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Summary

The radiometer noise in an ASKAP electronically formed beam is, in general,
not independent of the noise in other beams formed on the same antenna.
Each beam is formed from a subset of the 188 receptors on each PAF so that
beams that share receptors also have some common noise. The correlation in
noise between beams has been measured (Heywood et al. 2016), and in this
memorandum a simple beam model is used to provide a means of predicting
the degree of correlation.

1 Introduction

ASKAP forms beams electronically as linear combinations of outputs of
a set of PAF elements, with beam properties controlled by the choice of
weights. There is a mapping from the position of PAF elements in the focal
plane ‘illuminated’ by the weights to the angular position of the beam on
the sky. Antenna optics and the element radiation patterns determine the
mapping. In general, the sets of elements used for two overlapping beams
will themselves overlap. Any elements that are used in both beams will
contribute their receiver noise to both, so there will be non-zero correlation
between the signals produced by the beamformers for the two beams. The
number of shared elements, and therefore the degree of correlation between
two beams is expected to increase with decreasing angular separation.

The consequence of this correlation is the non-independence of image
noise in images from different beams, leading to reduced sensitivity in the
final mosaic relative to that of a mosaic contructed from truly independent



images. The magnitude of the effect has been measured and reported by
Serra et al. (2015), with more detail given in Heywood et al. (2016).

The optimal design of beam footprints depends on a number of factors:
beam size relative to PAF field-of-view, how to properly sample the sky
brightness distibution, how to tile a sky survey with footprints, and the
sensitivity implications of beam-to-beam correlation. The need for a quan-
titative estimate of beam-to-beam correlation for a given footprint motivates
this note, in which I attempt to provide a means for making that estimate.

2 Visibility statistics

The statistical properties (including correlation) of the images are deter-
mined by those properties of the contributing visibility measurements. In
this section I make some simplifying assumptions:

e that identical beams are formed on each antenna and the correspond-
ing beam weights are also identical;

e that the PAF elements are ideal, having the same gain and the same
mutually independent receiver noise.

We want to determine the covariance Cov[Va;i, Viji| where Vi, Vi
are the visibilities measured between antennas j,k on beams A,B.

Vajr =< wvaj-var >, Vpjr =< vpj - vBp > (1)
where v4; is the voltage from beamformer B on antenna j, and so on. Then
Cov[Vajk, Vajk] = E[Vajk - Vijil
= Elvaj - vai - vBj - VBK] (2)
= E[va; - vBj - vak - vBg).

The correlation between V4 and Vg arises from the non-independence of vy;
and vpj, and of vy, and vpy.
The beamformer voltages are

Vg = ZwAji’:U’i v = Zijﬂi (3)
i i

where the z; is the output from PAF element ¢ and wyj, and wpgj, are the
correpsonding beamformer weights for beams A and B on antenna j. The
x; are assumed to be random variables with E[z;] = 0, Var[z;] = s, and
Cov|zi,, x4,] = 0 for iy # ia.



The variance and covariance of the beamformer voltages are (dropping
the antenna subscript j):

Var[va] = sz Z wii

1

Var[vg] = su Z w%i (4)

)

Cov]va,vp| = sz Z WA, WE,

]

Using these, we can write the variance and covariances of the visibilities:

Var[V4] = si(z wi)2 assuming weights are antenna-independent
i

VarlVi] = 23 )
i

Cov[Vyu, V| = si(z wa,wg,)?

(5)

The correlation coefficient R4p between visibilities from beams A and B is

(Zz wAini)2

i w,24i > w%;i ©)

Rap =

2.1 The F ratio

Heywood (Heywood et al. 2016) defines the ratio F' to be F' = ‘;—?, where o,
is the image formed by combining signals from correlated beams, and o; is
the noise of images formed from that same beams, but made independent
by sampling at different times. Then

F =+/14+ Rup (7)

2.2 Modelling the beam weights

To use the correlation expression 6 we need beam weights determined on
the telescope, or a means to model them for some proposed beam footprint.
Here I attempt to construct a simple model. To date, all ASKAP beams
have been formed using the maximum sensitivity (maxSNR) method, which
accounts for both the pattern of received signal across the PAF and for
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Figure 1: The correlation coefficient coefficient between visibilities for two
beams as a function of their separation. Beam weights for each PAF element
are assumed to be proportional to the amplitude of the signal received by
that element.

the noise environment (including element-to-element noise variations and
additive spillover noise) Jeffs et al. (2008). For the present purposes, I
suppose that representative weights could be determined by Conjugate Field
Match (CFM) (Jeffs et al.), which can be estimated from knowledge of the
field distribution in the focal plane.

For CFM weights, an element is weighted according to the amplitude of
its received signal, which I model as the voltage corresponding to an Airy
pattern. Fig. 1 shows the correlation coefficient R4p from expression 6, as
a function of beam separation.

Fig. 2 uses this model to predict values of the F ratio measured and
reported by Heywood et al. (2016). It can be directly compared with Fig.
3 of that memo.
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Figure 2: The F ratio for the cases measured by Heywood (left) and Serra
(right). Each line is labelled with the beam separation in degrees. This
figure can be compared directly with Fig. 3 of Heywood et al. (2016)

A Derivation of some expressions

The variance and covariance of the beamformer voltages are:

Var[vg] = Var[z WA, 4]

= Z Var[w 4, x;]

Var[vg] = sy Z w%i

(2



and
Covlva,vp| = Cov[z WA, T, Z W, ;]

= Cov[(waoxo +warx:s + ), (wpoxo + wp1T1 + - - )]
= Cov]waozo, wporo] + Coviwaix1, wpi1T1] + - - 9)

= wpowpo Var[xg] + wawpy Var[zq] + - - -

= Sy E WA, WB,
i

Var[V4] = Var{va; - vag]

= E[v%j . ”2Ak:] — Cov([vaj, vak]
Y, Yk
7 i

= s?c(z 11)1241,)2 assuming weights are antenna-independent
i

(10)

Var[Vg] = sg(z w )

i
and
Cov[Va, VB] = E[va; - vBj - vak - VBk)
= E[va; - vBj] - Elvak - vpi) + Cov(vaj - vBj, vak - VB
= [E[vaj] - E[up;] + Cov|vaj, vB;]] - [E[vak] - E[vpk] + Cov{vag, vpi]]
=S2 ) WAjWE;, 5 D WAk WBE,
i i

= si(z wa,wp,)* assuming weights are antenna-independent
i

(11)
The correlation coefficient Rap between visibilities from beams A and B is
_ COV[VAjk, VBjk]
\/Var[VAjk] - Var[Vp;i]
o 8:%(21 wAini)Q
- 12
NE SRR RN 12

(Zz wAini)z

a > w%i > w%i

Rap

6



A.1 The F ratio

Heywood defines the ratio F' to be F' = 2¢: ¢ for combined, 7 for independent.

Let XY be the two signals to be combined. For the ¢ combination,

Cov[X,Y] =0. Then

Var[X] + Var[Y]
o 2Cov[X,Y]
B Var[X] + Var[Y]
_ \/1 n 27“[)(;, Y]J)zgay

ox toy

andif ox =0y =0

o \/Val"[X] + Var[Y] + 2 Cov[X, Y]

F=1+7[X,Y]

A.2 Statistical identities used

Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y]
Var[cX] = ¢* Var[X]
Cov[X +Y, Z] = Cov[X, Z] 4+ CovlY, Z]
E[XY] =E[X]E[Y] + Cov[X, Y]
Var[XY] = E[X?Y?] - E[XY]?
= Cov[X?,Y?

+ [Var[X] + E[X]?][Var[Y] + E[Y]?]]
— [Cov[X,Y] + E[X]E[Y]]?

Correlation coefficient r[X, Y]:

Cov[X,Y]

r[X,Y] = P

(18)
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