
Cylinder + 12-m Dish Hybrid

John Bunton CSIRO

Why Hybrids?

- At low frequencies antenna technologies that do not use concentrators are used.
 - elemental receptor already have large effective area
 - LNAs, downconverters and A/D converters have low cost at these frequencies.

Why use concentrators at high frequency?

As the frequency increases, the cost of electronics increases.

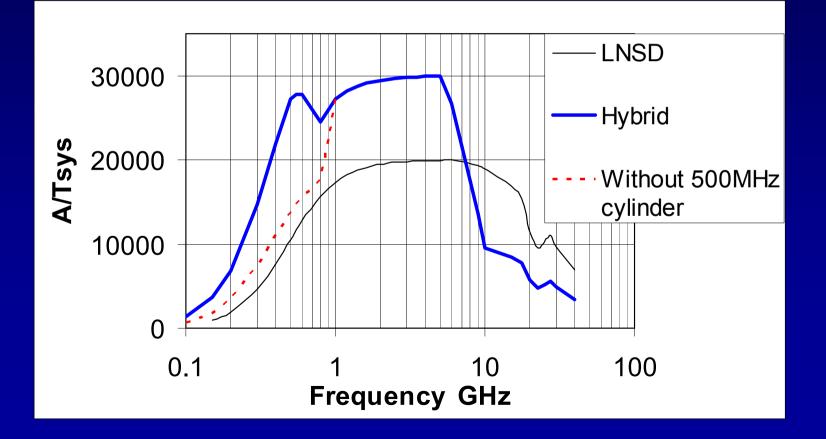
- For example at a frequency of 30 GHz all current radiotelescopes use cooled receivers making the cost of the electronics per receptor orders of magnitude dearer than at 30 MHz.
- This together with the fact that the effective area of an elemental receptor has gone down by a factor of one million dictates that a two dimensional concentrator such as a parabolic dish be used.

Hybrid Proposal

- Consider hybrid solutions to the SKA where the frequencies below about 5 GHz would largely be handled by cylindrical reflectors.
- Higher frequencies would use
 - LNSD proposal using 12-m hydroformed parabolic dishes, or
 - LAR with a 200m adaptive reflector
- Consider the LNSD 12-dishes in the following discussion

Antenna cost – 15m cylinder

	Cost at 5 GHz (US\$/m ²)	Cost at 0.5 GHz (US\$/m ²)
Reflector	228	105
Linefeed hardware	13	6
LNA and RF beamformer	38	4
Downconversion and A/D	24	3
Line feed to beamformer	32	5
Total cost per m ² Cost for 10 ⁶ m ²	335 \$335M	123 \$123M
Cost of LNSD-12m dishes	\$860M	



The Hybrid Mix

- Constrain solutions to same total cost as the LNSD 12m proposal
- Build half of the 12-m antennas (\$430M) and both sets of 15-m cylinders (\$335M+\$123M).
 - Total cost is similar to the full-sensitivity 12-m antenna SKA.
 - The hybrid solution has traded high frequency sensitivity for low frequency sensitivity
 - Low frequency limit extended down from 200 MHz to 100 MHz.
 - Above 10 GHz the sensitivity is halved.
 - Does not include the saving in 12-m cost by going to a symmetric design (\$50M)

Sensitivity for cylinder + 12-m hybrid

Other differences

- Bandwidth 2.4GHz at 5GHz
 - SKA spec is 1.5GHz
- Low frequency limit is now 100MHz
 - 12-m dishes are limited to 150MHz (at x3 lower sensitivity)
- Cylinder FOV at 1.4GHz is 24 square degrees
 - 12-m dishes are 1 square degree
- These factors give an x100 improvement for 3 key science drivers!
 - Pulsars
 - HI surveys for evolution and dark energy

Conclusion

- This hybrid solution uses low and mid frequency cylindrical antenna arrays together with 12-m hydroformed antennas with a sensitivity of 10,000 m2/K.
- This increases the sensitivity below 5 GHz by a factor of 1.5 to 3.7.
- At high frequencies all proposed science can still be done, but with reduced sensitivity
- This is has to be balanced against the science cases which can take advantage of the increased low frequency sensitivity.