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Why reconnection?

Reconnection is the only mechanism that can alter the magnetic
field topology. It is required in two fundamental problems:

Dynamo theory;How to develop the strongs fields from a weak
“seed field”.

Coronal heating;How to heat the corona and account for
explosive flare release.

Here we concentrate on developing exact anlytic models for 3D
coronal reconnection.
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The flare problem

In solar flares around1030 ergs are released rapidly, in100s or
so. Magnetic reconnection—a resistive process involving the
cutting and rejoining of field lines—is the accepted release
mechanism.

But weak coronal resistivitygenerally leads to energy loss rates
that are too slow to account for flare observations.

How can the rate of reconnection be speeded up?
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Coronal parameters

In reconnection theory we are dealing with 3D magnetic and
velocity fields. Scale the problem using the typical values

Bc = 102G lc = 109.5cm nc = 109cm−3

and employAlfvénic units. Times are measured in units of
τA = lc/vA wherevA ≃ 109cm s−1 is the Alfvén speed.

Energy losses have the units

B2

8π
lc

3/τA = 4 × 1030 ergs/s

Modest flares require around1027 erg/s.
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The coronal resistivity

In these units the resistivity is

η ≃ 10−14

Contrast this with the viscosity coefficientν ≃ 10−3.
Howeverη multiplies the highest derivatives in the MHD
equations and so cannot be neglected. This difficulty meant no
exact reconnection solutions were discovered until the mid
1990’s.

Now 3D solutions are available that coverspine, fan and
separator (no-null)reconnection.
Even so, it is difficult to go beyond the slow Sweet-Parker (1958)
rateη1/2 of energy release.
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Governing equations

These are the (MHD) momentum and induction equations

∂tV + (V · ∇)V = J × B −∇P + ν∇ · S, (1)

∂tB = ∇× (V × B) − η∇× J, (2)

plus constraints
∇ · B = ∇ · V = 0. (3)

HereP is the plasma pressure,∇ · S is the viscous force and

J = ∇× B

the current density.
Resistive effects require hugeJ gradients.

UW, 28 May, 2010 – p.6/17



Key questions

Can analytic solutions valid for arbitraryη be constructed?

Are the models physically realistic?

Can resistive scaling laws be deduced for the model?

Can the spine and fan geometry of the null be exploited, as
kinematic studies would suggest?
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Fig.1: Field skeleton
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The field skeleton

The skeleton defines the eigenstructure of∇B close to a null. So
a current freeX-point, say

P = (x, y,−2z), ⇒ λi = (1, 1,−2).

Positive eigenvalues corresponding to outflow (say) must be
balanced by inflow along the spine (thez-axis).

Now superpose a disturbance fieldQ onto skeletonP.
Identically we must have

∇× [∇× Q) × Q] = 0. (4)

for consistency with momentum equation (1).

If Q bends the spine fan currents appear;Q distorting the fan
implies tubular currents along the spine.
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Fig.2a: Fan current reconnection

Figure 1: Fan reconnection
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Fig. 2b: Spine current
reconnection

Figure 2: Spine reconnection
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Constructing 3D reconnection
solutions

Forη > 0, ν = 0 a typical construction is

V = αP(x) + v(x, t), B = βP(x) + b(x, t),

with α > β ≥ 0. Note thatβ defines “shear” (Craig & Henton
1995).

The prototype fan and spine forms (Craig & Fabling 1996)

bS = Z(x, y, t)ẑ,

bF = X(x, t)x̂ + Y (x, t)ŷ,

have reduced dimensionality due to condition (4).

Cylindrical models also follow this scheme (Watson & Craig
2002, Tassi et al 2002, Pontin & Craig 2006). UW, 28 May, 2010 – p.12/17



Steady fan solution

The simplest model is the two dimensional fan solution:

Q = [0, Y (x), 0] P = [−x, y, 0]. (2)

The formal solution is

B = βP +
E

ηµ
Daw(µx)ŷ

V = αP +
β

α

E

ηµ
Daw(µx)ŷ

whereE (the flux transfer rate) is constant and

µ =
α2 − β2

2αη
=

ᾱ

2η
> 0.
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Fan solution 2D

Figure 3: fan solution UW, 28 May, 2010 – p.14/17



Resistive scalings

The Dawson function identifiesxs =
√

η/ᾱ as the current sheet
thickness. Less formally, since the disturbance field satisfies

E − ᾱxY = ηYx

we can equate outer and inner approximations, namely

Yout ≃
E

ᾱx
and Yin =

E

η
x

to get the same result forxs. The field in the sheet

Ys ≃
E

√

(ᾱη)
.

therefore increases withη for fixedE ! UW, 28 May, 2010 – p.15/17



Ohmic losses

This leads to Ohmic losses that diverge withη

Wη =

∫

ηJ2dV ≃ η
Y 2

s

xs

∼ η−1/2.

The problem—common to all exact analytic solutions—is that
the flow can only maintain sheets withYs ≤ α. ThereforeYs has
to be limited to the flow amplitudeY ∗

s ≃ α. When this is done

Wη → η1/2 Ys
∗5/2. (5)

The rate differs from Sweet-Parker by the flux pile-up factor
Y ∗

s
5/2 which could exceed102 (600 Gauss fields).

This result is found to hold for all fan-reconnection solutions.
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Summary

Exact reconnection models can be constructed in 2D and 3D.

To enhance the Ohmic dissipation rate (5) can invoke a current
limiting resistivity,ηeff → 106η ≃ 10−8. ThenWη → 10−2

which equates to4 × 1028 erg/s for a flux pile-up factor of one
hundred.

Other possible enhancements include:

Multiple null solutions;
Inclusion of Hall and viscous effects;
Using 3D turbulence models.

Flare-like release rates can be approached using these
modifications but no model is yet accepted!
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