Magnetic Fields in Molecular Clouds

Mark Heyer University of Massachusetts

Cosmic Magnetism – From Stellar to Intergalactic scales 7-11 June 2010

Talk Outline

- Overview of magnetic field in molecular clouds
 - Cloud support (recent Crutcher-Mouschovias debate)
- MHD Turbulence
 - Velocity anisotropy (Goldreich-Sridhar Effect)
 - Velocity anisotropy in the Taurus Molecular Cloud

Cloud Support

Mestel & Spitzer (1956) Mouschovias & Spitzer (1976) Nakano (1978) Lizano & Shu (1988)

© 2006 Pearson Education, Inc., publishing as Addison Wesley

$$\begin{split} \mathsf{M}_{\rm crit} &= (1/63 {\rm G})^{1/2} \ \Phi \\ &= 10^3 \ \mathsf{M}_{\rm sun} \ (\mathsf{B}/30 \ \mu {\rm G}) \ (\mathsf{R}/2 \ \mathsf{pc})^2 \\ \Sigma_{\rm crit} &= 80 \ \mathsf{M}_{\rm sun}/\mathsf{pc}^2 \ (\mathsf{B}/30 \ \mu {\rm G}) \end{split}$$

$$\begin{split} \mu &= \Sigma / \Sigma_{\text{crit}} \\ \text{if } \mu &> 1 \text{ supercritical} \\ \text{if } \mu &< 1 \text{ sub-critical} \end{split}$$

Ambipolar Diffusion

Observations of Magnetic support

Challenges in measuring μ :

B --> Σ_{crit}

Zeeman Measurements: OH 1665/1667 MHz

- Large single dish OH beams
- Measure los field component --> Correct for inclination

Σ

- Compile Σ from same volume responsible for Zeeman splitting
- Correct for inclinations to obtain central surface density

OH Zeeman towards Molecular Clouds

Crutcher (1999) compiled OH Zeeman measurements and molecular cloud properties

log n(H₂)

OH Zeeman towards Dark Clouds

$$<\mu_{obs}>= 4.8 + - 0.4$$

 $<\mu_{corr} \sim 2$

Testing Magnetic Field Star Formation Theory Crutcher, Hakobian, Troland (2009, 2010)

$$\mathsf{R} = \frac{\left[M / \Phi\right]_{core}}{\left[M / \Phi\right]_{envelope}} = \frac{\left[T_{line} \Delta V / B_{los}\right]_{core}}{\left[T_{line} \Delta V / B_{los}\right]_{envelope}}$$

Toroidal beam for envelope

Toroidal beam for envelope

Results: mostly non-detections

Cloud	\mathcal{R}	\mathcal{R}'	Probability \mathcal{R} or $\mathcal{R}' > 1$
L1448CO	0.02 ± 0.36	0.07 ± 0.34	0.005
B217-2	0.15 ± 0.43	0.19 ± 0.41	0.05
L1544	0.42 ± 0.46	0.46 ± 0.43	0.11
В1	0.41 ± 0.20	0.44 ± 0.19	0.010
	V		

Mouschovias & Tassis (2009)

Must account for measured variations of B between envelope beams:

- Variations in field strength
- Variations in field orientation along line of sight

Relax CHT assumption of straight field lines to derive 2σ upper limits

Cloud	$B_{\rm mean} \pm \sigma_{\rm mean}$	$B_{\max \mathcal{L}} \pm \sigma_{\mathcal{L}}$	$ B_{\rm env} \ (\leq 2\sigma)$	$ R \ (\leq 2\sigma)$
L1448CO	0 ± 5	-4^{+9}_{-8}	27	2.0
B217-2	$+2 \pm 4$	$+2^{+7}_{-7}$	22	2.9
L1544	$+2 \pm 3$	$+4^{+10}_{-8}$	29	5.0
B 1	-8 ± 3	-8^{+5}_{-5}	20	1.1

Summary 1

- Magnetic support of molecular clouds remains observationally ill-defined
- Interstellar clouds are complicated!

MHD Velocity Anisotropy (Goldreich & Sridhar 1995)

- Energy is distributed <u>differentially</u> along directions parallel and perpendicular to magnetic field
- Longer velocity correlation lengths <u>along</u> magnetic field:

$$k_{\parallel} \sim (k_{perp})^{2/3}$$

RED: PARALLEL to B₀ **BLUE: PERPENDICULAR to B**₀

Simulated Observations of models:

 $n(x,y,z),v(x,y,z) \longrightarrow T_{A}(x,y,V_{ISB})$

Parallel 250 200 150 × 100 50 0 -62 -4 -2Û 4 6 V (km/s)

Perpendicular

Observational Expectations of the G-S Effect (Heyer etal 2008)

Measures structure function along two perpendicular axes within data cube, $T_{\Delta}(x,y,V_{ISB})$:

Eigenvectors: $\delta v(\tau)$ Eigenprojections: τ

CЗ

10

⊤ (pixels)

100 1 D2

D3

100

10

0.1

0.01 100

10

0.1

0.01

1

 $S_2(\tau)$ (c_g^{B})

B3

10

+ (pixels)

100

1

 $S_{2}(\tau)$ (c_{g}^{2})

γx

Red: optical polarization vectors Blue contour: Av=5 mag. (2MASS)

Red: optical polarization vectors Blue contour: Av=5 mag. (2MASS)

Taurus Sub-field

Integrated Intensity

Centroid Velocity

Anisotropy Measures from Structure function parameters

$$\Psi_1 = (\gamma_x - \gamma_y) / (\gamma_x + \gamma_y)$$

$$\Psi_2 = (v_{0y} - v_{0x}) / (v_{0x} + v_{0y})$$

(power law indices) (amplitudes)

Anisotropy Measures from Structure function parameters

$$\Psi_1 = (\gamma_x - \gamma_y) / (\gamma_x + \gamma_y)$$

$$\Psi_2 = (v_{0y} - v_{0x}) / (v_{0x} + v_{0y})$$

(power law indices) (amplitudes)

At angle of max. anisotropy

Models

$$(c_s/v_A)^2 \sim 0.03 = c_s^2 (4\pi\rho)/B_0^2$$

T=15 K, =250 cm⁻³---> B_0 = 14 µG
N(H_2)~1.5x10^{21} cm⁻² $\rightarrow \mu_{obs} = N_{obs}/N_{cr} = 0.8$

Ambipolar Diffusion?

Ambipolar Diffusion?

Summary

• Observational evidence does not exclude an important role of the interstellar magnetic field in cloud support

Measuring M/Φ is challenging

- Velocity anisotropy induced by strong MHD turbulence can provide a <u>coarse</u> measure of (c_s/v_A)²
- Taurus molecular cloud envelope appears sub-critical
- Velocity anisotropy is reduced or non-existent in high column density regions

Axis Constrained PCA

$$W_y(x,v) = \frac{1}{\Delta} \sum_{j=j1}^{j^2} T(x,y_j,v)$$

1

Position Velocity image along x axis

$$C_{kl}^{x} = \frac{1}{n_x} \sum_{i=1}^{n_x} W(x_i, v_k) W(x_i, v_l),$$

Covariance matrix

$$\mathbf{C}^x u_x = \lambda_x u_x$$

$$I_x(x_i) = \sum_{k=1}^{n_v} W(x_i, v_k) u_x(v_k)$$

Eigenvalue Equation: solve for λ , u: ---> δv_x for i=0,1,2,...

Eigenimage (1D): --> L_x for i=0,1,2,...

