0,15°,0x =
30°,45°,60°, 75°,90°), and this carries over in particular to the tri-
angular pixelisation. However, it comes at the cost of reduéing

K
X cog 0

Z(L+|sing])

... equatorial,
HO

. 13)
... polar, centreline.

to 30 thereby increasing the portion of the sphere in the polar half- o

facets away from the centreline.

6 HPX: HEALPIXIN FITS

In this section the HEALPIx projections are described in the same
terms as the projections defined in Calabretta & Greisen (2002).

HEALPIx projections will be denotédn FITS with algorithm
codeHPX in the CTYPEia keywords for the celestial axes. Vari-
able y-scaling as shown in Figs. 6 & 7 may be implemented via
CDELTia.

As data storage has become much less of an issue in receng
years we do not consider it necessary to create an analogue of the

CUBEFACE keyword to coveHPX. However, if HEALPix data in the

double-pixelisation is repackaged into the pseudo-quadcube layout

shown in Fig. 5 th&€UBEFACE storage mechanism is applicable for
H = 4 (only) and will be treated properly §CSLIB (Calabretta
1995).

Since the HEALPIx projections are constructed with the origin
of the native coordinate system at the reference point, we set

(¢0, bo)rEALPix = (0,0). (14)

None of the HEALPIx projections are scaled true at the reference

Mapping on the HEALPix grid 7

in the polar zones, whet@| > 6.:

= ot (¢—¢c)o, 17)
ig(—Kgl—o), (18)

where the positive sign anis taken ford > 0, negative otherwise,
and

o = +K@-|singl), (29)
3 (p+180)H 1-w 180°
¢ = -180C + (2 ok R et (20)
1 ...ifKisoddorg >0,
© = { 0 ...otherwise. (21)

These equations are readily invertible. In the equatorial zone
where|y| < 90°(K — 1)/H:

_ .4 yH
sin (_QO’K)’ (23)
in the polar zones, whetg | > 90°(K — 1)/H:
¢ = X+ (X=X)/o, (24)
1 o?
= zsin (1 - ?) , (25)

where the positive sign ofis taken fory > 0, negative otherwise,
and

K+1 |yH|
7 2 180" (26)
~ (x+180)H 1-w 180
= -180 + (2 TR o (27)

wherex. is the value ofx in the middle of a polar facet, as fg,
andw is given by Eq. (21).

FITS keywordsPVi_la andPVi_2a attached tdatitude coor-
inatei will be used to specifyH andK with default values 4 and
respectively.

HPX has been implemented in version 4.0 and later versions
of WCSLIB which is distributed under the GNU General Public Li-
cense (GPL).

As of version 4.3WCSLIB includes a utility program that con-
verts 1-D HEALPix pixelisation data stored in a variety of forms in
FITS, including ring or nested organisation in a binary table exten-
sion, into a 2-D primary image array wiPX coordinate represen-
tation.

point in the sense discussed in Sect. 5 of Calabretta & Greisen/ SUMMARY

(2002), nor are the rescalédl = 3 & 6 projections, but they are
all scaled true irx.

The general form of the projection equations together with
their inverses, re-expressed in the form required by FITS with all

angles in degrees rather than radians, are now summarised formally._

In the equatorial zone wheté| < 6, = sin*((K — 1)/K):

¢, (15)

90K .
- sing, (16)

X

Y

1 Ratified by the IAU FITS Working Group on 20{BY26 as an fficial
extension of the FITS WCS standard.
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HEALPIx projections are constructed as a hybrid of the cylindrical
equal area projection in the equatorial regions and the Collignon
projection at the poles. The polar vertex of the Collignon projection
is cut df at latitude sin*((K — 1)/K) over the range of longitudes
180 /H to +18C/H, and the longitude scale is then stretched by a
factor ofH/2 to make the vertex angle Qrhis right-angled isoce-
les triangular cap is then replicated and arranged in the prescribed
way at the top and bottom of a cylindrical equal area projection
truncated at the same latitude. This provides an equi-areal projec-
tion which is naturally divisible into diamond (i.e. square) facets.
While in practical cartography Collignon’s projection is re-
garded as little more than a mathematical curiosity, the HEALPix
projection makes good use of its property of mapping the sphere
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onto squares. That which is awkward for visual representation of
the sphere becomes apposite as the basis for constructing-an e
cient hierarchical pixelisation.

ACKNOWLEDGEMENTS

We wish to thank Carlos Furuti for pointing out the relationship be-
tween the HEALPiIx and Collignon projections and an anonymous
referee for a constructive and timely review.

The Australia Telescope is funded by the Commonwealth of
Australia for operation as a National Facility managed by CSIRO.

REFERENCES

Anderson P. B., 2003, MicroCAM (Computer Aided Mapping)
web site (last updated 2008.g) http://www.ilstu.edu/-
microcam/map_projections/

Calabretta M. R., 1995-200WCSLIB version 4.2, available from
http://www.atnf.csiro.au/ "mcalabre

Calabretta M. R., Greisen E. W., 2002, A&A, 395, 1077

CollignonE., 1865, Recherches sur la répentation plane de la
surface du globe terrestre, Journal decble Polytechnique 24,
125

Cotton W. D., Tody D., Pence W. D., 1995, A&AS, 113, 159

Furuti C. A., 1996-200http: //www.progonos.com/furuti/-
(a)MapProj/Normal/ProjPCyl/projPCyl.html#Collignon
(b) MapProj/Normal/CartProp/Distort/distort.html

Goldberg D. M., Gott J. R., 2006, Cartographica (accepted),
arXiv:astro-ph0608501

Gorski, K. M. et al., 1997-2007, The HEALPix homepage
http://healpix. jpl.nasa.gov

Gorski, K. M., Hivon, E., Wandelt, B. D., 1999, in Proceedings
of the MPA/ESO Cosmology Conference “Evolution of Large-
Scale Structure”, p37, eds. A. J. Banday, R. S. Sheth, and L.
Da Costa (PrintPartners Ipskamp, NL) (arXiv:astrgg@12350)

Gorski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen
F. K., Reinecke M., Bartelmann M., 2005, ApJ, 622, 759
(arXiv:astro-pt0409513)

Gott J. R., Mugnolo C., Colley W.N. 2006, arXiv:astro-
ph/0608500

Hanisch R. J., Farris A., Greisen E. W., Pence W. D., Schlesinger
B. M., Teuben P. J., Thompson R. W., Warnock Il A., 2001,
A&A, 376, 359

Lambert J.H., 1772, Anmerkungen und Atz zur Entwerfung
der Land und Himmelscharten. Beitrage zum Gebrauche der
Mathematik und deren Anwendymd. 3, sec. 6. (English trans-
lation: Notes and Comments on the Composition of Terrestrial
and Celestial Maps, Ann Arbor, University of Michigan 1972)

Luque M., Matarazzo G., 2004, Projection Colligreoméridiens
et paraleles rectiligneshttp://melusine.eu.org/syracu-
se/mluque/mappemonde/doc-collignon/collignon.html

O'Neill E. M., Laubscher R. E., 1976, Extended Studies of
the Quadrilateralized Spherical Cube Earth Data Base, NEPRF
Technical Report 3 — 76 (CSC) Computer Sciences Corporation
(Silver Springs, Maryland)

Roukema B.F., Lew B., 2004, arXiv:astro/p#09533

Snyder J. P., 1993, Flattening the Earth (University of Chicago
Press, Chicago and London)

Tegmark M., 1996, ApJ, 470, L81

Tissot A., 1881, Mmoire sur la ref@sentation des surfaces et les
projections des cartegggraphiques (Gauthier-Villars, Paris)

© 2007 RAS, MNRASOOQ, 1-8



