

OFFICIAL

OFFICIAL

BIGCAT data reduction using CASA
Chandra Murugeshan
24.09.2025

The BIGCAT upgrade on the ATCA will allow users to observe with a total of ~8 GHz simultaneous
bandwidth. This is achieved using four 2 GHz-wide basebands (IFs). In the first phase of the upgrade,
users have access to 4 GHz total bandwidth. Each IF band is composed of 15 128 MHz oversampled
sub-bands that are stitched together to form the ~2 GHz IF bandwidth. In this guide we will give users
a very basic workflow to reduce BIGCAT observations using the Common Astronomy Software
Application (CASA). Note that this guide is based on the tutorial “Basic CABB continuum data
reduction with CASA”, which you can access via this link: https://www.atnf.csiro.au/research/radio-
school/2023/casa_basic_continuum_tutorial.pdf.

Data format and structure

The BIGCAT correlator output is written as ASDM files. These are then converted to CASA
Measurement Sets (MS) using a bespoke CASA install (this is likely to change in the near future when
appropriate updates will be released for the standard CASA installs). For more details on how to
convert ASDM files into MS data sets please refer to the following document on observing and
accessing BIGCAT observations: https://confluence.csiro.au/x/q5-IeQ

As mentioned above, each IF consists of 15 128 MHz wide sub-bands. These will be written out as
separate spectral windows in the output ASDM/MS files. This document gives a brief run-down of
processing BIGCAT observations in CASA using standard CASA tasks.

Software requirements

If working on personal machines, users will need to install CASA. Please refer to the following link for
more information on how to install and run CASA on your machine:
https://casa.nrao.edu/casa_obtaining.shtml

Once properly installed, you can simply run CASA by typing (assuming you have made CASA available
in your path) in the terminal:

> casa

This should load-up the CASA shell/environment and open a logger window. All the following
commands in this guide are run within the CASA environment.

Loading and examining the data

Typically, observations are made in such a way that observations on the primary calibrator are stored
as a separate MS data set and one (or more) file(s) containing the target and secondary calibrator
observations. While not a necessity, it is easier to process data in CASA if all observations are
concatenated into a single file. In the first step we will concatenate the data sets containing

https://www.atnf.csiro.au/research/radio-school/2023/casa_basic_continuum_tutorial.pdf
https://www.atnf.csiro.au/research/radio-school/2023/casa_basic_continuum_tutorial.pdf
:%20https:/confluence.csiro.au/x/q5-IeQ
https://casa.nrao.edu/casa_obtaining.shtml

OFFICIAL

OFFICIAL

observations of the primary calibrator and the target + secondary. One can concatenate multiple
datasets if there are many datasets. This can be done using the ‘concat’ task in CASA. Here is an
example where we concatenate two datasets, one with the target and the phase calibrator and
another containing observation of the primary (flux) calibrator. Run this within the active CASA
environment.

> concat(vis = ['1934-638.ms', 'target.ms'], concatvis = 'combined.ms', freqtol
= '100kHz', respectname = False)

In the current standard version (6.6) of CASA, you might see an error reported in the logger similar to
the one shown in Fig.1. At this stage this is probably OK to be ignored.

 Figure 1Current error in CASA when concatenating datasets (not sure if this is BIGCAT-specific)

Next, we can examine the content of the combined dataset using the ‘listobs’ task. Note the output
will be written in the logger window.

> listobs(vis = 'combined.ms', verbose = True)

You should see an output similar to the one shown below in Fig. 2. The output will list all the fields,
scans, spectral windows (sub-bands), sources and details of all the antennas.

Examining the data

It’s a good idea to look at the UV coverage as well as the amplitude/phase Vs time, and amp/phase Vs
frequency etc. to get an idea about the RFI and other issues in the observations. These can then be
flagged accordingly.

Examine the visibilities using ‘plotms’. Once the plotms GUI opens, one can select data for
visualisation as per one’s convenience.

> plotms(vis = 'combined.ms', xaxis = 'U', yaxis = 'V') # to plot the UV coverage

> plotms(vis = 'combined.ms', xaxis = 'time', yaxis = 'amp') # to plot the amplitude
Vs Time for all baselines, all SPWs

> plotms(vis = 'combined.ms', xaxis = 'time', yaxis = 'phase') # to plot the phase
Vs Time for all baselines, all SPWs

OFFICIAL

OFFICIAL

> plotms(vis = 'combined.ms', xaxis = 'freq', yaxis = 'amp') # to plot the
amplitude Vs freq. for all baselines, all scans.

> plotms(vis = 'combined.ms', xaxis = 'freq', yaxis = 'phase') # to plot the phase
Vs freq. for all baselines, all scans. This is particularly useful to look for phase variation, delays etc.

Note, to select only the cross-correlated data, set antenna = '*&' (to examine only auto-correlated
data set antenna = '*&&&').

OFFICIAL

OFFICIAL

Figure 2 Output from listobs. It lists the various fields, scans, spectral windows, sources as well as antenna locations

Figure 3 UV coverage of the target. The different colours are the various baselines

OFFICIAL

OFFICIAL

Figure 4 Amplitude Vs Time, all SPWs, channel averaged.

Figure 5 Phase Vs time, all SPWs averaged together. Plotting cross-correlated data products in single XX polarisation only. Different
colors are different baselines

OFFICIAL

OFFICIAL

Figure 6 Phase Vs frequency after averaging all scans and all integrations together. The various colours are different baselines.

Set some parameter values

visname = 'combined.ms'. # you can set this to be your unflagged/uncalibrated MS data set
pri = '2' # the number denotes the field ID of the primary calibrator. NOTE, this can vary based
on your observations. Set the correct field ID for the primary (you can get this from the output printed
by listobs)
sec = '0' # field ID of secondary calibrator. NOTE, again, set this correctly as this number might
vary depending on your observations.
tar = '1' # field ID of the target.
ref = 'CA03' # name or ID of the reference antenna. Choose a stable antenna.

Flagging:

Flagging in CASA is typically done using the task ‘flagdata’. Before we start flagging it is a good idea to
save the current flag state so that we can restore the data back to the original state in case we end-up
being not happy with the flagging etc at a later stage. This can be done using the ‘flagmanager’ task in
CASA.

> flagmanager(vis = visname, mode = 'save', versionname = 'flag_v1') # save any
initial flags before starting the flagging process

> flagdata(vis = visname, mode = 'clip', clipzeros = True, flagbackup = False)
#flag any zeros and NaN values in the data.

> flagdata(vis = visname, mode = 'shadow', tolerance = 0.0, flagbackup = False)
flag any antenna shadowing

OFFICIAL

OFFICIAL

> flagdata(vis = visname, mode = 'quack', quackinterval = 10.0, quackmode =
'beg', flagbackup = False) # this is optional, but often good to do. This omits the first 10
seconds of the observations. You can choose this to be longer if necessary

> flagdata(vis = visname, mode = 'clip', clipminmax = [0,100], flagbackup =
False) # clip amplitudes over 100. NOTE, you may need to look at the response of your data before
setting the appropriate max value to clip.

> flagmanager(vis = visname, mode = 'save', versionname = 'flag_v2') #save flags

Check the amplitude Vs frequency response using ‘plotms’ and look for any obvious RFI in the data.
You can choose to cycle through various correlations xx, yy, xy, yx. You can choose to flag data within
plotms using the flagging option at the bottom of the GUI (see Fig. 8 below), or we can use the flagging
options within ‘flagdata’ to do this (recommended). It is a lot faster and more efficient to use the
automated flagging routines to flag the data than to manually flag them in the plotms GUI. Below we
will run some basic flagging routines to flag the data.

Figure 7 Amplitude as a function of frequency for multiple baselines. plotms has the option to flag data on the go using the
GUI.

> flagdata(vis = visname, mode = 'tfcrop', datacolumn = 'data', chanbin = 1,
ntime = 'scan', combinescans = False, timecutoff = 4.0, freqcutoff = 3.0,
timefit = 'line', freqfit = 'poly', maxnpieces = 7, flagdimension = 'freqtime',
usewindowstats = 'none', halfwin = 1, extendflags = False, action = 'apply',
display = 'report', flagbackup = True, savepars = False, writeflags = True)

Reload the data in ‘plotms’, examine the data and make sure to remove any remaining RFI by running
the above command again. You can also use the manual flagging option in ‘plotms’ to flag any

OFFICIAL

OFFICIAL

remaining outliers etc. Once satisfied we can extend the flags to all correlations and then save the
flags.

flagdata(vis = visname, mode = 'extend', ntime = 'scan', combinescans = False,
extendpols = True, growtime = 80.0, growfreq = 80.0, growaround = False,
flagneartime = False, flagnearfreq = False, action = 'apply', display =
'report', flagbackup = True, savepars = False, writeflags = True)

> flagmanager(vis = visname, mode = 'save', versionname = 'flag_before_cal')
#save the flags version

Calibration:

Set the flux level for the primary calibrator. Note that the calibrator PKS 1934-638 is not available in
the ‘Perley-Butler 2017’ database (which is the default in CASA 6.6), so you may have to set ‘standard
= Perley-Butler 2010’.

> setjy(vis = visname, field=pri, scalebychan = True, standard = 'Perley-Butler
2010', usescratch = True)

Running this should produce an output like this, with the model flux value for each spectral window.

You can examine this visually by plotting the model amplitude as a function of frequency for 1934-638
(or your specific primary calibrator). You can do this by setting “field=1934-638”, “corr=XX,YY” in the
plotms GUI. In the ‘Axes’ tab (on the left), select ‘model’ under the Y-axis ‘Data’ tab. This should plot
the calculated model amplitude for 1934-638 as a function of frequency. In the ‘Display’ tab to the
left, set ‘Colorize=spw’ to show the response across all spectral windows.

OFFICIAL

OFFICIAL

Figure 8 Using plotms to show the model amplitude Vs frequency plot for 1934-638

Next use ‘gaincal’ to perform phase calibration for the primary calibrator. Run gaincal as shown
below.

> gaincal(vis = visname, caltable = 'cal.G0', field = pri, refant = ref,
gaintype = 'G', calmode = 'p', parang = True, solint = '60s') # you can also set
solint to shorter durations (e.g., ‘30s’ or ‘int’) if you want to track phase changes at shorter time
intervals. ‘int’ is the integration period of the observations (typically ~10s for most observations, but
can vary based on the experiment)

> bandpass(vis = visname, caltable = 'cal.B0', field = pri, spw='', refant =
ref, solnorm = True, solint = 'inf', bandtype = 'B', gaintable = ['cal.G0'],
parang = True) # solve for the bandpass response

> gaincal(vis = visname, caltable = 'cal.G1', field = pri+','+sec, refant =
ref, spw = '*', gaintype = 'G', calmode = 'ap', parang = True, solint = '60s',
gaintable = ['cal.B0']) # solve the gains using the secondary this time.

> polcal(vis = visname, caltable = 'cal.D0', field = pri, refant = ref,
gaintable = ['cal.B0','cal.G1'], poltype = 'Df', solint = 'inf') # solve for the
polarisation leakage

Now we can attempt to derive better solutions using the previous gains tables. So re-do the above
steps, but this time use the previously solved gains tables.

> bandpass(vis = visname, caltable = 'cal.B1', field = pri, spw='', refant =
ref, solnorm = True, solint = 'inf', bandtype = 'B', gaintable =
['cal.G1','cal.D0'], parang = True)

OFFICIAL

OFFICIAL

> gaincal(vis = visname, caltable = 'cal.G2', field = pri+ ',' +sec, refant =
ref, spw = '*', gaintype = 'G', calmode = 'ap', parang = True, solint = '60s',
gaintable = ['cal.B1','cal.D0'])

> polcal(vis = msname, caltable = ‘cal.D1’, field = pri, refant = ref, gaintable = ['cal.B1','cal.G2'],
poltype = 'Df', solint= 'inf')

We can look at the bandpass and gains solutions using plotms

> plotms(vis = 'cal.B1', xaxis = 'freq', yaxis = 'amp', coloraxis = 'spw') #
plot the bandpass solutions

Figure 9 Bandpass solutions. Note that in this case one of the sub-bands is missing as it was completely flagged due to bad RFI. The
solutions in the last sub-band do not seem to converge. One should be cautious and perhaps re-do the flagging/calibrations steps or
choose to omit that specific sub-band during the imaging step.

Examine the (amplitude and phase) gain solutions for the primary calibrator

> plotms(vis = 'cal.G2', xaxis = 'freq', yaxis = 'amp', field = pri, iteraxis =
'antenna', coloraxis = 'spw')

> plotms(vis = 'cal.G2', xaxis = 'time', yaxis = 'phase', field = pri, iteraxis =
'antenna', plotrange = [0,0,-180.,180.] ,coloraxis = 'spw')

OFFICIAL

OFFICIAL

Figure 10 Amplitude gains for the primary calibrator

Figure 11 Phase gains solutions for the primary calibrator

Examine the (amplitude and phase) gain solutions for the secondary calibrator

> plotms(vis = 'cal.G2', xaxis = 'freq', yaxis = 'amp', field = sec, iteraxis =
'antenna', coloraxis = 'spw')

OFFICIAL

OFFICIAL

> plotms(vis = 'cal.G2', xaxis = 'time', yaxis = 'phase', field = sec, iteraxis =
'antenna', plotrange = [0,0,-180.,180.],coloraxis = 'spw')

Figure 12 Amplitude gains as a function of frequency for the secondary calibrator

Figure 13 Phase gains as a function of time for the secondary calibrator

We see that the phase gain solutions over time are quite stable.

We first scale the flux appropriately.

OFFICIAL

OFFICIAL

> fluxscale(vis = visname, caltable = 'cal.G2', fluxtable = 'cal.F0', reference = pri)

Then go ahead and apply the calibrations to the target field

> applycal(vis = visname, gaintable = ['cal.B1','cal.D1','cal.F0'], gainfield =
[pri,pri,pri],field = pri, parang = True, flagbackup = False)

> applycal(vis = visname, gaintable = ['cal.B1','cal.D1','cal.F0'], gainfield =
[pri,pri,sec], field = sec+','+tar, parang = True, flagbackup = False)

Next, we run the final set of flagging routines to make sure any outliers are properly flagged. We use
flagdata for this purpose again, but this time use the mode set to ‘rflag’.

> flagmanager(vis = visname, mode = 'save', versionname = 'before_rflag')

> flagdata(vis = visname, mode = 'rflag', field = pri, spw = '', datacolumn =
'corrected', action = 'apply', display = 'report', correlation = 'ABS_ALL',
timedevscale = 3.0, freqdevscale = 3.0, winsize = 3, combinescans = True, ntime =

'9999999min', extendflags = False, flagbackup = False) # running the flagging routine on the
primary calibrator

> flagdata(vis = visname, mode = 'rflag', field = sec, spw = '', datacolumn =
'corrected', action = 'apply', display = 'report', correlation = 'ABS_ALL',
timedevscale = 3.0, freqdevscale = 3.0, winsize = 3, combinescans = True, ntime =

'9999999min', extendflags = False, flagbackup = False) # running the flagging routine on the
secondary calibrator

> flagdata(vis = visname, mode = 'rflag', field = tar, spw = '', datacolumn =
'corrected', action = 'apply', display = 'report', correlation = 'ABS_ALL',
timedevscale = 3.0, freqdevscale = 3.0, winsize = 3, combinescans = True, ntime =

'9999999min', extendflags = False, flagbackup = False) # running the flagging routine on the
target

> flagdata(vis = visname, mode = 'extend', field = pri+','+sec+','+tar, spw = '',
action = 'apply', display = 'report', flagbackup = False, extendpols = True,
correlation = '', growtime = 95.0, growfreq = 95.0, growaround = True, flagneartime =

False, flagnearfreq = False, combinescans = True, ntime = '9999999min') # extend the
flags to all correlations for the primary, secondary and the target

If we now look at the amplitude Vs freq. response for the primary we should see something like Fig. 15.
You can examine this using the plotms task

> plotms(vis = msname, field = pri, xaxis = 'frequency', yaxis = 'amp', correlation =
'xx,yy' , ydatacolumn = ‘corrected’, coloraxis = 'spw')

OFFICIAL

OFFICIAL

Figure 14 Corrected amplitude Vs frequency for the primary calibrator.

We can also look at the corrected amplitude vs freq. response for the secondary calibrator

> plotms(vis = visname, field = sec, xaxis = 'frequency', yaxis = 'amp', correlation =
'xx,yy' , ydatacolumn = 'corrected', coloraxis = 'spw')

OFFICIAL

OFFICIAL

Figure 15 Corrected amplitude Vs frequency for the secondary calibrator.

We see that corrected amplitudes of both the primary and the secondary calibrators are well
behaved.

At this point it might also be useful to have a look at the imaginary Vs real plot for the primary,
secondary. Typically (but not always true), you want to see a nice, concentrated distribution of points
centred on the flux of the calibrator in the real axis and 0 on the imaginary axis.

OFFICIAL

OFFICIAL

Figure 16 Corrected imaginary Vs real plot for the primary calibrator.

Figure 17 Corrected imaginary Vs real plot for the secondary calibrator.

Imaging:

Once we are happy with the calibration we can finally proceed to the imaging step. This is done in
CASA using the task ‘tclean’

OFFICIAL

OFFICIAL

> tclean(vis = visname, selectdata = True, field = tar, datacolumn = 'corrected',
imagename = 'image_name', imsize = [1024, 1024], cell = '1.0arcsec', stokes = 'I',
projection = 'SIN', specmode = 'mfs', gridder = 'standard', pblimit = 0.2, deconvolver
= 'mtmfs', scales = [0, 5, 15, 50], nterms = 2, weighting = 'briggs', robust = 0.5,
niter = 20000, threshold = '1e-4Jy', interactive = False)

NOTE, you may have to change the image and cell size and other parameters such as the scales and
the threshold for the minor clean cycles depending on your source and observations. We are using the
‘mtmfs’ routine to deconvolve as this is a good option to deal with wideband imaging (as is the case
here). One can also try using ‘multiscale’. If you intend to perform interactive cleaning set ‘interactive
= True’. This will open a GUI which will display the residuals after every major clean cycle, and the user
may select specific regions to clean etc. For more details refer to the CASA user guide and/or other
CASA imaging guides.

Appendix: Optional and Advanced Steps

For improved results, consider adding:

1. Delay Calibration:
 gaincal(vis=visname, caltable='cal.K0', gaintype='K', solint='inf',

combine='spw,scan')

 Removes instrumental delays across the wide bandwidth.
2. Statistical Weighting:
 statwt(vis=visname)
 Recomputes visibility weights after extensive flagging.
3. Self-Calibration: For bright targets, run iterative phase and amplitude self-calibration.
4. Continuum Subtraction (for spectral line studies):
 uvcontsub(vis=visname, fitspw='0:5~100;200~400', fitorder=1)

5. Imaging Options:
o Use uvtaper for extended emission.
o Use gridder='wproject' or gridder='mosaic' for wide-field imaging.

6. Exporting Products:
 exportfits(imagename='image_name.image', fitsimage='image_name.fits')
7. If you want to split the wideband into smaller chunks, you can consider using ‘mstransform’. In the

example below we are splitting-out the first 8 spectral windows/spws (or sub-bands) from 0 to 7 to
create a new MS consisting of those spectral windows.
> mstransform(vis = visname, outputvis = 'out_image.ms', spw ='0~7', datacolumn
= 'data', regridms = True, mode = 'channel', nspw = 8, interpolation = 'linear')

