Using the Faraday Effect to Probe Magnetic Fields in HII regions

Lisa Harvey-Smith

Cosmic Magnetism - From Stellar to Intergalactic Scales
Southern Cross Astrophysics Conference Series, Kiama, NSW
Star formation relies on the accumulation of very diffuse material from large volumes. What is the role of magnetism in star-formation?

\[B \propto n \]

\[B \propto n^\kappa \]

Crutcher (2008)
Star formation relies on the accumulation of very diffuse material from large volumes.

What is the role of magnetism in star-formation?
Questions:

› What is the magnetic field strength in HII regions?
› How does magnetic field strength scale with density in the diffuse ISM?
› What is the scale of magnetic field reversals in HII regions?

Previous Work:

› RRLs and HI/OH Zeeman effect can yield B_{\parallel} in much denser material close to periphery of HII regions, (e.g. Bloemhof et al. 1992; Roshi et al. 2007).

› Only a handful of measurements been made of magnetic field strengths within HII regions (Heiles et al. 1980, 1981) in the 1-10 cm$^{-3}$ material.

› Recent improvements in Hα and radio polarization data allow an in-depth study of B_{\parallel} in HII regions.

Methodology:

› We use measurements of the Faraday effect on linearly polarized radio waves from distant galaxies to estimate the magnetic field strength in 5 Galactic HII regions.

› Examine B vs. n relation for 5 HII regions over a factor of 20 change in density.
The Faraday Effect

- **Faraday effect**: Change in polarization angle in a magneto-ionic medium due to circular birefringence (LCP and RCP having different speeds).

\[
\Delta \chi = RM \lambda^2
\]

I’ll wager £20 that

\[
\Delta \chi = RM \lambda^2
\]

Astrophysical Measurement of the Faraday Effect

- Distant galaxies
- **HII region**: \(n_e B || dl \)
- Telescope

\[
RM = 0.81 \int_{src}^{obs} n_e B || dl
\]
A Rotation Measure Image of the Sky

Image: NVSS rotation measure catalogue, (Taylor, Stil & Sunstrum, 2009)

\[
RM = 0.81 \int_{\text{src}}^{\text{obs}} n_e B_{\parallel} dl
\]

Wednesday, 16 June 2010
Image: Hα all sky map, Finkbeiner (2003)

$I_{\text{H}\alpha} \propto \text{Emission Measure}, \quad EM = \int_{\text{obs}} n_e^2 dl$
Calculating \(n_0 \) and \(B_{||} \)

Model:

- If an HII region is clumpy, with clumps \(n_e = n_0 \) and elsewhere \(n_e = 0 \), then:

\[
\begin{align*}
n_0 &= \sqrt{\frac{EM}{fL}} \\
B_{||} &= \frac{RM}{0.81n_0fL}
\end{align*}
\]

- \(f \) = filling factor, \(L \) = path length through HII region
- Other considerations: optical extinction, RM and EM due to back/foreground.

- Given a model for the HII region and filling factor, can determine \(n_0 \) and \(B_{||} \) at each position where we have an RM.
- Use a back/foreground correction to isolate the in situ magnetic field.
- Choose regions outside Galactic plane (dust extinction).
The HII Regions

Sh 2–264

Sh 2–220
The HII Regions
1. Define boundary of HII region

2. *Inside boundary:* For each RM position, calculate the EM from $I_{H\alpha}$

3. Correct each EM for extinction by interstellar dust (assume dust in front)

4. *Outside boundary:* Calculate the RM and EM not due to the HII region and subtract from data within the boundary.

5. Calculate B_\parallel and n_0 for each sightline.

6. Plot B_\parallel vs. n_0 for each HII region.

$$B_\parallel = \frac{RM}{0.81n_0fL} \quad n_0 = \sqrt{\frac{EM}{fL}}$$

All-sky E_{B-V} map (Schlegel, Finkbeiner & Davis 1998)
Correlation implies *in situ* magnetic field
Results: B_\parallel vs. n_0

Filled symbols: $B > 0$
Open symbols: $B < 0$

$B = \sqrt{16\pi n_0 k T}$

$P_{\text{magnetic}} \approx P_{\text{thermal}}$

$B_\parallel = \frac{1}{\sqrt{6}} B_{\text{total}}$

Order of magnitude increase in n_0, very little increase in B.

Enhanced RM in HII regions due to increased electron density.

Uncertainties:
Filling factor, f of each sight-line unknown.
Dust correction assumes all dust is in front of HII region.
Results: Derived Parameters

<table>
<thead>
<tr>
<th>HII Region</th>
<th>R_{max} (pc)</th>
<th>n_0 (cm$^{-3}$)</th>
<th>$B_{|}$ (μG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh 2-27</td>
<td>15</td>
<td>10.7 (2.7)</td>
<td>- 6.1 (2.6)</td>
</tr>
<tr>
<td>Sh 2-264</td>
<td>25</td>
<td>9.8 (2.3)</td>
<td>+ 2.8 (1.8)</td>
</tr>
<tr>
<td>Sh 2-220</td>
<td>20</td>
<td>9.9 (3.1)</td>
<td>- 6.9 (2.4)</td>
</tr>
<tr>
<td>Sivan 3</td>
<td>40</td>
<td>1.5 (0.4)</td>
<td>- 2.9 (1.5)</td>
</tr>
<tr>
<td>Sh 2-171</td>
<td>30</td>
<td>17.9 (10.4)</td>
<td>- 2.3 (1.3)</td>
</tr>
</tbody>
</table>
Magnetic field structure of Milky Way derived from pulsars. Han & Zhang (2008)
HII regions have magnetic fields with \(B_{||} \approx 5 \, \mu \text{G} \) (diffuse ISM).

Characteristic electron densities range between \(1 < n_0 < 30 \, \text{cm}^{-3} \).

Magnetic fields within an HII region range from \(1 < B_{||} < 10 \, \mu \text{G} \).

\(B \) has a uniform line-of-sight orientation on scales of 15 - 40 pc.

There is little or no change in \(B \) in the diffuse ISM between \(1 \) - \(10 \, \text{cm}^{-3} \).

\[
P_{\text{mag}} \approx P_{\text{thermal}}
\]

The parallel component of the magnetic field in HII regions is consistent with the Galactic magnetic field structure derived by Han \& Zhang (2008).

Future studies: RM structure functions to investigate scaling of turbulence.

Talk: "The role of magnetic fields in controlling the structure of HII regions" (Gary Ferland, Thursday afternoon)